Construction of Balanced Bipartite Block Designs

Prayender¹ and Patel Bhavika L.²

¹Department of Statistics, School of Sciences, Gujarat University, Ahmedabad 380009, India ²Aroma College of Commerce, Usmanpura, Ahmedabad 380013, India blpatel_08@yahoo.com

Available online at: www.isca.in, www.isca.me

Received 27th April 2015, revised 1st September 2015, accepted 20th January 2016

Abstract

In this paper some methods of construction of balanced bipartite block (BBPB) designs are obtained which are based on incidence matrices of the known balanced incomplete block (BIB) designs and two-associate-class partially balanced incomplete block (2-PBIB) group divisible (GD) designs. The obtained results are given with examples to show how they can be applied.

Keywords: BBPB designs, Balanced bipartite block designs with unequal block sizes (BBPBUB), BIB designs, GD designs.

Introduction

Consider the experimental setting where v distinct treatments are divided into two disjoint groups of cardinality v₁ and v₂ respectively and the purpose is to compare the set of v₁ test treatments denoted by $1, 2, ..., v_1$ to the set of $v_2 (\geq 2)$ control treatments denoted by $v_1 + 1, ..., v_1 + v_2 (= v)$. Bechhofer and Tamhane have defined proper balanced treatment incomplete block (BTIB) designs to compare a set of test treatments to a control treatment. As an extension of these designs Kageyama and Sinha² have defined balanced bipartite block (BBPB) designs for comparing a set of test treatments to a set of control treatments.

Definition 1: An incomplete block binary design with a set of v₁ treatments occurring r₁ times and another set of v₂ treatments occurring r_2 times $(r_1 \neq r_2)$ arranged into b blocks of constant block size k is said to be a BBPB design if: (i) any two distinct treatments in the ith set occur together in λ_{ii} blocks, i = 1,2; (ii) any two treatments from different sets occur together in $\lambda_{12} = \lambda_{21} (> 0)$ blocks.

Some systematic methods of constructing BBPB designs have given by Kageyama and Sinha² and Sinha and Kageyama³. As a natural extension of BTIB designs Angelis and Moyssiadis⁴ have given the concept of balanced treatment incomplete block designs with unequal block sizes (BTIUB) for comparing a set of test treatments to a single control treatment with unequal blocks. Some methods of construction of A-efficient BTIUB designs have been given by Angelis and Moyssiadis⁴ and Angelis, Moyssiadis and Kageyama⁵. Jacroux⁶ has given some methods of construction of A- and MV-optimal balanced treatment unequal block designs. Parsad and Gupta⁷ have given the structure of optimal designs for comparing v_1 test treatments to a control treatment. Using the definition of BTIUB designs given by Angelis and Moyssiadis⁴ and the BBPB designs by

Kageyama and Sinha², Jaggi, Parsad and Gupta⁸ have defined balanced bipartite block designs with unequal block sizes (BBPBUB) for both binary and non-binary block designs.

In following sections, we give some methods of construction of BBPBUB designs for comparing a set of test treatments to a set of control treatments by using BIB designs and GD designs. The definition of these designs can be found in Raghavrao⁹.

In what follows, we denote by \otimes the kronecker product of matrices, $\mathbf{1}_{p}' \otimes N$ the p replications of N, I_{p} the identity matrix of order p, $J_{p\times q}$ the matrix of ones of order $p\times q$, $\mathbf{1}'_p$ the $1\times p$ row vector of ones, $O_{p\times q}$ the null matrix of order $p\times q$ and by p_1, p_2, p_3 the positive integers.

Methods of Construction of BBPBUB Designs **Using BIB Designs**

In this section, we describe some methods of construction of BBPBUB designs making use of the incidence matrices of BIB designs, etc.

Theorem 1: Let N_L (L = 1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters $v_L,\,b_L,\,r_L,\,k_L,\,\lambda_L$ such

that
$$v_2 = v_4$$
, $v_3 = v_5$ and $v_1 = v_2 + v_3$, then
$$N = \begin{bmatrix} \mathbf{1}'_{p_1} \otimes N_1 : & \mathbf{1}'_{v_3} \otimes N_2 & \mathbf{1}_{v_2} \otimes \mathbf{1}'_{b_3} & \mathbf{1}'_{p_2} \otimes N_4 \\ & \mathbf{1}_{v_3} \otimes \mathbf{1}'_{b_2} & \mathbf{1}'_{v_2} \otimes N_3 & \mathbf{0}_{v_3 \times p_2 b_4} \\ & \mathbf{0}_{v_2 \times p_3 b_5} & \mathbf{I}_{v_2} & \mathbf{0}_{v_2 \times v_3} \\ & & \mathbf{1}'_{p_3} \otimes N_5 & \mathbf{0}_{v_3 \times v_2} & \mathbf{I}_{v_3} \end{bmatrix}$$
is the incidence matrix of a RPPPR design P_1 with versual block

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_3b_3 + v_3b_4 + v_3b_5 +$ $\begin{aligned} v_2b_3 + p_2b_4 + p_3b_5 + v_2 + v_3, & \quad \mathbf{r}^{'} = \big\{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + 1)\mathbf{1}_{\mathbf{v}_2}^{'}, (p_1r_1 + b_2 + v_2r_3 + p_3r_5 + 1)\mathbf{1}_{\mathbf{v}_3}^{'}\big\}, & \quad \mathbf{k}^{'} = \end{aligned}$ $\{k_1\mathbf{1}_{p_1b_1}^{\prime},(k_2+1)\mathbf{1}_{v_3b_2}^{\prime},(k_3+1)\mathbf{1}_{v_2b_3}^{\prime},k_4\mathbf{1}_{p_2b_4}^{\prime},k_5\mathbf{1}_{p_3b_5}^{\prime},$

Vol. **5(5)**, 41-46, May (**2016**)

Res. J. Recent Sci.

 11_{v_2} , 11_{v_3} if and only if the positive integers p_1 , p_2 and p_3 satisfy

$$\begin{split} &\frac{p_1r_1(k_1-1)}{k_1} + \frac{v_3r_2k_2}{(k_2+1)} + \frac{b_3k_3}{(k_3+1)} + \frac{p_2r_4(k_4-1)}{k_4} \\ &-(v_2-1)\left\{\frac{p_1\lambda_1}{k_1} + \frac{v_3\lambda_2}{(k_2+1)} + \frac{p_2\lambda_4}{k_4}\right\} \\ &-v_3\left\{\frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2+1)} + \frac{r_3}{(k_3+1)}\right\} = 0 \\ &\text{and} \\ &\frac{p_1r_1(k_1-1)}{k_1} + \frac{b_2k_2}{(k_2+1)} + \frac{v_2r_3k_3}{(k_3+1)} + \frac{p_3r_5(k_5-1)}{k_5} \\ &-(v_3-1)\left\{\frac{p_1\lambda_1}{k_1} + \frac{v_2\lambda_3}{(k_3+1)} + \frac{p_3\lambda_5}{k_5}\right\} \\ &-v_2\left\{\frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2+1)} + \frac{r_3}{(k_3+1)}\right\} = 0. \end{split}$$

