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Abstract  

In this paper, we explore the problem of availability analysis for a specific assembly system inspired from a real case. 

Contrary to regular assembly systems, we consider a three-working-station case where we have two intermediate buffers. 

The flow of materials is discrete. Since availability rate is one of the most important performance indicators for any 

company, we aim at providing tools to calculate the underlying measure for the assembly systems studied here. We tackle the 

problem by both simulation and analytical models. We use discrete event approach to simulate model, while in analytical 

model, we utilize Markov chain to assess the availability. Finally, we evaluate the performance of analytical model by 

comparing it against the simulation model proposed in this paper. 
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Introduction 

Due to today’s world competitive environment, companies are 
generally intending to have more reliable production systems 
with higher availability performance

1
. Reliability along with 

maintainability plays a crucial role in ensuring the success of 

companies as they determine system availability and thus 
significantly contribute to process economics and safety. 

Therefore, maintenance and maintenance policy arethe major 
keys in achieving systems’ operational effectiveness at 
minimum cost. Reliability is a good indicator of the efficiency 

of a system
2
. 

 

This usually decreases when the operation time of a machine or 
its components increases. Reliability is the probability that a 
machine or a system perform a required operation for a given 
time period without any failure. A machine’s reliability is often 

characterized by its mean-time-to-failure (MTTF). On the other 
hand, availability is a proportion of time that a machine or 

system is able to perform its required function
3
. 

 
A machine or a system is called repairable (maintainable) if 
once the failure has occurred, it can be restored to its as-good-

as-new original state. The time elapsed between the failure and 
its return to the as-good-as-new conditions is called downtime 

or repair time. The average time to repair is called mean-time-
to-repair (MTTR) by which machine’s maintainability is 
characterized. If the machine is non-repairable, the reliability 
function is equal to availability function

1
. The consideration of 

systems with repairable machines is of interest in many 
engineering fields. In this case,the calculation of availability 

gains more attention among researchers because it is a measure 
of both reliability (MTTF) and maintainability (MTTR), and it 

is generally a more useful measure for repairable systems than 
reliability. The availability of a system with one single machine 

is calculated as such:  
 Availibility	a system with single machine� � ����

���������  

 
The more complex a system is, the harder the availability 
calculation becomes. For example, if the system consists of the 
m machines in series, the system fails to perform the operations 

when any of those mmachines fails. Therefore, the system 
availability is obtained by the following formula: 

 

Availibility � a system with m machines in series� �  ∏ � ������������������ !"   

 
For another case, let us suppose we have a system with m 

machine in parallel. The system fails only if all of those m 
machine fail to operate. As a result, the system availability is 

computed as follows: 
 

Availibility #a system with m machines in parallel % �  1 ' (∏ � ������������������ !" )  

 

In a nutshell, in systems with series machines,the whole system 
availability is a product of machines availability while in 

systems with parallel machines, the whole system availability is 
a product of machines unavailability. In a complex system with 

numerous combinations of simultaneous parallel and series 
machines, the calculation is even getting harder, yet achievable.  

 
Two common ways in industries to improve the system 

availability are: Duplication of machines in parallel just in case 
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one of the machines fails, the other ones operate as a 
replacement, Establishment of intermediate buffers between 

machines to keep the system in operation even if a machine 
fails.  

 
With reference to this explanation, suppose systems in which 

besides having machines in parallel and series, we have 
intermediate buffers. In this later case, the system availability 

calculation required, by far, more effort than exploitation of 
some simple formulas

4
. 

 
To analyze the availability of such an intricate system, there 

exist two types of techniques, analytic andsimulation 
approaches. In both techniques, the system is characterized 

through random variables of the states of the corresponding 
machines in that system. In simulation, we draw a realization of 

each random variable and then determine which machines are 
down and for how long, from which the system availability over 

the interval of interest can be determined
5
. By repeating this 

procedure an estimate of the system availability is obtained. 

Analytical techniques, on the other hand, use structural results 
from applied probability theory and stochastic processes like 

Markov chain to make statements on various performance 
measures, such as the steady-state or the interval availability

6
. 

 
In this paper, we deal with a specific case of assembly systems 

with intermediate buffers. The objective is to calculate the 
availability of the underlying system. We first attack the 

problem by the development of a simulation model. We then 
tackle the problem through the analytical approaches, more 

specifically through Markov chain. Finally we compare the 
results obtained by the two approaches. 

 

The problem description 

Generally in assembly systems, given materials need to visit a 
set of working stations. Each working station is devoted to 

perform a specific operation on materials. So long as materials 
pass through all required stations, the jobs are done. The 

material could be either continuous or district. Our assembly 
systems use the district material; therefore, it follows the 

Markov models
5
. 

