
 Research Journal of Recent Sciences ___ ISSN 2277-2502

 Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 95

Dynamic Discovery of Resources in Structured P2P Systems
Saeed Arbabi

1,2
 and Ali Akbar Keikha Javan

2

1Computer Engineering Department, University of Zabol, Zabol, IRAN
2Computer Engineering Department, School of Eng., I.A.U. Zabol Branch, Zabol, IRAN

Available online at: www.isca.in, www.isca.me
Received 25th December 2013, revised 11th April 2014, accepted 22nd May 2015

Abstract

A distributed system is a collection of autonomous computers that appear to their user as one single coherent system. The

main goal of any distributed system is sharing resources in a controlled and efficient way. But before any resources can be

shared, they should be located. Structured peer-to-peer (P2P) systems have been recognized as an efficient approach to solve

the resource locating and discovery problem in large-scale dynamic distributed systems. Efficiency of structured

P2Presource discovery approaches attributed to their structured property. However, system dynamism (a.k.a. Churn) caused

by changes in the system membership, i.e., nodes that join or leave the system or simply fail, perturbs the structure of the

system and endangers the expected correctness and efficiency of resource discovery solutions. In this paper we propose an

approach to dynamic searching and discovery of resources that adapts its operation dynamically with the dynamism in the

system by using a structure maintenance technique that we have already presented in our recent paper. Although our

approach is general enough to be applied to a lot of structured P2P systems, for the sake of brevity here we implemented this

resource discovery approach for a well-known structured P2P system called Chord. We analyzed the efficiency of our

presented resource discovery mechanism using master equation approach of physics and by experiments. We see how the

simulation results and theoretical analyses both show the improved efficiency of our resource searching and discovery

mechanisms.

Keywords: Distributed systems, Peer-to-Peer systems, Dynamic Resource Discovery, Churn.

Introduction

Distributed systems have emerged with the main goal of sharing

resources in a controlled and efficient way. But before any

resources can be shared, they should be located. The process of

locating a resource in any distributed system is called resource

searching and discovery
1
. Designing an efficient resource

discovery mechanism becomes more challenging when the scale

of the system gets larger and the dynamism becomes a part of

the system behavior
2
.

Peer-to-Peer (P2P) systems have emerged as a type of

distributed system to partly resolve this issue. From the point of

view of their proposed resource discovery mechanism, P2P

systems evolved through three generations
3
.

Resource discovery solutions proposed in the last generation of

P2P systems also known as structured P2P systems have been

praised because of their efficient behavior and guarantees for

discovering queried resources
4
. These properties have been

attributed to the structured property of these systems. A system

is considered to be structured if a specific constant pattern of

relation exists between system entities. Since nodes and

resources are the two main entities in a P2P system, there should

be a specific and durable pattern of relation between nodes and

resources in a structured P2P system. This pattern should be

maintained in the whole lifetime of the system so as to

guarantee the accuracy and efficiency of any resource searching

and discovery solution for such systems.

The structure of a structured P2P system is created by consistent

hashing
5
, i.e., the application of a hash function on a unique

property of a node or resource, resulting in a unique identifier
6,7

.

So a unique identifier from a common identifier space is

assigned to each node and each resource in the system. These

identifiers determine which resources are placed on which

nodes, and this is the pattern of relations between nodes and

resources. At the same time, each node in the system maintains

some pointers to some other nodes in the system that is the

pattern of relations between nodes in the system. As such,

resource discovery in such systems becomes a routing problem

wherein each node uses its routing pointers to choose the next

node to forward a received query. Given a node identifier, a

message can be delivered in few logical hops. Resources in

structured P2P systems can be discovered correctly and

efficiently only if the structure of the system is properly

maintained.

Continuous and arbitrary arrivals and departures of nodes in

structured P2P systems is the source of system dynamism (also

known as Churn) that perturbs the system structure as well as

the accuracy and performance of any resource discovery therein.

The reason is that with arrival or departure of a node, some

pointers in some other nodes may now point to wrong nodes. So

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 96

maintaining the structure of a structured P2P system with low

overhead and high robustness in the presence of churn is a great

challenge to be resolved
7
.

