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Abstract  

In this article a proposal to solve two control problems from multiple point identification process frequency response of 

linear models, using an open loop step, is presented. The identified points are used, in one case a PID controller tuning, and 

the other application deals with transfer function modeling problem, both problems are stated as a nonlinear least squares 

unconstrained minimization problem. The optimization problem is solved with a simple genetic algorithm. 
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Introduction 

Proportional-Integral-Derivative (PID) controllers are 
commonly used in process control systems. In process control, 
more than ninety-five percent of the control loops are of PI or 
PID type1,2. Since Ziegler and Nichols3, proposed their 
empirical method to tune PID controllers, to date, many relevant 
methods to improve the tuning of PID controllers has been 
reported at the control literature, one of them is a tutorial given 
by Hang et al.4. 
 
As is well known, the dynamics of a process can be known from 
the transient response, so when it gets the step response is 
possible to determine both the process gain and the process 
dynamics. Due to this statement, in this work, the frequency 
response is obtained from the step response in a open loop 
system. The size of the step can be as small as it has desired, 
this is a great advantage because it can apply a small step near 
the operation point, without significantly affecting process 
safety. 
 
An open-loop step test is used when the process is at zero initial 
state or in a nonzero steady state, so that it can see the dynamic 
response of the system, for a step input, in order to realize a 
model identification or controller designing5. Several 
researchers have made important contributions on Control-
oriented model identification methods6-10. A significant tutorial 
review on process identification from step or relay feedback was 
presented by Liu et al

5, in this work the most important methods 
for identification and controllers designing in last three decades 
are presented. In the first proposals on auto-tuning methods, one 
estimated point over Nyquist curve is enough to tune a PID 
controller. In recently studies, it has been shown that the 
multiple identified points allow better PID tuning controller4,5. 
This work presents two applications of the multiple-point 

identification method, in order to tune PID controllers and, on 
the other hand, to obtain transfer function coefficients. The 
control problem is posed as a nonlinear least squares 
unconstrained problem. 
 
A genetic algorithm is proposed to solve the optimization 
problem. The same methodology can be used for both cases: 
PID tuning and transfer function modeling. Nonlinear least 
squares methods are important iterative procedures   in order to 
reduce the sum of the squares of the errors between a proposed 
function and the measured data points. These kinds of problems 
are common when it wants to fit proposed functions from 
experimental date. The Levenberg-Marquardt algorithm11,12, is 
the most common method for nonlinear least-squares 
minimization, nevertheless it can suffer from a slow 
convergence, and it is possible to finds only a local minimum12. 
 
The PID's designed with this method takes into account the 
effect of the sensitivity function values of the closed-loop 
system as a measure of robustness against possible variations in 
the parameters of the plant1,2,13,14. The proposed examples in this 
article cover a wide range of cases: stable, with short and long 
dead times, whit real and complex poles, and with positive and 
negative zeros, which are representative of the process control 
literature4,13. 
 
The contents of the paper are described as follows: In section 2 
the basic definitions of a nonlinear least squares unconstrained 
minimization problem, use of open loop step transient test, as 
well as a simple genetic algorithm procedure are shown. In 
section 3 some examples of PID tuning controllers and system 
identification, based on multiple points, of the frequency 
response are presented. Conclusions are contained in section-4. 
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Basic Concepts  

Unconstrained minimization problem: In a large number of 
practical problems, the objective function f (x) is a sum of 
squares of nonlinear functions 
 

���� = �
� ∑ �	
������
�� = �

� ‖	���‖�� (1) 
 
That needs to be minimized. We consider the following problem 
 

min� ���� = min�
�
� ∑ �	
������
��  (2) 

 
This is an unconstrained nonlinear least squares minimization 
problem. In this procedure the sum of squares of these functions 
is the quantity to be minimized. Such problems arise when we 
want to fit the function parameters from experimental data: if 
φ(x; t) represents the model function with t as an independent 
variable, then each rj (x) = φ(x; tj) − yj, where φ(tj,yj) is the 
given set of data points11,12. In this work an unconstrained 
nonlinear least-squares minimization problem is used. 
 