Proof: For the block design with incidence matrix N given in

$$\begin{split} C = \begin{bmatrix} (a_1 + s_1) I_{v_2} - s_1 \mathbf{1}_{v_2} \mathbf{1}_{v_2}^{'} & -s_0 \mathbf{1}_{v_2} \mathbf{1}_{v_3}^{'} \\ -s_0 \mathbf{1}_{v_3} \mathbf{1}_{v_2}^{'} & (a_2 + s_2) I_{v_3} - s_2 \mathbf{1}_{v_3} \mathbf{1}_{v_3}^{'} \end{bmatrix} \\ \text{where the off-diagonal elements of C(= c_{ij}) matrix are:} \end{split}$$

$$\begin{split} c_{ij} &= \frac{p_1 \lambda_1}{k_1} + \frac{v_3 \lambda_2}{(k_2 + 1)} + \frac{p_2 \lambda_4}{k_4} = s_1(say); i, j \leq v_2 \& i \neq j \\ c_{ij} &= \frac{p_1 \lambda_1}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)} = s_0(say); i \leq v_2, j \\ &\geq (v_2 + 1) \\ c_{ij} &= \frac{p_1 \lambda_1}{k_1} + \frac{v_2 \lambda_3}{(k_3 + 1)} + \frac{p_3 \lambda_5}{k_5} = s_2(say); i, j \geq (v_2 + 1) \& i \neq j \end{split}$$

$$\frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)} + \frac{p_2 r_4 (k_4 - 1)}{k_4}$$
$$= a_1 (say)$$

$$\frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{v_2 r_3 k_3}{(k_3 + 1)} + \frac{p_3 r_5 (k_5 - 1)}{k_5}$$
$$= a_2 (say)$$

Then by Jaggi, Parsad and Gupta⁸, $a_1 - (v_2 - 1)s_1 - v_3s_0 =$

$$0 \text{ and } a_2 - (v_3 - 1)s_2 - v_2s_0 = 0 \text{ i.e.}$$

$$\frac{p_1r_1(k_1 - 1)}{k_1} + \frac{v_3r_2k_2}{(k_2 + 1)} + \frac{b_3k_3}{(k_3 + 1)} + \frac{p_2r_4(k_4 - 1)}{k_4}$$

$$-(v_2 - 1) \left\{ \frac{p_1\lambda_1}{k_1} + \frac{v_3\lambda_2}{(k_2 + 1)} + \frac{p_2\lambda_4}{k_4} \right\}$$

$$-v_3 \left\{ \frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)} \right\} = 0$$

$$\begin{split} &\frac{p_1r_1(k_1-1)}{k_1} \,+\, \frac{b_2k_2}{(k_2+1)} \,+\, \frac{v_2r_3k_3}{(k_3+1)} \,+\, \frac{p_3r_5(k_5-1)}{k_5} \\ &-(v_3-1)\left\{\frac{p_1\lambda_1}{k_1} + \frac{v_2\lambda_3}{(k_3+1)} + \frac{p_3\lambda_5}{k_5}\right\} \\ &-v_2\left\{\frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2+1)} + \frac{r_3}{(k_3+1)}\right\} = 0. \end{split}$$

Hence the proof.

Example 1: Consider five BIB designs with parameters (11,11,5,5,2), (7,7,3,3,1), (4,6,3,2,1), (7,7,4,4,2) and (4,4,3,3,2)respectively. Then taking $p_1 = p_2 = p_3 = 1$, the design D with incidence matrix N as in (1) is a non-proper non-equireplicate BBPB design with parameters $v_1^* = 7$, $v_2^* = 4$, b = 103, $\mathbf{r}' = \{28\mathbf{1}'_{7}, 37\mathbf{1}'_{4}\}, \mathbf{k}' = \{5\mathbf{1}'_{11}, 4\mathbf{1}'_{28}, 3\mathbf{1}'_{42}, 4\mathbf{1}'_{7}, 3\mathbf{1}'_{4}, 1\mathbf{1}'_{7}, 1\mathbf{1}'_{4}\}.$

Corollary 1: In theorem 1, if we remove last v_2 and v_3 blocks, then we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + v_3b_4 + v_3b_5 + v$ $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4)\mathbf{1}'_{v_2}, (p_1r_1 + v_3r_2 + b_3 + p_2r_4)\mathbf{1}'_{v_2}, (p_1r_1 + p_2r_2)\mathbf{1}'_{v_2}\}$ $\mathbf{b}_{2} + \mathbf{v}_{2}\mathbf{r}_{3} + \mathbf{p}_{3}\mathbf{r}_{5})\mathbf{1}_{\mathbf{v}_{3}}^{'}$, $\mathbf{k}' = \{\mathbf{k}_{1}\mathbf{1}_{\mathbf{p}_{1}\mathbf{b}_{1}}^{'}, (\mathbf{k}_{2} + 1)\mathbf{1}_{\mathbf{v}_{3}\mathbf{b}_{2}}^{'}, (\mathbf{k}_{3} + 1)\mathbf{1}_{\mathbf{v}_{3}\mathbf{b}_{2}}^{'}$ 1) $\mathbf{1}'_{v_2 b_3}$, $k_4 \mathbf{1}'_{p_2 b_4}$, $k_5 \mathbf{1}'_{p_2 b_5}$ }.

Example 2: In example 1, if we remove last v_2 and v_3 blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1 = p_2 = p_3 = 1$. The parameters of the design are $v_1^* = 7$, $\mathbf{v}_{2}^{*} = 4$, $\mathbf{b} = 92$, $\mathbf{r}' = \{27\mathbf{1}_{7}', 36\mathbf{1}_{4}'\}$, $\mathbf{k}' = \{5\mathbf{1}_{11}', 4\mathbf{1}_{28}', 3\mathbf{1}_{42}',$ $4\mathbf{1}'_{7}, 3\mathbf{1}'_{4}\}.$

Corollary 2: In theorem 1, if we remove last p_2b_4 , p_3b_5 , v_2 and v₃ blocks, then again we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + p_1b_2$ $v_3b_2 + v_2b_3$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + b_3)\mathbf{1}'_{v_2}, (p_1r_1 + b_3)\mathbf{1}$ $\mathbf{v}_{2}\mathbf{r}_{3})\mathbf{1}_{\mathbf{v}_{3}}^{'}$, $\mathbf{k}' = \{\mathbf{k}_{1}\mathbf{1}_{\mathbf{n}_{1}\mathbf{h}_{1}}^{'}, (\mathbf{k}_{2}+1)\mathbf{1}_{\mathbf{v}_{3}\mathbf{h}_{3}}^{'}, (\mathbf{k}_{3}+1)\mathbf{1}_{\mathbf{v}_{3}\mathbf{h}_{3}}^{'}\}$.