Most of current structured P2P systems are based on periodic

protocols for structure maintenance. Structure maintenance

techniques based on periodic approach update the system

structure at specific time intervals. The main challenge in

techniques that are based on periodic approach is that a trade-off

between robustness and bandwidth consumption has to be made

on selecting the maintenance period durations. If the routing

information is not maintained frequently enough, the system

will not be robust as the routing information becomes outdated

quickly. On the other hand, if the routing information is

maintained too often, bandwidth consumption will be high
9
.

Some other structured P2P systems use structure maintenance

techniques that we categorize them in an approach that is based

on only system traffic. In these type of structure maintenance

techniques, there is no separate procedure for maintaining the

routing pointers; instead, any out-of-date or erroneous routing

entry is eventually corrected on-the-fly thereby, eliminating

periodic bandwidth consumption. However, this approach

assumes that the ratio of the number of routing messages to the

dynamism in the system is high enough such that there are

enough routing messages to correct the routing information. The

routing information will become outdated if this ratio is low.

Hence, the performance will be poor since a routing hop might

lead to a failed node.

In this paper we propose a new structure maintenance approach

that allows the system to automatically adapt to the dynamism,

while avoiding unnecessary periodic bandwidth consumption.

Then we present a family of efficient resource discovery

mechanisms by applying a structure maintenance technique

based on this new structure maintenance approach.

We analyze the efficiency of our presented resource discovery

mechanisms using master equation approach of physics and

experiments. We see how the simulation results confirm the

theoretical analyses.

Related Works

As stated in Section 1, the arrivals and departures of nodes

to/from the system disrupt the system structure and so

jeopardize the desired properties of any good structured P2P

system. To maintain the system structure under churn, different

systems have adopted different techniques to return the system

into its ideal structure. By far different structure maintenance

techniques used in current structured P2P systems has been

studied
8
. We categorize these techniques into two approaches

(table-1).

As stated in table -1, most structured P2P systems such as

Chord
10

, Koorde
20

, Viceroy
12

, CAN
13

, Ulysses
14

, Pastry
15

 and

Tapestry
16

 use structure maintenance techniques that fall in the

periodic stabilization approach wherein all routing pointers are

periodically looked up and updated. The main challenge of this

approach is that a trade-off between robustness and bandwidth

consumption has to be made. If the routing information is not

maintained frequently enough, the system will not be robust as

the routing information becomes outdated quickly. On the other

hand, if the routing information is maintained too often,

bandwidth consumption will be high.

Table-1

Structure Maintenance Approaches and Techniques

Maintenance

Approach

Maintenance Technique

Periodic

Stabilization

Chord
10

, Koorde
11

, Viceroy
12

, CAN
13

,

Ulysses14, Pastry15, Tapestry16

On-Traffic

Correction

DKS
17

, Self-Contained Techniques
18,19

,

Kademlia
20

In contrast, some structured P2P systems
17-20

maintain the

system structure with techniques that are based on system

traffic. These structure maintenance techniques fall in the

category of on-traffic correction approach. These techniques

maintain the system structure by piggy-backing technical

information on common system messages instead of

periodically maintaining the system structure. Although these

techniques have lower maintenance traffic compared to

techniques that use the periodic stabilization approach, the

correction of each out-of-date routing entry depends highly on

how frequently this routing entry is used. So techniques that use

the on-traffic correction approach do not work efficiently in

systems wherein the ratio of the dynamism of the system to the

number of transferred messages is high.

In techniques that use the periodic stabilization approach,

choosing an appropriate maintenance frequency entails a

tradeoff between robustness and bandwidth consumption. A

solution suggested by Mahajanet al.
7

is to self-tune the system

by dynamically adapting to the operating conditions of the

system instead of configuring the maintenance frequency

statically and conservatively. Self-tuning requires knowledge

about the global state of the system such as the number of nodes

in the system and the rate of dynamicity in the system
6
. As there

is no central authority in such systems, global system state is

figured out by estimation. Additionally, self-tuning is done

periodically and has very high communication overhead.

The structure maintenance technique proposed in Chord2
21

 uses

more stable and powerful nodes as superpeers to reduce the

maintenance costs in a structured P2P system. The proposed

technique relies on superpeers for correction of routing

information, so the failures of any superpeer can jeoperdise the

proper working of the maintenance technique.

In Section 4 we propose a new approach for structure

maintenance and then present an efficient resource discovery

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 97

mechanism that maintains its structure based on this approach

under churn. But before that, as we want a common

infrastructure for our analysis, we introduce the Chord

structured P2P system in the next section.