Use of open loop step transient: The idea of identifying 
multiple points of the frequency response is presented by Wang 
et al.7,15. For an open loop step test, a schematic block system is 
shown in figure-2. The signal input u(t) and output y(t) are  
considered from the initial time until the steady state is reached, 
after the transient step response. U(t) and y(t)cannot be 
integrated because they do not reach zero value in a finite time 
(at Tss time). Due to, they cannot be directly transformed to 
frequency response using FFT. To avoid this problem, an 
exponential function e-αtisused7 
 ����� = ������∝� (3) 
and 
 ����� = ������∝� (4) 
 
Thus signal u(t) and y(t) will tend to zero exponentially when t 
approaches to infinite value, as can be shown in figure-1. 
Applying the Fourier transform to (3) and (4) it has 
 

����� = � �������
��∞

�
�� = �� !+∝� 

and 

#$��� = � �������
��∞

�
�� = #� !+∝� 

 
For a transfer function G(s)=Y(s)/U(s), at s=jw+α, it has 
 

%� !+∝� = &�
�'∝�
(�
�'∝� = &$�
��

)��
�� (5) 

 
Now the discrete values of # � � !� and ��� !� can be 
determined using the standard FFT algorithm7,15. Thus, the 
shifted process frequency response G (jw+α) can be obtained 
from (5). However, if one want to obtain G(jw) from G(jw+α), 

then it should first compute the inverse FFT of G(jw+α) as 
+��,-� = ..-��/%� !+∝�0 = +�,����∝1� 
Then, the process impulse response (kT) is 
 +�,-� = +��,-��∝12 
 
Now, the FFT is again applied to g(kT) to obtain the process 
frequency response: 
 %� !� = ..-�+�,��� (6) 
 
In this identification problem is very important the adequate 
selection of α value, a rule to compute the α value in terms of 
the Tss time (see figure-1) is proposed, where the system reaches 
a steady value, after the transient step response. The value of α, 
it can be computed by means of:  

∝< 1
-55 67 ∆��-55�

9  

 
Where Δy(Tss)=y(Tss)-y(0), means the transitory output response 
in terms of the settling time (Tss) to the step change, in which 
y(0) indicates initial steady output value before the step test. Δ is 
a computational threshold, where for practical purposes, it can 
take values lower than Δy(Tss)x10

-6
. 

 
The method of open loop step test can accurately identify as 
many as desired frequency response points with one step 
experiment. In both applications: PID tuning and transfer 
function modeling, the shifted frequency response may be used 
without the needing to computer G(jw). To illustrate the 
method, a model with oscillatory dynamics is proposed.  
 

%�5� = �.�;
�.�;<='.><'� ��.�?@<                (7) 

 
Figure-3 shows the identified multiple points for model with 
oscillatory dynamics using this method, for G(jw). 
 
And G (jw+α) plot, where α=0.85, is given by figure-4 
 
Simple Genetic Algorithms: The genetic algorithm is a useful 
tool to solve both constrained and unconstrained optimization 
problems that takes principles of biological evolution8,14,16-18. At 
present work, each of the individuals in the population 
(chromosomes), contain the parameters included in the fitness 
function, as an example, in the process to tune the PID 
controller, each chromosome contains the coded parameters of 
the controller [Kp, Ki, Kd]. The following procedure 
summarizes the main steps that the genetic algorithm executes: 
 
The algorithm starts by creating a random initial population. 
 
The algorithm creates generations of new populations. At each 
step, the algorithm uses the individuals in the current generation 
to create the subsequent population. To generate the new 
population, the following steps are realized: 
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Figure-1 

Signals under open loop step 
 

 
Figure-2 

Schematic of open loop step test 
 

 
Figure-3 

Nyquist plot for G(jw) 
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Figure-4 

Nyquist plot for G(jw+α) 
 
Assign a grade to each member of the current population by 
computing its fitness value. Selects members, called parents, 
based on their fitness. Some of the individuals in the current 
population that have better grades are chosen as elite.  These 
elite individuals are passed on to the next population. Children 
from the parents are produced by means of crossover and 
mutation operators. The current population is replaced with the 
children to form the next generation. The algorithm terminates 
when some stopping criterion is met. 
 