Example 3: Consider three BIB designs with parameters (9,12,4,3,1), (5,10,4,2,1) and (4,4,3,3,2) respectively. Then using Corollary 2 and taking $p_1 = 1$, we get a non-proper nonequireplicate BBPB design D with parameters $v_1^* = 5$, $v_2^* = 4$, $b = 72, \mathbf{r}' = \{24\mathbf{1}'_{5}, 29\mathbf{1}'_{4}\}, \mathbf{k}' = \{3\mathbf{1}'_{12}, 3\mathbf{1}'_{40}, 4\mathbf{1}'_{20}\}.$

Remark 1: In corollary 2, if $k_2 = k_1 - 1$ and $k_3 = k_1 - 1$, then we get a proper BBPB design D with parameters $v_1^* = v_2$, $v_{2}^{*} = v_{3}$, $b = p_{1}b_{1} + v_{3}b_{2} + v_{2}b_{3}$, $\mathbf{r}' = \{(p_{1}r_{1} + v_{3}r_{2} + v_{3}r_{3} + v_{3}r_{2} + v_{3}r_{3} + v_{3}r$ $(b_3)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3)\mathbf{1}'_{v_2}, k = k_1.$

Example 4: Consider three BIB designs with parameters (9,12,4,3,1), (5,10,4,2,1) and (4,6,3,2,1) respectively. Then using remark 1 and taking $p_1 = 1$, we get a proper nonequireplicate BBPB design D with parameters $v_1^* = 5$, $v_2^* = 4$, $b = 82, \mathbf{r}' = \{26\mathbf{1}'_5, 29\mathbf{1}'_4\}, k = 3.$

Remark 2: In corollary 2, if $v_2 = v_3 = v$ and $v_1 = 2v$, then we get a non-proper non-equireplicate BBPB design D with parameters $v_1^* = v$, $v_2^* = v$, $b = p_1b_1 + vb_2 + vb_3$, $\mathbf{r}' =$ $\{(p_1r_1 + vr_2 + b_3)\mathbf{1}'_{v}, (p_1r_1 + b_2 + vr_3)\mathbf{1}'_{v}\}, \quad \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, k_1 + k_2 + vr_3\}, \quad \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, k_2 + k_3\}, \quad \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_2}, k_3 + k_3$ $(k_2 + 1)\mathbf{1}'_{vh_2}(k_3 + 1)\mathbf{1}'_{vh_2}$.

Example 5: Consider three BIB designs with parameters (8,14,7,4,3), (4,6,3,2,1) and (4,4,3,3,2) respectively. Then using

Res. J. Recent Sci.

remark 2 and taking $p_1 = 1$ and v = 4, we get a non-proper non-equireplicate BBPB design D with parameters $v_1^* = 4$, $v_2^* = 4$, b = 54, $\mathbf{r}' = \{23\mathbf{1}'_4, 25\mathbf{1}'_4\}$, $\mathbf{k}' = \{4\mathbf{1}'_{14}, 3\mathbf{1}'_{24}, 4\mathbf{1}'_{16}\}$.

Remark 3: Following theorems can be proved on the similar lines of theorem 1. So we avoided proofs of the theorems.

Theorem 2: Let N_L (L = 1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters v_L , b_L , r_L , k_L , λ_L such that $v_2 = v_4$, $v_3 = v_5$ and $v_1 = v_2 + v_3$, then

that
$$v_2 = v_4$$
, $v_3 = v_5$ and $v_1 = v_2 + v_3$, then
$$N = \begin{bmatrix} \mathbf{1}'_{p_1} \otimes N_1 : & \mathbf{1}'_{v_3} \otimes N_2 & \mathbf{1}_{v_2} \otimes \mathbf{1}'_{b_3} & \mathbf{1}'_{p_2} \otimes N_4 \\ & I_{v_3} \otimes \mathbf{1}'_{b_2} & \mathbf{1}'_{v_2} \otimes N_3 & J_{v_3 \times p_2 b_4} \\ & J_{v_2 \times p_3 b_5} & I_{v_2} & O_{v_2 \times v_3} \\ & & \mathbf{1}'_{p_3} \otimes N_5 & O_{v_3 \times v_2} & I_{v_3} \end{bmatrix}$$
(2)

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{v}_2, \ \mathbf{v}_2^* = \mathbf{v}_3, \ b = p_1b_1 + \mathbf{v}_3b_2 + \mathbf{v}_2b_3 + p_2b_4 + p_3b_5 + \mathbf{v}_2 + \mathbf{v}_3, \qquad \mathbf{r}^{'} = \left\{ (p_1r_1 + \mathbf{v}_3r_2 + b_3 + p_2r_4 + p_3b_5 + 1)\mathbf{1}_{\mathbf{v}_2}^{'}, (p_1r_1 + b_2 + \mathbf{v}_2r_3 + p_2b_4 + p_3r_5 + 1)\mathbf{1}_{\mathbf{v}_3}^{'} \right\}, \qquad \mathbf{k}^{'} = \left\{ \mathbf{k}_1\mathbf{1}_{p_1b_1}^{'}, (\mathbf{k}_2 + 1)\mathbf{1}_{\mathbf{v}_3b_2}^{'}, (\mathbf{k}_3 + 1)\mathbf{1}_{\mathbf{v}_2b_3}^{'}, (\mathbf{k}_4 + \mathbf{v}_3)\mathbf{1}_{\mathbf{p}_2b_4}^{'}, (\mathbf{k}_5 + \mathbf{v}_2)\mathbf{1}_{\mathbf{p}_3b_5}^{'}, \ \mathbf{11}_{\mathbf{v}_2}^{'}, \mathbf{11}_{\mathbf{v}_3}^{'} \right\} \quad \text{having} \quad \text{off-diagonal elements of its C matrix as}$

$$\begin{split} s_1 &= \frac{p_1\lambda_1}{k_1} + \frac{v_3\lambda_2}{(k_2+1)} + \frac{p_2\lambda_4}{(k_4+v_3)} + \frac{p_3b_5}{(k_5+v_2)'}, \\ s_0 &= \frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2+1)} + \frac{r_3}{(k_3+1)} + \frac{p_2r_4}{(k_4+v_3)} + \frac{p_3r_5}{(k_5+v_2)'}, \\ s_2 &= \frac{p_1\lambda_1}{k_1} + \frac{v_2\lambda_3}{(k_3+1)} + \frac{p_2b_4}{(k_4+v_3)} + \frac{p_3\lambda_5}{(k_5+v_2)'}, \\ \text{and diagonal elements of C matrix as} \end{split}$$

$$\begin{split} &a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)} \\ &+ \frac{p_2 r_4 (k_4 + v_3 - 1)}{(k_4 + v_3)} + \frac{p_3 b_5 (k_5 + v_2 - 1)}{(k_5 + v_2)}, \\ &a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{v_2 r_3 k_3}{(k_3 + 1)} \\ &+ \frac{p_2 b_4 (k_4 + v_3 - 1)}{(k_4 + v_3)} + \frac{p_3 r_5 (k_5 + v_2 - 1)}{(k_5 + v_2)}. \end{split}$$

Example 6: Consider five BIB designs with parameters (9,12,4,3,1), (5,10,6,3,3), (4,4,3,3,2), (5,10,4,2,1) and (4,6,3,2,1) respectively. Then taking $p_1=2, p_2=1$ and $p_3=3$, the design D with incidence matrix N as in (2) is a non-proper non-equireplicate BBPB design with parameters $\mathbf{v}_1^*=5, \mathbf{v}_2^*=4,$ $\mathbf{b}=121,\mathbf{r}'=\left\{59\mathbf{1}_5',53\mathbf{1}_4'\right\},$ $\mathbf{k}'=\left\{3\mathbf{1}_{24}',4\mathbf{1}_{40}',4\mathbf{1}_{20}',6\mathbf{1}_{10}',7\mathbf{1}_{18}',\mathbf{11}_5',\mathbf{11}_4'\right\}.$

Corollary 3: In theorem 2, if we remove last v_2 and v_3 blocks, then we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + p_2b_4 + p_3b_5$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + p_3b_5)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3 + p_2b_4 + p_3r_5)\mathbf{1}'_{v_3}\}, \quad \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_3}, (k_4 + v_3)\mathbf{1}'_{p_2b_4}, (k_5 + v_2)\mathbf{1}'_{p_3b_5}\}.$