Chord Overview

In this section, we present an overview of the Chord
10

 P2P

system that we have used to investigate the feasibility of our

proposed approach to be reported in Section 4.

Chord is a distributed lookup protocol and a well-known

structured P2P system. It provides a primary operation: it maps

a given key to the node that is responsible for that key. A hash

function assigns each node and each data item to an identifier in

a ring modulo 2
m
, called identifier space.

Structure in Chord: Chord is a structured P2P system with a

constant pattern of relations between its entities – that is data

items and nodes. A data item with the identifier k is assigned to

the first node whose identifier is equal to or follows k in the

identifier space denoted by successor (k) (pattern of relations

between nodes and data items). Each node needs only to

maintain a link to its successor (pattern of internode relations).

In order to lookup a desired data item with the identifier of k, a

node can forward the query through the successor links until it

reaches the successor (k). It’s just like a linear search for an

identifier in a list of identifiers.

To make the lookup process scalable, each node also maintains

links to mother nodes called fingers. The i’th finger of the node n

points to the node successor (n+2
i
), 1≤i<m. By maintaining

fingers, linear search turns into a binary search that can locate a

node in an N node network size in at most O(log N) sent messages

and by O(log N) hops of forwarding queries through fingers.

n.join (n′)

1. predecessor := nil;

2. s := n′.find_successor(n);

3. successor := s;

4. build_fingers(s);

n.find_successor(x)

1. if (x ε (n,n.successor]) returnn.successor;

2. else

3.nnextHop := closest_preceding_node(x);

4.returnnnextHop.find_successor(x);

n.closest_preceding_node(x)

1. fori := m-1 downto 1

2.if (finger[i] ε (n,x)) return finger[i];

3.return n;

n.build_fingers(s)

1.i0 := [log(successor-n)] + 1;

2.for i0 ≤ i< m-1

3.finger[i] := s.find_successor(n + 2i);

Figure-1

Pseudo code for the Join operation
10

Node Joins: When a node n wishes to join the system, it first

contacts an existing node n′ in the network and asks n′ to find

n’s immediate successor. Then n can build its finger table with

the help of its successor. Figure-1 shows the pseudo-code for

the join operation.

Structure Maintenance: To ensure that discovery process

executes correctly in a dynamic system that nodes join and fail

continuously, each node’s successor pointer must always be up-

to-date. This is assured by using a “stabilization” protocol that

each node periodically executes and updates successor pointers

(figure-2)
10

.

n.stabilization()

1.check_predecessor();

2. x := successor.predecessor;

3. if (x ε (n, successor))

// successor changed due to new node

4.successor := x;

5.successor.notify(n);

s.notify(n)

1.if (predecessor = nil or n ε (predecessor, s))

2. predecessor := n;

n.check_predecessor()

1.if (predecessor has failed) predecessor := nil;

n.fix_successor_list()

1. <s1, . . . ,sr>:= successor.successor_list;

2.successor_list := <successor, s1, . . . , sr-1>;

n.fix_successor()

1. if (successor has failed)

2. successor := smallest alive node in successor_list;

Figure-2

Pseudo-code for the structure maintenance
10

After node n joins the system, some nodes that are pointing to

n’s successor in their finger table, should update their finger

table. Because intrinsically, the join operation does not make the

remainder of the network aware of n, nodes have no idea when

fingers should be updated. To solve this problem, Chord allows

each node to periodically execute fix_fingers() to keep fingers

updated (figure-3).

n.fix_fingers()

1. build_fingers(n);

Figure-3

Periodically refreshing the whole finger table
10

Analysis: In the Chord maintenance algorithm, the execution of

stabilization() costs four messages, while the execution of

fix_fingers() costs O(log2
N
) messages (because logN executions

of find_successor() are generated, each of which costs at most

logN messages). So the maintenance of finger tables accounts

for most of the overhead.

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 98

Proposed Approach and Technique

Working with structure maintenance techniques that use the

periodic stabilization approach, all pointers in the system are

updated periodically, creating a lot of overhead. They do not

guarantee the robustness of the system either. In our proposed

structure maintenance approach, each node needs not to

periodically update all its pointers. Each node only checks a

very small number of pointers periodically and by detection of a

change in them, calls a mechanism that updates all the other

pointers in the system that need to be updated.