Applications 

Designing of PID controllers: Designing of PID controllers by 
means of frequency response fitting has been reported in 
remarkable literature about processes control4,15,19. This method 
takes several points of the frequency response to shape the 
desired dynamics over a wide frequency range. Thus the closed-
loop performance is better than in the case of only one or two 
points are taking to design PI or PID controllers. Supposing the 
points of G(jwi), i=1,2,…,m, are known. The performance of 
the control system can be expressed as a desirable closed loop 
transfer function  
 

AB�5� = CD=
<='�ECD'CD= ��F< (8) 

 
Where L is called as apparent dead-time of the process, wn and ζ 
determine the behavior of the desired closed-loop response4. 
The control specifications can begivenin terms of phase margin 
Φm, and gain margin Am. The value of wn and ζin Hd are 
computed by4 
 

G = H��IJ<=�KL�
@IJ<=KL andMN = OPQRS� =TU

U=RS�
VF  

 
Where p is the positive root of equation 
 �W� − 1�� = 4G�Z� + �1 − Z��� 
 
Most accepted values for ζ and wn L are 0.707 and 2, 
respectively, this means that overshoot value of the objective 
set-point step response is about 5%, the phase margin is 60° and 
the gain margin is 2.24. The open-loop transfer function 
corresponding to Gd is 
 

%B = [\
��[\  (9) 

 
The controller C(jw) is designed such that the actual GC(jw) is 
fitted to the desired transfer function Gd(jw), as much as 
possible. Then the close loop system will have the desired 
performance. The PID controller desired can be obtained by 
minimizing the objective function given from the sum of 
squared differences between computed and recorded frequency 
response points 
 

]%� !^� = _V
�`'_^'_B�
�`�=

�` %� !^� (10) 

 

]% ′� !^� = a b�c6/%]� !^�0
dec+/%]� !^�0f and %B′  � !^� =

g b�c6�%B� !^��
dec+�%B� !^��h 

 
The objective function 
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� = ∑ i]% ′� !^� − %B′  � !^�i���   (11) 
 
If the PID controller is designed from G (jw+α), then 
 

]� !^ + j�=
_V�
�`'k�'_^'_B�
�`'k�=

�
�`'k�   (12) 

 ]%� !^ + j� = ]� !^ + j�%� !^ + j� 
 

]% ′� !^ + j� = a b�c6/%]� !^ + j�0
dec+/%]� !^ + j�0fand%B′  � !^ + j� =

g b�c6�%B� !^ + j��
dec+�%B� !^ + j��h 

 
The objective function 
 

� = ∑ i]% ′� !^ + j� − %B′  � !^ + j�i���   (13) 
 
The solution of the problem is obtained by minimizing y. 
 
In this work the identified points were obtained from a 
schematic Simulink® system where the system feedback is 
simulated. To solve the optimization problem, the MATLAB® 

Genetic Algorithm Optimizations Using the Optimization Tool 
GUI is used. 
 
Example-1: Third order plus dead time system. 
 
The designed PID is solved by minimizing the equation 11 by 
means of a simple genetic algorithm. The PID parameters are 
coded and arranged into each individual (chromosome), of 
population in the genetic process. Multiple points are from 
G(jw) 
 

%�5� = �
�<'��l ��;<  (14) 

 
The apparent dead-time L=4.5. The designed PID controller is 

]�5� = �0.4318 + �.���
< + 0.4435�  (15) 

 
The feedback system response with the PID controller designed 
is shown in figure-5. 
 
Example-2: Consider a model with oscillatory dynamics 

 

%�5� = �.�;
�.�;<='.><'� ��.�?@<  (16) 

 
The identified points for this model are showed in figure-3-4. In 
this example the apparent dead-time value L=0.23, is proposed.  
 