 
The problem under consideration, we have three unreliable 
working stations. Two of them are parallel, but they operate 

different functions. Each of the first two stations has its own 
buffer to put its output. That is, the products of stations 1and 2 

are separately collected in an unshared buffer with a maximum 
of M1 and M2 products, respectively.Station 3 carries out 
another function on the work-in-process materials collected in 
the buffers. After visiting station 3, the process on materials 

completes. As a result, the system is down when station 3 fails 
to operate. This could be the consequence of either the 

emptiness of any of the two buffers or station 3 failures. Figure 
1 shows the graphical outline of the assembly system studied 
here. 
Stations 1, 2 and 3 process materials with rates r1, r2 and r3, 

respectively; where r3 is greater than both r1 and r2. We need to 
indicate that system composes of three randomly failing 

repairable machines where machines fail independently of each 
other and with constant mean failure rates. After the failure 

takes place, the repair can start immediately. The repair time has 
a random duration, independent of the states of the other 

machines, with an exponential distribution. Moreover, 
stationary conditions are assumed so that the probabilistic 

characteristics of the machines and the system do not vary over 
time. 

 
Theoretically, the problem considered in this paper could be 

tackled by both a simulation model and Markov model. In the 
analytical approach developed in this paper, we use the 

homogeneous Poisson model for the initiation of the failure and 
repair events and directly obtain the stationary solution without 

considering the initial state of the system. 

 

 
Figure-1 

Three-working-station assembly system with discrete 

material flow 

 

Simulation model 

In the recent decades, simulation has been introduced as the 
most common and valuable tools in the operation research in the 

area of manufacturing and other research areas
10,11

. With the 
continuing developments in computer technology, simulation is 

receiving increasing attention as a decision making tool. Most 
real-world systems are so complex that computing values of 
performance measures and finding optimal decision variables 
analytically is very hard and sometimes impossible

7
. Therefore, 

computer simulation is frequently used in evaluating complex 
systems and optimizing responses.  

 
In this paper, a simulation model has been proposed for 
evaluating the availability of the considered system as depicted 
in figure-1. The solution of the simulation model can be used as 

a control strategy for the solution of analytical approach. We 
make the following assumptions about introduced assembly 

system: Uptime and downtime of all stations in the given 
manufacturing system have exponential distributions with 
different parameter. Production rate of each station is based on 
Poisson distribution. After failing, a station is immediately 

brought up (without any loss time). Buffers cannot fail and 
therefore buffers do not have to be repaired. The overall system 

production rate cannot exceed production rate of station 3. If a 
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buffer hits the buffer capacity, the preceding station of this 
buffer stops. If any of two buffers hit empty, the station 3 stops 

(even if it be in operational status). To initialize the simulation, 
a warm-up period is used to eliminate unstable situation of 

system. If multiple stations fail at a time, they are 
simultaneously repaired.  

 
Because of the complexity of the presented system, the usual 

definition of time dependent availability is difficult to apply. We 
define availability as the ratio of the actual number of products 

produced in a sufficiently long period of time to the total 
number of products that would have been produced. We refer to 

this alternative definition as product-based availability. 
 

To estimate product-based availability we simply observe and 
accumulate the total number of products actually produced 

during a sufficiently long simulated time period (such as 1 or 2 
years). Such a simulated time period ensures a reasonably stable 

estimate of availability. While the total number of products 
actually produced represents the numerator of the availability 

ratio, the denominator is simply the length of the time period 
multiplied by the production rate. The availability ratio is 

determined by the following formula
8
: 

 

We develop and use a discrete-event simulation model to 
estimate the product-based availability for introduced system 

depicted in figure-1. We used the most well-known commercial 
simulation software, namely Arena 7.01 for modeling the 

considered assembly system. The figure-2 illustrates the 
simulation model of the system in working condition. 

 

Analytical Model 

This section has been devoted for developing an analytical 
approach to consider the availability of the three-station 

assembly system with unreliable stations, illustrated in Figure 1. 
We assume that there is no limit for the buffer in front of 

stations 1 and 2. Consumption factor of the parts produced in 
stations 1 and 2 in assembly station (station 3) is one. The 

production times of each part produced in stations 1, 2 and 3 
follows an independent Poisson process with parameter ri. The 

two work centers and the assembly station follow first-come 
first-service (FCFS) discipline. There is one type of finished 

product after assembly. 
 

After being processed by the work centers, respectively, the two 
types of work pieces are transferred to stage-II for being 

assembled. The maximal buffer sizes for type-1 and type-2 work 
pieces are M1 and M2, respectively. Such finiteness of the 

intermediate buffers may cause blocking at stations 1 and 2 and 
starvation in station 3. Blocking occurs when a work piece 

finished by work stations 1 and 2 cannot enter the intermediate 
buffer because it is full. This work piece will occupy the stations 

and prevent the stations from processing the next work piece 
until a space becomes available in the intermediate buffer. 

Starvation occurs when there is no work piece of type 1 and 2 
because the buffers 1 and 2 are empty. We assume that 

breakdowns of the stations may happen only during its busy 
period. We further assume that the lifetimes of the stations are 

exponentially distributed with parameter λi. When the stations 
break down, it will be repaired immediately. The repair time is 

exponential with parameter µ i. 
 

In this section, we utilize a Markov process to characterize and 
analyze the availability of the three station assembly system

9
. At 

each given time, there are two possible states for a station; i.e., a 
station is either up or down. Up or down status of each station is 

either due to its failure or due to docking or starvation. Thus, 
there are eight possible combinations of three stations. Each 

combination is assigned an index from the index set I = {UUU, 
UUD, UDU, DUU, UDD, DUD, DDU, DDD}. The first 

component from the index set show that at a given time the 
three stations are up. 