Overview: As we want to show that a family of efficient

resource discovery mechanisms can be constructed by applying

our approach on existing structured P2P systems, we first need

to show its applicability to a specific structured P2P system. We

selected the Chord structured P2P system as it is very popular

and commonplace. So here we present a technique derived from

our approach for structure maintenance and apply it to the

Chord system.

Application on Chord: The Chord maintenance technique

presented in Section 3 uses a periodical scheme for routing table

maintenance that frequently refreshes all the routing table

entries of all nodes. To lessen the maintenance overhead and

increase the robustness of Chord, we remove the costly periodic

routing table maintenance in our technique for Chord system by

using a lighter event-oriented version of the periodic successor

maintenance.

To illustrate what exactly structure perturbation means, let’s

consider two cases in a ring (figure-4.). When a node b joins

the system between the nodes a and c, the responsibility of the

ring area that lies between a and b transfers from c to b, so some

nodes that have a routing table entry targeting in this range of

ring, should update some of their finger table entries from c to b.

On the other hand, when a node b that lies between nodes a and

c leaves the system or fails, node c becomes responsible for the

ring area between a and b, so some nodes that had routing table

entries pointing to b, should update some of their fingers to

point to c instead of the failed b.

Figure-4

Changes in the responsibility of ring areas when node b

joins or leaves the system

Upon detection of a structure perturbation, we return the system

into its structured shape by activating a structure maintenance

protocol to identify the affected nodes and notify them to update

their affected fingers. To effectively identify the affected nodes,

each node and its predecessor, store objects called pointer

objects. Upon every structure perturbation and membership

change, these pointer objects identify and notify the affected

nodes in parallel.

In the next section we look closely at node join and failure

operations in our technique and illustrate how the system

structure is maintained in case of membership changes.

Structure Maintenance Technique: In order to reduce

maintenance costs in our technique, we have removed executing

fix_fingers() and made the predecessor of a finger’s target

responsible for maintenance of the finger. More precisely, each

node and its predecessor store objects called pointer objects. An

object has the following format:

pointer_object = <source ,levels>

where source is a node handle (a triple of <IP address; UDP

port; Node ID>) to a node that has at least one routing table

entry pointing to n and levels is a binary string of length logN

and of the form:

levels[i]=1 if(source. finger[i]==n), i=0…logN

By means of these pointer objects, in case of joining, n can

know which nodes in the system have fingers targeting to n.

successor that now should update their fingers, and then can

direct them to replace n. successor with n in their finger tables.

In addition, when n departs the system or fails, its predecessor

can know which nodes have fingers pointing to n with the help

of its successor pointer objects, and then can direct them to

replace n with n. successor in their finger tables.

The join operation in our system is similar to the one in Chord.

In addition, we require n to create its pointer objects with the

help of its successor. The following is the new join procedure.

n.join(n′)

1. successor = n′.findSuccessor(n);

3.predecessor = successor.predecessor;

4.predecessor.ChangeSuccessor(n);

5.successor.notifyJoin(n);

6.buildFinger();

n.notifyJoin(x)

1.predecessor.successor = x;

2.predecessor = x;

3.for each pointer object obj

4.transfer a copy of obj to x;

5.if(obj is not pointing between x and n)

6.obj.UpdateFinger(x);

7.removeobj;

Figure-5

Node joining with agile structure maintenance in our

technique

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 99

Note that when a node n joins the system, three operations

should be done to bring the system states up-to-date:

-Update successor and predecessor pointers of its neighboring

nodes

-Update the fingers in the system that were pointing to

n.successor and now should point to n itself.

-Update and set pointer objects of n and its neighbors

In the above pseudo-code, the first three lines of Join() function

and the first two lines of notifyJoin() update successor and

predecessor pointers of nodes n, n.successor and n.predecessor.

Also line 4 of the join() function process notifies node

n.successor. Each node checks its pointer objects upon receiving

the notification and updates its pointer objects, doing so creates

and transfers the proper pointer objects to n. The pointer objects

are examined as follows: For each object <source, levels>

(meaning that some fingers of source point to n), if levels[i]==1

and source+2
i
 ε(predecessor,n], the object should be transferred

to n and this object should be deleted from n.successor’s pointer

objects.

As stated in Section 3, it takes some time for nodes a and c to

detect the joining of node b in Chord, but this makes system less

robust and makes resource discovery faulty in some occasions

when some successor pointers become invalid between periods.