The designed PID is solved by minimizing the equation 11 by 
means of a simple genetic algorithm.  
 

]�5� = �1.453 + �
< + 0.5615]  (17) 

 
And from G(jw+α), the tuned PID controller  is 
 

]�5� = �1.45 + �
< + 0.5615] (18) 

 
Equation-15-16 show that both PID’s controllers have very 
close values as might be expected. 
 
Genetic algorithms give the ending fitness value and the PID 
parameters as is shown in figure-6. 
 
Performance of the PID designed is shown in the figure-7. The 
time response shows that the overshoot value is close of 5%, as 
it was proposed. 

 
Figure-5 

Close loop response of example-1 
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Figure-6 

Ending fitness value and PID parameters for an oscillatory process 
 

 
Figure-7 

Control performance for an oscillatory process 
 
Example-3: Considerer a third order model 
 

%�5� = �
�<'��l (19) 

 
For this model the value of apparent dead-time of the process 
L=0.3 was proposed. The modeling error for this example was 
0.08%. 
 

The design PID controller is 

]�5� = �5.1927 + �.v>
< + 4.835� (20) 

 
Performance of the PID designed is shown in the figure-8. 
 
The sensitivity to modeling errors: Since the controller is 
tuned for a particular process, it is desirable that the closed loop 
system is not very sensitive to variations of the process 
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dynamics. A convenient way to express the sensitivity of the 
closed loop system is through the sensitivity function S(s), 

defined as: , where L(s) denotes the loop transfer 
function12,14,19-.21. L (s) is given by: 

  
 
The maximum sensitivity (frequency response) is then given by

. Therefore Ms is given by . 
On the other hand, it is known that the quantity Ms, is the 
inverse of the shortest distance from the Nyquist curve of loop 
transfer function to the critical point s=-1. Typical values of Ms 
are in the range from1.2 to 2.0

13.  
 
Table 1 shows the values of Ms, Am and Φm for the three 
presented examples. 
 
The operation of genetic algorithm was configured with the 
following parameter values: Population size: 100. Stochastic 
uniform Selection. Crossover function: Scattered. Mutation 
function: Gaussian. Number of iterations: 500. Crossover 
probability: 0.8. Mutation Probability: 0.09. Elite count: 2. 
 
Transfer Function modeling: A mathematical model is 
necessary in many applications of automatic control. In this 
work a second order plus dead-time model is proposed. The 
identification at models with dead-time is usually a non-linear 
problem4,8,20. This characteristic presents a good opportunity to 
apply a genetic algorithm to solve the optimization problem. 
 

%�5� = �
w<='x<'I ��F< (21) 

 
This second-order-plus-dead-time model can represent both 
monotonic and oscillatory processes. 
 
Transfer function modeling from G(jw): Suppose the process 
frequency response G(jwi), i=1,2,…,M  is presented, because of 
they are required to be fitted into G(s) in (21) such that  
 

%�� M^� = �
w�
C`�='x
C`'I ��FC`  (22) 

 
Where i=1,2,…, M  
then 
 

%� ′� !^� = a b�c6/%�� !^�0
dec+/%�� !^�0f 

 
And the identified points of G(jw) 
 

% ′ � !^� = g b�c6�%� !^��
dec+�%� !^��h 

 

The objective function is 
 

� = ∑ i%�′  � !^� − % ′� !^�i���   (23) 
The solution of the problem is obtained by 
 

min^ ∑ i%�′  � !^� − % ′� !^�i���   (24) 
 
Transfer function modeling from G (jw+α): Suppose the shifted 
frequency response of the process G(jwi+α), i=1,2,…,M  is 
available, then the model given by equation-21 is used, such that  
  

%�� M^+∝� = �
w�
C`'∝�='x�
C`'∝�'I ��F�
C`'∝�  (25) 

 
Where i=1,2,…,M 
 

then %� ′� !^ + j� = a b�c6/%�� !^ + j�0
dec+/%�� !^ + j�0f 

 
And the identified points of G(jw+α) 
 