Example 7: In example 6, if we remove last v_2 and v_3 blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1=2,\ p_2=1$ and $p_3=3$. The parameters of the design are $v_1^*=5,\ v_2^*=4,\ b=112,\ \mathbf{r}'=\left\{58\mathbf{1}_5',52\mathbf{1}_4'\right\},\ \mathbf{k}'=\left\{3\mathbf{1}_{24}',4\mathbf{1}_{40}',4\mathbf{1}_{20}',6\mathbf{1}_{10}',7\mathbf{1}_{18}'\right\}.$

Theorem 3: Let N_L (L=1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters v_L , b_L , r_L , k_L , λ_L such that $v_2=v_4$, $v_3=v_5$ and $v_1=v_2+v_3$, then

$$N = \begin{bmatrix} \mathbf{1}'_{p_{1}} \otimes N_{1} : & \mathbf{1}'_{v_{3}} \otimes N_{2} & \mathbf{1}_{v_{2}} \otimes \mathbf{1}'_{b_{3}} & \mathbf{1}'_{v_{3}} \otimes N_{4} \\ I_{v_{3}} \otimes \mathbf{1}'_{b_{2}} & \mathbf{1}'_{v_{2}} \otimes N_{3} & I_{v_{3}} \otimes \mathbf{1}'_{b_{4}} \\ & I_{v_{2}} \otimes \mathbf{1}'_{b_{5}} & I_{v_{2}} & O_{v_{2} \times v_{3}} \\ & \mathbf{1}'_{v_{2}} \otimes N_{5} & O_{v_{3} \times v_{2}} & I_{v_{3}} \end{bmatrix}$$
(3)

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{v}_2$, $\mathbf{v}_2^* = \mathbf{v}_3$, $\mathbf{b} = \mathbf{p}_1 \mathbf{b}_1 + \mathbf{v}_3 \mathbf{b}_2 + \mathbf{v}_2 \mathbf{b}_3 + \mathbf{v}_3 \mathbf{b}_4 + \mathbf{v}_2 \mathbf{b}_5 + \mathbf{v}_2 + \mathbf{v}_3$, $\mathbf{r}' = \left\{ (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{v}_3 \mathbf{r}_2 + \mathbf{b}_3 + \mathbf{v}_3 \mathbf{r}_4 + \mathbf{b}_5 + 1) \mathbf{1}_{\mathbf{v}_2}', (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{b}_2 + \mathbf{v}_2 \mathbf{r}_3 + \mathbf{b}_4 + \mathbf{v}_2 \mathbf{r}_5 + 1) \mathbf{1}_{\mathbf{v}_3}' \right\},$ $\mathbf{k}' = \left\{ \mathbf{k}_1 \mathbf{1}_{\mathbf{p}_1 \mathbf{b}_1}', (\mathbf{k}_2 + 1) \mathbf{1}_{\mathbf{v}_3 \mathbf{b}_2}', (\mathbf{k}_3 + 1) \mathbf{1}_{\mathbf{v}_2 \mathbf{b}_3}', (\mathbf{k}_4 + 1) \mathbf{1}_{\mathbf{v}_3 \mathbf{b}_4}', (\mathbf{k}_5 + 1) \mathbf{1}_{\mathbf{v}_2 \mathbf{b}_5}', \mathbf{1} \mathbf{1}_{\mathbf{v}_2}', \mathbf{1} \mathbf{1}_{\mathbf{v}_3}' \right\}$ having off-diagonal elements of its C matrix as

$$\begin{split} s_1 &= \frac{p_1 \lambda_1}{k_1} + \frac{v_3 \lambda_2}{(k_2 + 1)} + \frac{v_3 \lambda_4}{(k_4 + 1)'}, \\ s_0 &= \frac{p_1 \lambda_1}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)} + \frac{r_4}{(k_4 + 1)} + \frac{r_5}{(k_5 + 1)'}, \\ s_2 &= \frac{p_1 \lambda_1}{k_1} + \frac{v_2 \lambda_3}{(k_3 + 1)} + \frac{v_2 \lambda_5}{(k_5 + 1)'}, \\ \text{and diagonal elements of C matrix as} \end{split}$$

 $a_{1} = \frac{p_{1}r_{1}(k_{1}-1)}{k_{1}} + \frac{v_{3}r_{2}k_{2}}{(k_{2}+1)} + \frac{b_{3}k_{3}}{(k_{3}+1)} + \frac{v_{3}r_{4}k_{4}}{(k_{4}+1)} + \frac{b_{5}k_{5}}{(k_{5}+1)'}$

$$a_{2} = \frac{p_{1}r_{1}(k_{1}-1)}{k_{1}} + \frac{b_{2}k_{2}}{(k_{2}+1)} + \frac{v_{2}r_{3}k_{3}}{(k_{3}+1)} + \frac{b_{4}k_{4}}{(k_{4}+1)} + \frac{v_{2}r_{5}k_{5}}{(k_{5}+1)}.$$

Example 8: Consider five BIB designs with parameters (11,11,5,5,2), (6,15,5,2,1), (5,5,4,4,3), (6,6,5,5,4) and (5,10,4,2,1) respectively. Then taking $p_1 = 1$, the design D with incidence matrix N as in (3) is a non-proper non-equireplicate BBPB design with parameters $\mathbf{v}_1^* = 6$, $\mathbf{v}_2^* = 5$, $\mathbf{b} = 217$, $\mathbf{r}' = \{71\mathbf{1}_6', 75\mathbf{1}_5'\}$, $\mathbf{k}' = \{5\mathbf{1}_{11}', 3\mathbf{1}_{75}', 5\mathbf{1}_{30}', 6\mathbf{1}_{30}', 3\mathbf{1}_{60}', 1\mathbf{1}_6', 1\mathbf{1}_5'\}$.

 $\begin{array}{lll} \textbf{Corollary 4:} & \text{In theorem 3, if we remove last } v_2 \text{ and } v_3 \text{ blocks,} \\ \text{then we get a BBPB design D with unequal block sizes with} \\ \text{parameters} & v_1^* = v_2, & v_2^* = v_3, & b = p_1b_1 + v_3b_2 + v_2b_3 + v_3b_4 + v_2b_5, & \mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + v_3r_4 + b_5)\mathbf{1}'_{v_2}, \\ (p_1r_1 + b_2 + v_2r_3 + b_4 + v_2r_5)\mathbf{1}'_{v_3}\}, & \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_3}, (k_4 + 1)\mathbf{1}'_{v_3b_4}, (k_5 + 1)\mathbf{1}'_{v_2b_5}\}. \end{array}$

Example 9: In example 8, if we remove last v_2 and v_3 blocks,

Res. J. Recent Sci.

then we get a non-proper non-equireplicate BBPB design D with $p_1 = 1$. The parameters of the design are $v_1^* = 6$, $v_2^* = 5$, b = 206, $\mathbf{r}' = \{70\mathbf{1}_6', 74\mathbf{1}_5'\}$, $\mathbf{k}' = \{5\mathbf{1}_{11}', 3\mathbf{1}_{75}', 5\mathbf{1}_{30}', 6\mathbf{1}_{30}', 3\mathbf{1}_{60}'\}$.