 

Availability ratio = 

Total number of products actually produced in determined length of time 

 

Determined length of time × production rate 

 

 
Figure-2 

The general outline of the simulation model 

W o rk  p i e c e s  ty p e  1

wo rk  p i e c e s  ty p e  2

De c i d e  1

Var iable 1>=1( Ent it y. Type ==ent it y RF)  &&  ( pr ocess RF. W I P == 0)  && ( NEC( Conveyor  1)  + NQ ( leave convey 1. Q ueue) +NQ ( M at ching 1. Q ueue1) +NQ ( Hold wait  f or  assem bling. Q ueue) ) <= 14

Var iable 2>=1( Ent it y. Type ==ent it y FE_FF)  &&  ( pr ocess FE_FF. W I P == 0)  && ( NEC( Conveyor  2)  + NQ ( leave convey 2. Q ueue) +NQ ( M at ching 1. Q ueue2) +NQ ( Hold wait  f or  assem bling. Q ueue) ) <= 14

Else

Sta t i o n  1

Sta t i o n  2

buffer1 Route 1 Statio n 21

buffe r2 Rou te 2 Sta tion 41

Sta t io n  3

Buffer 1

Buffer 2

Di s p o s e  1

0      

0      

     0

     0

     0

0      
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It can be inferred that the state probability of system at time t 

can be written by the following equation: 

 *+,- � ./	0	1� � 2, 2 ∈ 5 | 0	0� = 8, 8 ∈ 5� 

 

For example: ./90	1� = 	:::, ;, <�| 0	0� = 	==:, >, ?�@ 

 

Now, the state transition matrix can be calculated. The 

component of this matrix indicate the probability in which the 

system for example goes from state {DDU, s, z} at time zero to 

state {UUU, x, y} at time t. matrix A represent the state 

probability matrix. 

 

A- =
B
C
C
DE""
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-
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- EFF

-
⋯ E"H

-

… EFH
-

⋮ ⋮
EH"

- EHF
-

⋮ ⋮
… EHH

- K
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Here, as an example, we show how *""
-  is calculated. The 

remaining probability can be derived by simple modification of 

*""
- . 
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The probability in which the buffer 1 is not empty can be 

rewritten by the Following equation: 
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Similarly, 
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Ultimately, 

 

( ) ( )

( ) ( )
∑
=

∑
=

∑
∞ −

∑
+

=

−

∑
∞ −

∑
+

=

−
∏
=

−

=























































1

0

2

0

3 !3

3
33.

3

0 !

22

3 !3

3
33.

3

0 !

11
3

1

11

M

s

M

z

e e

e
trtr

e

ez

j j

j
trtr

e

e e

e
trtr

e

es

j j

j
trtr

e
i

tie

t
P

λ

  

The instantaneous availability is obtained by the following 

equation: 
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Then the steady state availability can be derived by the 

following equation: 
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Now, to validate the proposed analytical model, we apply it to 

an example, and then compare its results with those obtained by 

simulation model. Let us suppose we have a three-working-

station assembly system with the specifications shown in Table 

1. We implement the simulation model in Arena 7.01 and run on 

a PC with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM 

memory. After 2000 hours simulation of the systems, the 

availability becomes 91.5%. We also calculate the measure of 

interest through Markov model. The availability again becomes 

92.08%. Since these two values are very close two each other, 

we can conclude that the analytical model is a good estimation 

for the system availability.  

Table 1 

The assembly system’s specification 

Station Parameter   

 r µ λ 

1 250 1/2 1/2000 

2 200 1/4 1/2000 

3 200 1/3 1/1500 

 

Conclusion 

We considered the availability assessment of a variant of 

assembly system with three-working-station and intermediate 

buffers between the stations where the flow of materials was 

discrete. We introduced tools to calculate the availability rate 

for the assembly systems. We first modeled the problem by 

Simulation using discrete event approach. Then, we analytically 

calculated the availability through Markov chain. Finally, we 

evaluated the performance of analytical model by comparing it 

against the simulation model. 
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As a future research, it could be interesting to extend the 

considered problem to a system with continuous material flow. 

Another interesting clue is to assess the availability of a more 

complex, yet realistic variant of the problem such as a whole 

production line with several working stations. 

 

Notations: In this paper the following notations are used: 

 

x, y Number of work pieces in buffers 1 and 2 at time t 

X 
Random variable of number of work pieces in buffer 1 

at time t 

Y 
Random variable of number of work pieces in buffer 2 

at time t 

H(t) 

The state of the system at time t that is characterized 

by three component, i.e. the stations status, number of 

parts in buffer 1 and 2, e.g. H(t) = {UUU, x, y}. 

TTFi 
Exponentially distributed random variable to model 

time to failure of station i. 

λi Failure rate at station i 

TTRi 
Exponentially distributed random variable to model 

time to repair of station i. 

µ i Repair rate at station i 

Ri 
Poisson random variable of number of part produced 

in station i 

ri Production rate of station i 
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