% ′ � !^ + j� = g b�c6�%� !^ + j��
dec+�%� !^ + j��h 

 
The objective function is 
 

� = ∑ i%�′  � !^ + j� − % ′� !^ + j�i���  (26) 
 
The solution of the problem is obtained by 
 

min^ ∑ i%�′  � !^ + j� − % ′� !^ + j�i���   (27) 
 
In order to illustrate the application of this method, the 
following examples were proposed to obtain the identified 
models from Multiple points from G (jw) and G (jw+α). The 
estimated models were solved by minimizing the equations-24 
and 27 by means of a simple genetic algorithm. 
 
Example-4: Considerer a third order plus dead time system 
 
%�5� = �

�<'���;<'��= ���.;<  (28) 

 
The Identified model parameters [a, b, c, L], are coded and 
arranged into each individual (chromosome), of population in 
the genetic process. The value of modeling error is 0.0154% 
 
The identified SOPDT from G(jw)is  
 

%y�5� = �
�>.��<='��.�v<'�.��� ��?.?< (29) 

 
The real model, identified points and identified model are 
shown in figure-9. 
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Table-1 

Values of Ms, Am and Φm 

Model Ms Gain margin Phase margin 

1
�5 + 1�? ��;< 1.547 3.16 63.74 

1.25
0.255� + .75 + 1 ��.�?@< 1.685 3.13 59.4° 

1
�5 + 1�? 1.52 2.88 63.74° 

 

 
Figure-8 

Control performance for third order model process 
 

 
Figure-9 

Identified model and real model for example 4 
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Example-5: Third order plus dead time system 
 

%�5� = �
�<'��l ��;< (30) 

In figure-10 the final values of the fitness function and the 
identified model parameters are presented. 
 
Thus the identified model was attained from G(jw). Model error 
=0.0152% and α=0.24. 
 �
�.zzz<='�.;v<'� ��;.@�z<  (31) 

 
Real and identified models are shown in figure-11 
 
Transfer function modeling for Processes with long dead-
time: Processes with long dead-time are common in most of the 
industrial processes and can be satisfactorily approximated by a 

structure in form of 
 

%�5� = _
�2<'��= ��F< (32) 

 

Example-6: Consider the following long dead-time process4  
 

%�5� = �.;>
�z.{<'��= ���z.>< (33) 

 
The identified model is given in equation-34. It was obtained by 
the same method as was presented previously, with α=0.08. 
Figure-12 shows the identified points on the Nyquist curve from 
G (jw+α). Identification error=0.0056% 
 

%y�5� = �.;>�?
�z.{�{<'��= ���z.>< (34) 

 

 
Figure-10 

Fitness function and model parameters of a third order plus dead time system 
 

 
Figure-11 

Third order plus dead time system 
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Figure-12 

Frequency response of model with long dead-time 
 
In this example, the number of generations and Population size 
used for genetic algorithm are: 500 and 100 respectably. 
 
Conclusion 

The genetic algorithm was an excellent tool to solve the 
optimization problem. I was very important that same 
methodology can be used for both cases: PID tuning and 
transfer function modeling. In both applications, the results 
obtained were more accurate from the identified points of 
G(jwi+α) to G(jwi); It was due to the fact that using G(jwi+α) is 
more direct than G(jwi). Nonlinear least squares method was 
successfully applied in all cases to adjust the parameters values 
in order to reduce the sum of the squares of the errors between 
the given structure and the measured data points. It is 
remarkable to say that presented method has a good 
performance to identify all proposed models: Very long dead 
time process and both monotonic and oscilatory processes, no 
matter those different structures were proposed. 
 
It is also important to mention that Ms value was always a 
referent in relation to a good performance of the designed 
PID’s, especially at the relative stability; on the other hand, 
when the Ms Value is within the proposed range, this ensures 
that the controlled systems are insensitive to possible changes in 
plant models16[3]. So it, the values of Gain Margin and Phase 
Margin were very close as expected. 
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