Theorem 4: Let N_L (L=1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters v_L , b_L , r_L , k_L , λ_L such that $v_2=v_4, v_3=v_5$ and $v_1=v_2+v_3$, then

that
$$v_{2} = v_{4}$$
, $v_{3} = v_{5}$ and $v_{1} = v_{2} + v_{3}$, then
$$N = \begin{bmatrix} \mathbf{1}'_{p_{1}} \otimes N_{1} : & \mathbf{1}'_{v_{3}} \otimes N_{2} & I_{v_{2}} \otimes \mathbf{1}'_{b_{3}} & \mathbf{1}'_{p_{2}} \otimes N_{4} \\ & I_{v_{3}} \otimes \mathbf{1}'_{b_{2}} & \mathbf{1}'_{v_{2}} \otimes N_{3} & 0_{v_{3} \times p_{2} b_{4}} \\ & & I_{v_{2} \times p_{3} b_{5}} & I_{v_{2}} & 0_{v_{2} \times v_{3}} \\ & & \mathbf{1}'_{p_{3}} \otimes N_{5} & 0_{v_{3} \times v_{2}} & I_{v_{3}} \end{bmatrix}$$

$$(4)$$

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{v}_2$, $\mathbf{v}_2^* = \mathbf{v}_3$, $\mathbf{b} = \mathbf{p}_1\mathbf{b}_1 + \mathbf{v}_3\mathbf{b}_2 + \mathbf{v}_2\mathbf{b}_3 + \mathbf{p}_2\mathbf{b}_4 + \mathbf{p}_3\mathbf{b}_5 + \mathbf{v}_2 + \mathbf{v}_3$, $\mathbf{r}' = \{(\mathbf{p}_1\mathbf{r}_1 + \mathbf{v}_3\mathbf{r}_2 + \mathbf{b}_3 + \mathbf{p}_2\mathbf{r}_4 + \mathbf{p}_3\mathbf{b}_5 + 1)\mathbf{1}'_{\mathbf{v}_2}, (\mathbf{p}_1\mathbf{r}_1 + \mathbf{b}_2 + \mathbf{v}_2\mathbf{r}_3 + \mathbf{p}_3\mathbf{r}_5 + 1)\mathbf{1}'_{\mathbf{v}_3}\}, \mathbf{k}' = \{\mathbf{k}_1\mathbf{1}'_{\mathbf{p}_1\mathbf{b}_1}, (\mathbf{k}_2 + 1)\mathbf{1}'_{\mathbf{v}_3\mathbf{b}_2}, (\mathbf{k}_3 + 1)\mathbf{1}'_{\mathbf{v}_2\mathbf{b}_3}, \mathbf{k}_4\mathbf{1}'_{\mathbf{p}_2\mathbf{b}_4}, (\mathbf{k}_5 + \mathbf{v}_2)\mathbf{1}'_{\mathbf{p}_3\mathbf{b}_5}, \mathbf{11}'_{\mathbf{v}_2}, \mathbf{11}'_{\mathbf{v}_3}\}$ having off-diagonal elements of its C matrix as

$$\begin{split} s_1 &= \frac{p_1\lambda_1}{k_1} + \frac{v_3\lambda_2}{(k_2+1)} + \frac{p_2\lambda_4}{k_4} + \frac{p_3b_5}{(k_5+v_2)'}, \\ s_0 &= \frac{p_1\lambda_1}{k_1} + \frac{r_2}{(k_2+1)} + \frac{r_3}{(k_3+1)} + \frac{p_3r_5}{(k_5+v_2)'}, \\ s_2 &= \frac{p_1\lambda_1}{k_1} + \frac{v_2\lambda_3}{(k_3+1)} + \frac{p_3\lambda_5}{(k_5+v_2)'}, \end{split}$$

and diagonal elements of C matrix as

and diagonal elements of C matrix as
$$a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)} + \frac{p_2 r_4 (k_4 - 1)}{k_4} + \frac{p_3 b_5 (k_5 + v_2 - 1)}{(k_5 + v_2)},$$

$$a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{v_2 r_3 k_3}{(k_3 + 1)} + \frac{p_3 r_5 (k_5 + v_2 - 1)}{(k_5 + v_2)}.$$

Example 10: Consider five BIB designs with parameters (11,11,5,5,2), (7,7,3,3,1), (4,4,3,3,2), (7,7,4,4,2) and (4,6,3,2,1) respectively. Then taking $p_1 = p_2 = 1$ and $p_3 = 4$, the design D with incidence matrix N as in (4) is a non-proper non-equireplicate BBPB design with parameters $v_1^* = 7$, $v_2^* = 4$, b = 109, $\mathbf{r}' = \{50\mathbf{1}'_7, 46\mathbf{1}'_4\}$, $\mathbf{k}' = \{5\mathbf{1}'_{11}, 4\mathbf{1}'_{28}, 4\mathbf{1}'_{28}, 4\mathbf{1}'_7, 9\mathbf{1}'_{24}, 1\mathbf{1}'_7, 1\mathbf{1}'_4\}$.

Corollary 5: In theorem 4, if we remove last v_2 and v_3 blocks, then we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + p_2b_4 + p_3b_5$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + p_3b_5)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3 + p_3r_5)\mathbf{1}'_{v_3}\}, \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_2}, k_4\mathbf{1}'_{p_2b_4}, (k_5 + v_2)\mathbf{1}'_{p_2b_5}\}.$

Example 11: In example 10, if we remove last v_2 and v_3 blocks, then we get a non-proper non-equireplicate BBPB

design D with $p_1=p_2=1$ and $p_3=4$. The parameters of the design are $v_1^*=7$, $v_2^*=4$, b=98, $\mathbf{r}'=\{49\mathbf{1}_7',45\mathbf{1}_4'\}$, $\mathbf{k}'=\{5\mathbf{1}_{11}',4\mathbf{1}_{28}',4\mathbf{1}_{28}',4\mathbf{1}_{7}',9\mathbf{1}_{24}'\}$.

Theorem 5: Let N_L (L = 1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters v_L , b_L , r_L , k_L , λ_L such that $v_2 = v_4$, $v_3 = v_5$ and $v_1 = v_2 + v_3$, then

that
$$v_{2} = v_{4}$$
, $v_{3} = v_{5}$ and $v_{1} = v_{2} + v_{3}$, then
$$N = \begin{bmatrix} \mathbf{1}'_{p_{1}} \otimes N_{1} : & \mathbf{1}'_{v_{3}} \otimes N_{2} & \mathbf{1}_{v_{2}} \otimes \mathbf{1}'_{b_{3}} & \mathbf{1}'_{p_{2}} \otimes N_{4} \\ & I_{v_{3}} \otimes \mathbf{1}'_{b_{2}} & \mathbf{1}'_{v_{2}} \otimes N_{3} & O_{v_{3} \times p_{2} b_{4}} \\ & I_{v_{2}} \otimes \mathbf{1}'_{b_{5}} & I_{v_{2}} & O_{v_{2} \times v_{3}} \\ & & \mathbf{1}'_{v_{2}} \otimes N_{5} & O_{v_{3} \times v_{2}} & I_{v_{3}} \end{bmatrix}$$
(5)

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + p_2b_4 + v_2b_5 + v_2 + v_3$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + b_5 + 1)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3 + v_2r_5 + 1)\mathbf{1}'_{v_3}\},$ $\mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_3}, k_4\mathbf{1}'_{p_2b_4}, (k_5 + 1)\mathbf{1}'_{v_2b_5}, \mathbf{11}'_{v_2}, \mathbf{11}'_{v_3}\}$ having off-diagonal elements of its C matrix as

matrix as
$$s_1 = \frac{p_1 \lambda_1}{k_1} + \frac{v_3 \lambda_2}{(k_2 + 1)} + \frac{p_2 \lambda_4}{k_4},$$

$$s_0 = \frac{p_1 \lambda_1}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)} + \frac{r_5}{(k_5 + 1)},$$

$$s_2 = \frac{p_1 \lambda_1}{k_1} + \frac{v_2 \lambda_3}{(k_3 + 1)} + \frac{v_2 \lambda_5}{(k_5 + 1)},$$
 and diagonal elements of C matrix as

$$a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)} + \frac{p_2 r_4 (k_4 - 1)}{k_4} + \frac{b_5 k_5}{(k_5 + 1)'},$$

$$a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{v_2 r_3 k_3}{(k_3 + 1)} + \frac{v_2 r_5 k_5}{(k_5 + 1)}.$$

Example 12: Consider five BIB designs with parameters (9,12,4,3,1), (5,10,4,2,1), (4,4,3,3,2), (5,5,4,4,3) and (4,6,3,2,1) respectively. Then taking $p_1 = 1$ and $p_2 = 2$, the design D with incidence matrix N as in (5) is a non-proper non-equireplicate BBPB design with parameters $v_1^* = 5$, $v_2^* = 4$, b = 121, $\mathbf{r}' = \{39\mathbf{1}'_5, 45\mathbf{1}'_4\}$, $\mathbf{k}' = \{3\mathbf{1}'_{12}, 3\mathbf{1}'_{40}, 4\mathbf{1}'_{20}, 4\mathbf{1}'_{10}, 3\mathbf{1}'_{30}, 1\mathbf{1}'_5, \mathbf{11}'_4\}$.

Corollary 6: In theorem 5, if we remove last v_2 and v_3 blocks, then we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + p_2b_4 + v_2b_5$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + b_5)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3 + v_2r_5)\mathbf{1}'_{v_3}\}, \ \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_3}, k_4\mathbf{1}'_{p_2b_4}, (k_5 + 1)\mathbf{1}'_{v_2b_5}\}.$

Example 13: In example 12, if we remove last v_2 and v_3 blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1 = 1$ and $p_2 = 2$. The parameters of the design are $v_1^* = 5$, $v_2^* = 4$, b = 112, $\mathbf{r}' = \{38\mathbf{1}'_5, 44\mathbf{1}'_4\}$, $\mathbf{k}' = \{3\mathbf{1}'_{12}, 3\mathbf{1}'_{40}, 4\mathbf{1}'_{20}, 4\mathbf{1}'_{10}, 3\mathbf{1}'_{30}\}$.

Res. J. Recent Sci.

Theorem 6: Let N_L (L=1,2,3,4,5) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters v_L , b_L , r_L , k_L , λ_L such that $v_2=v_4$, $v_3=v_5$ and $v_1=v_2+v_3$, then

$$N = \begin{bmatrix} \mathbf{1}'_{p_{1}} \otimes N_{1} : & \mathbf{1}'_{v_{3}} \otimes N_{2} & I_{v_{2}} \otimes \mathbf{1}'_{b_{3}} & \mathbf{1}'_{p_{2}} \otimes N_{4} \\ I_{v_{3}} \otimes \mathbf{1}'_{b_{2}} & \mathbf{1}'_{v_{2}} \otimes N_{3} & J_{v_{3} \times p_{2} b_{4}} \\ I_{v_{2}} \otimes \mathbf{1}'_{b_{5}} & I_{v_{2}} & O_{v_{2} \times v_{3}} \\ \mathbf{1}'_{v_{2}} \otimes N_{5} & O_{v_{3} \times v_{2}} & I_{v_{3}} \end{bmatrix}$$
(6)

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{v}_2$, $\mathbf{v}_2^* = \mathbf{v}_3$, $\mathbf{b} = \mathbf{p}_1 \mathbf{b}_1 + \mathbf{v}_3 \mathbf{b}_2 + \mathbf{v}_2 \mathbf{b}_3 + \mathbf{p}_2 \mathbf{b}_4 + \mathbf{v}_2 \mathbf{b}_5 + \mathbf{v}_2 + \mathbf{v}_3$, $\mathbf{r}' = \left\{ (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{v}_3 \mathbf{r}_2 + \mathbf{b}_3 + \mathbf{p}_2 \mathbf{r}_4 + \mathbf{b}_5 + 1) \mathbf{1}'_{\mathbf{v}_2}, (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{b}_2 + \mathbf{v}_2 \mathbf{r}_3 + \mathbf{p}_2 \mathbf{b}_4 + \mathbf{v}_2 \mathbf{r}_5 + 1) \mathbf{1}'_{\mathbf{v}_3} \right\}, \\ \mathbf{k}' = \left\{ \mathbf{k}_1 \mathbf{1}'_{\mathbf{p}_1 \mathbf{b}_1}, (\mathbf{k}_2 + 1) \mathbf{1}'_{\mathbf{v}_3 \mathbf{b}_2}, (\mathbf{k}_3 + 1) \mathbf{1}'_{\mathbf{v}_2 \mathbf{b}_3}, (\mathbf{k}_4 + \mathbf{v}_3) \mathbf{1}'_{\mathbf{p}_2 \mathbf{b}_4}, (\mathbf{k}_5 + 1) \mathbf{1}'_{\mathbf{v}_2 \mathbf{b}_3}, \mathbf{1} \mathbf{1}'_{\mathbf{v}_2}, \mathbf{1} \mathbf{1}'_{\mathbf{v}_3} \right\} \text{ having off-diagonal elements of its C matrix as}$

$$\begin{split} s_1 &= \frac{p_1 \lambda_1}{k_1} + \frac{v_3 \lambda_2}{(k_2 + 1)} + \frac{p_2 \lambda_4}{(k_4 + v_3)}, \\ s_0 &= \frac{p_1 \lambda_1}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)} + \frac{p_2 r_4}{(k_4 + v_3)} + \frac{r_5}{(k_5 + 1)}, \\ s_2 &= \frac{p_1 \lambda_1}{k_1} + \frac{v_2 \lambda_3}{(k_3 + 1)} + \frac{p_2 b_4}{(k_4 + v_3)} + \frac{v_2 \lambda_5}{(k_5 + 1)}, \\ \text{and diagonal elements of C matrix as} \\ a_1 &= \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)}, \\ &= \frac{p_3 r_4 (k_4 + v_3 - 1)}{(k_3 + 1)} + \frac{b_5 k_5}{(k_5 + 1)}. \end{split}$$

and diagonal elements of C matrix as
$$a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{v_3 r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)} \\ + \frac{p_2 r_4 (k_4 + v_3 - 1)}{(k_4 + v_3)} + \frac{b_5 k_5}{(k_5 + 1)},$$

$$a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{v_2 r_3 k_3}{(k_3 + 1)} \\ + \frac{p_2 b_4 (k_4 + v_3 - 1)}{(k_4 + v_3)} + \frac{v_2 r_5 k_5}{(k_5 + 1)}.$$

Example 14: Consider five BIB designs with parameters (11,11,5,5,2), (6,15,5,2,1), (5,5,4,4,3), (6,6,5,5,4) and (5,10,6,3,3) respectively. Then taking $p_1 = 1$ and $p_2 = 3$, the design D with incidence matrix N as in (6) is a non-proper non-equireplicate BBPB design with parameters $\mathbf{v}_1^* = 6$, $\mathbf{v}_2^* = 5$, $\mathbf{b} = 205$, $\mathbf{r}' = \{61\mathbf{1}_6', 99\mathbf{1}_5'\}$, $\mathbf{k}' = \{5\mathbf{1}_{11}', 3\mathbf{1}_{75}', 5\mathbf{1}_{30}', 10\mathbf{1}_{18}', 4\mathbf{1}_{60}', 1\mathbf{1}_{6}', 1\mathbf{1}_{5}'\}$.

Corollary 7: In theorem 6, if we remove last v_2 and v_3 blocks, then we get a BBPB design D with unequal block sizes with parameters $v_1^* = v_2$, $v_2^* = v_3$, $b = p_1b_1 + v_3b_2 + v_2b_3 + p_2b_4 + v_2b_5$, $\mathbf{r}' = \{(p_1r_1 + v_3r_2 + b_3 + p_2r_4 + b_5)\mathbf{1}'_{v_2}, (p_1r_1 + b_2 + v_2r_3 + p_2b_4 + v_2r_5)\mathbf{1}'_{v_3}\}, \quad \mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + 1)\mathbf{1}'_{v_3b_2}, (k_3 + 1)\mathbf{1}'_{v_2b_3}, (k_4 + v_3)\mathbf{1}'_{p_2b_4}, (k_5 + 1)\mathbf{1}'_{v_2b_5}\}.$

Example 15: In example 14, if we remove last v_2 and v_3 blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1=1$ and $p_2=3$. The parameters of the design are $v_1^*=6$, $v_2^*=5$, b=194, $\mathbf{r}'=\{60\mathbf{1}_6',98\mathbf{1}_5'\}$, $\mathbf{k}'=\{5\mathbf{1}_{11}',3\mathbf{1}_{75}',5\mathbf{1}_{30}',10\mathbf{1}_{18}',4\mathbf{1}_{60}'\}$.

Methods of Construction of BBPBUB Designs Using GD and BIB Designs

In this section, we describe some methods of construction of BBPBUB designs making use of the incidence matrices of BIB designs and GD designs, etc.

Theorem 7: Let N_1 be the incidence matrix of a GD design with parameters $v_1 = 2n$, b_1 , r_1 , k_1 , m = 2, n, λ_1^* , λ_2^* and N_L (L = 2,3) be the $v_L \times b_L$ incidence matrix of a BIB design with parameters $v_L = n$, b_L , r_L , k_L , k_L , and the n treatments in the BIB designs are the treatments in any of the two groups of the (2,n) association scheme, then

$$N = \begin{bmatrix} \mathbf{1}_{p_1}' \otimes N_1 : & \mathbf{1}_n' \otimes N_2 & I_n \otimes \mathbf{1}_{b_3}' & I_n & O_{n \times n} \\ I_n \otimes \mathbf{1}_{b_2}' & \mathbf{1}_n' \otimes N_3 & O_{n \times n} & I_n \end{bmatrix}$$
(7) is the incidence matrix of a BBPB design D with unequal block

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{n}, \ \mathbf{v}_2^* = \mathbf{n}, \ \mathbf{b} = \mathbf{p}_1 \mathbf{b}_1 + \mathbf{n} \mathbf{b}_2 + \mathbf{n} \mathbf{b}_3 + 2\mathbf{n}, \ \mathbf{r}' = \{(\mathbf{p}_1 \mathbf{r}_1 + \mathbf{n} \mathbf{r}_2 + \mathbf{b}_3 + 1)\mathbf{1}_n', (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{b}_2 + \mathbf{n} \mathbf{r}_3 + 1)\mathbf{1}_n'\}, \ \mathbf{k}' = \{\mathbf{k}_1\mathbf{1}_{\mathbf{p}_1\mathbf{b}_1}', (\mathbf{k}_2 + 1)\mathbf{1}_{\mathbf{n}\mathbf{b}_2}', (\mathbf{k}_3 + 1)\mathbf{1}_{\mathbf{n}\mathbf{b}_3}', \mathbf{1}\mathbf{1}_n', \mathbf{1}\mathbf{1}_n'\} \quad \text{having off-diagonal elements of its C matrix as}$

$$\begin{aligned} s_1 &= \frac{p_1 \lambda_1^*}{k_1} + \frac{n \lambda_2}{(k_2 + 1)'}, \\ s_0 &= \frac{p_1 \lambda_2^*}{k_1} + \frac{r_2}{(k_2 + 1)} + \frac{r_3}{(k_3 + 1)'}, \\ s_2 &= \frac{p_1 \lambda_1^*}{k_1} + \frac{n \lambda_3}{(k_3 + 1)'}, \end{aligned}$$

and diagonal elements of C matrix as

$$a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{n r_2 k_2}{(k_2 + 1)} + \frac{b_3 k_3}{(k_3 + 1)},$$

$$a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{b_2 k_2}{(k_2 + 1)} + \frac{n r_3 k_3}{(k_3 + 1)}.$$

Example 16: Consider a GD design D_1 SR9 (Clatworthy 10) with parameters $v_1 = 8$, $b_1 = 16$, $r_1 = 4$, $k_1 = 2$, m = 2, n = 4, $\lambda_1^* = 0$, $\lambda_2^* = 1$ and two BIB designs with parameters $D_2(4,4,3,3,2)$ and $D_3(4,6,3,2,1)$ respectively. Then taking $p_1 = 1$, the design D with incidence matrix N as in (7) is a non-proper non-equireplicate BBPB design with parameters $v_1^* = 4$ (1,3,5,7), $v_2^* = 4$ (2,4,6,8), b = 64, $r' = \{231_4',211_4'\}$, $k' = \{21_{16}',41_{16}',31_{24}',11_4',11_4'\}$.

Corollary 8: In theorem 7, if we remove last 2n blocks, then we get a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{n}, \ \mathbf{v}_2^* = \mathbf{n}, \ \mathbf{b} = \mathbf{p}_1 \mathbf{b}_1 + \mathbf{n} \mathbf{b}_2 + \mathbf{n} \mathbf{b}_3, \ \mathbf{r}' = \{(\mathbf{p}_1 \mathbf{r}_1 + \mathbf{n} \mathbf{r}_2 + \mathbf{b}_3) \mathbf{1}'_{n}, (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{b}_2 + \mathbf{n} \mathbf{r}_3) \mathbf{1}'_{n}\}, \quad \mathbf{k}' = \{\mathbf{k}_1 \mathbf{1}'_{\mathbf{p}_1 \mathbf{b}_1}, (\mathbf{k}_2 + 1) \mathbf{1}'_{\mathbf{n} \mathbf{b}_2}, (\mathbf{k}_3 + 1) \mathbf{1}'_{\mathbf{n} \mathbf{b}_3}\}.$

Example 17: In example 16, if we remove last 2n blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1 = 1$. The parameters of the design are $\mathbf{v}_1^* = 4$ (1,3,5,7), $\mathbf{v}_2^* = 4$ (2,4,6,8), $\mathbf{b} = 56$, $\mathbf{r}' = \{22\mathbf{1}_4', 20\mathbf{1}_4'\}$, $\mathbf{k}' = \{2\mathbf{1}_{16}', 4\mathbf{1}_{16}', 3\mathbf{1}_{24}'\}$.

Vol. 5(5), 41-46, May (2016)

Res. J. Recent Sci.

Theorem 8: Let N_1 be the incidence matrix of a GD design with parameters $v_1 = 2n$, b_1 , r_1 , k_1 , m = 2, n, λ_1^* , λ_2^* and N_2 be the $v_L \times b_L$ incidence matrix of a BIB design with parameters $v_2 = n$, b_2 , r_2 , k_2 , λ_2 and the n treatments in the BIB design are the treatments in any of the two groups of the (2,n) association scheme, then

$$\mathbf{N} = \begin{bmatrix} \mathbf{1}_{p_1}' \otimes \mathbf{N}_1 : & \mathbf{1}_{p_2}' \otimes \mathbf{N}_2 & J_{\mathbf{n} \times \mathbf{n}} & \mathbf{I}_{\mathbf{n}} & \mathbf{0}_{\mathbf{n} \times \mathbf{n}} \\ J_{\mathbf{n} \times \mathbf{p}_2 \mathbf{b}_2} & J_{\mathbf{n} \times \mathbf{n}} & \mathbf{0}_{\mathbf{n} \times \mathbf{n}} & \mathbf{I}_{\mathbf{n}} \end{bmatrix}$$
(8)

is the incidence matrix of a BBPB design D with unequal block sizes with parameters $v_1^* = n$, $v_2^* = n$, $b = p_1b_1 + p_2b_2 + 3n$, $\mathbf{r}' = \{(p_1r_1 + p_2r_2 + n + 1)\mathbf{1}'_n, (p_1r_1 + p_2b_2 + n + 1)\mathbf{1}'_n\},$ $\mathbf{k}' = \{k_1\mathbf{1}'_{p_1b_1}, (k_2 + n)\mathbf{1}'_{p_2b_2}, 2n\mathbf{1}'_n, 1\mathbf{1}'_n, 1\mathbf{1}'_n\}$ having off-diagonal elements of its C matrix as

diagonal elements of its C in
$$s_1 = \frac{p_1 \lambda_1^*}{k_1} + \frac{p_2 \lambda_2}{(k_2 + n)} + \frac{1}{2},$$

$$s_0 = \frac{p_1 \lambda_2^*}{k_1} + \frac{p_2 r_2}{(k_2 + n)} + \frac{1}{2},$$

$$s_2 = \frac{p_1 \lambda_1^*}{k_1} + \frac{p_2 b_2}{(k_2 + n)} + \frac{1}{2},$$
and disconal elements of C.

and diagonal elements of C matrix as

$$a_1 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{p_2 r_2 (k_2 + n - 1)}{(k_2 + n)} + \frac{(2n - 1)}{2},$$

$$a_2 = \frac{p_1 r_1 (k_1 - 1)}{k_1} + \frac{p_2 b_2 (k_2 + n - 1)}{(k_2 + n)} + \frac{(2n - 1)}{2}.$$

Example 18: Consider a GD design D_1 R94 (Clatworthy¹⁰) with parameters $v_1 = 6$, $b_1 = 6$, $r_1 = 4$, $k_1 = 4$, m = 2, n = 3, $\lambda_1^* = 3$, $\lambda_2^* = 2$ and a BIB design with parameters $D_2(3,3,2,2,1)$. Then taking $p_1 = 2$ and $p_2 = 4$, the design D with incidence matrix N as in (8) is a non-proper non-equireplicate BBPB design with parameters $v_1^* = 3$ (1,3,5), $v_2^* = 3$ (2,4,6), b = 33, $\mathbf{r}' = \{201_3', 241_3'\}$, $\mathbf{k}' = \{41_{12}', 51_{12}', 61_3', 11_3', 11_3'\}$.

Corollary 9: In theorem 8, if we remove last 2n blocks, then we get a BBPB design D with unequal block sizes with parameters $\mathbf{v}_1^* = \mathbf{n}, \ \mathbf{v}_2^* = \mathbf{n}, \ \mathbf{b} = \mathbf{p}_1 \mathbf{b}_1 + \mathbf{p}_2 \mathbf{b}_2 + \mathbf{n}, \ \mathbf{r}' = \{(\mathbf{p}_1 \mathbf{r}_1 + \mathbf{p}_2 \mathbf{r}_2 + \mathbf{n}) \mathbf{1}_n', (\mathbf{p}_1 \mathbf{r}_1 + \mathbf{p}_2 \mathbf{b}_2 + \mathbf{n}) \mathbf{1}_n'\}, \quad \mathbf{k}' = \{\mathbf{k}_1 \mathbf{1}_{\mathbf{p}_1 \mathbf{b}_1}', (\mathbf{k}_2 + \mathbf{n}) \mathbf{1}_{\mathbf{p}_2 \mathbf{b}_2}', 2\mathbf{n} \mathbf{1}_n'\}.$

Example 19: In example 18, if we remove last 2n blocks, then we get a non-proper non-equireplicate BBPB design D with $p_1 = 2$ and $p_2 = 4$. The parameters of the design are $v_1^* = 3$ (1,3,5), $v_2^* = 3$ (2,4,6), b = 27, $\mathbf{r}' = \{19\mathbf{1}'_3, 23\mathbf{1}'_3\}$, $\mathbf{k}' = \{4\mathbf{1}'_{12}, 5\mathbf{1}'_{12}, 6\mathbf{1}'_3\}$.

Conclusion

A number of balanced bipartite block designs for comparing a set of test treatments to a set of control treatments generated by the new methods of construction given here. The methods are flexible enough to incorporate number of incidence matrices of BIB and other designs. The designs so constructed are found to

have applications in agricultural and industrial experiments. Thus, the methods presented here will be of both statistical and combinatorial usefulness.

References

- 1. Bechhofer R.E. and Tamhane A.C. (1981). Incomplete block designs for comparing treatments with a control: General theory. *Technometrics*, 23, 45-57.
- Kageyama S. and Sinha K. (1988). Some constructions of balanced bipartite block designs, *Utilitas Math.*, 33, 137-162.
- **3.** Sinha K. and Kageyama S. (1990). Further constructions of balanced bipartite block designs, *Utilitas Math.*, 38, 155-160.
- **4.** Angelis L. and Moyssiadis C. (1991). A-optimal incomplete block designs with unequal block sizes for comparing test treatments with a control, *J. Statist. Plan. Infer.*, 28, 353-368.
- 5. Angelis L., Moyssiadis C. and Kageyama S. (1993). Methods of constructing A-efficient BTIUB designs, *Utilitas Math.*, 44, 5-15.
- **6.** Jacroux M. (1992). On comparing test treatments with a control using block designs having unequal sized blocks, *Sankhya*, B, 54, 324-345.
- 7. Parsad R. and Gupta V.K. (1994). Optimal block designs with unequal block sized for making test treatments control comparisons under a heteroscedastic model, *Sankhya*, B, 56, 449-461.
- **8.** Jaggi S., Parsad R. and Gupta V.K. (1999). Construction of non-proper balanced bipartite block designs, *Cal. Statist. Asso. Bull.*, 49, 55-63.
- **9.** Raghavrao D. (1971). Construction and combinatorial problems in design of experiments, *John Wiley and Sons Inc.*, New York.
- **10.** Clatworthy W.H. (1973). Tables of two-associate partially balanced designs, National Bureau of standards, *Applied Maths.*, Series No. 63, Washington, D.C.