In our proposed mechanism we modified the join operation to

immediately make both a and c aware about the arrival of b.

Doing so we ensure that all the successor and predecessor

pointers are updated nearly immediately after a node joins the

system
21,22

.

In our technique, each node n still executes the stabilization

procedure periodically to detect the failures of nodes. But in

contrast to Chord, our stabilization is a very light process that

for each node only checks the aliveness of its successor. Figure-

6 shows the pseudo-code for stabilization process wherein each

node starts informing affected nodes upon detection of its

successor’s failure by using its successor’s pointer objects.

//node n periodically executes stabilization to detect failed

successors

n.stabilize()

1. succold=successor;

2. n.fix_successor(); //if successor has failed fixes it

3. ifsuccold є (n, successor) //node succold has left

4.successor.notifyLeave(n);

5. for all successor pointer objects obj

6. obj.updateFinger(successor);

7. successor.addPointerObj(obj);

//restructuring after leave of failure detection

n.notifyLeave(x)

1. predecessor = x;

2.for all pointer objects obj

3.transfer a copy to x;

Figure-6

Stabilization and failure detection

In our maintenance technique, in order to return the system to its

structure upon detection of a node failure, three operations

should be done:v i. Update successor and predecessor pointers

of its neighboring nodes, ii. Update the fingers in the system

that were pointing to n and now should point to n.successor, iii.

Update pointer objects of n.successorand n.predecessor.

Again with respect to figure-4 when a node b that lies between

nodes a andc leaves the system, node a detects b′s failure after

a’s first stabilization process. Then as all nodes that were

pointing to b should now point to c, a notifies all of its

successor pointer objects to change their fingers to c instead of

the failed b. At last a transfers a copy of its successor pointer

objects to c and receives c’s pointer objects. After that, pointer

objects of both a andc are eventually updated.

Efficiency Analysis

In order to being able to compare the efficiency of resource

discovery mechanisms that makes use of each structure

maintenance approach, we need to first apply each approach on

the same specific structured P2P system and then compare their

efficiency. Asa periodic approach we have the main

implementation of Chord that is studied in section 3. As an

example of using the on-traffic correction approach, we assume

the technique used in DKS
17

system to be applied to Chord with

minimal modification. At last, as an example of using our

approach, we have the Chord system using the technique

proposed completely in Section 4.

Now in this section we want to make a comparison and show

that by applying our structure maintenance approach to any

structured P2P system, we can make an efficient resource

discovery family. Our analysis are based on constructing and

working with master equations
23

, a widely used tool wherever

the mathematical theory of stochastic processes is applied to

real-world phenomena.

Previously a master equation analysis of the main Chord

structured P2P system with the periodic structure maintenance

technique has been presented
10,21,22

. Here we analyze the Chord

resource discovery mechanism that uses our structure

maintenance technique and then the Chord resource discovery

based on the on traffic correction approach and at last compare

the efficiency of the resource discovery mechanism in the

presence of churn.

As stated in section 2, the efficiency of each resource discovery

mechanism is completely depended on the number of incorrect

pointers in the system, so here we are going to compare these

three resource discovery mechanisms by computing the average

number of incorrect node pointers in the Chord system with a

structure maintenance technique based on each approach.

Basic Assumptions: Here we introduce the notation used in our

theoretical analysis. We use K to mean the size of the Chord key

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 100

space and N the number of nodes. Let � = ���� � be the

number of fingers of a node and S the length of the immediate

successor list, usually set to a value of O (log(N)). We refer to

nodes by their keys, so a node n implies a node with key

� ∈ 0 ⋯ � − 1. We use p to refer to the predecessor, s for

referring to the successor list as a whole, and si for the ith

successor. Data structures of different nodes are distinguished

by prefixing them with a node key e.g. n′.si, etc. Let fini.start

denote the start of the ith finger (Where for a node n, ∀� ∈
1 ⋯ �, n.fini. start=� + 2��� and fini.node denote the actual

node pointed to by that finger.

λj is the rate of joins per node, λf the rate of failures per node, λs

the rate of stabilizations per node and λq is the rate of queries

raised per node. We carry out our analysis for the general case

when the rate of doing successor stabilizations is αλs, is not

necessarily the same as the rate at which finger stabilizations

(1−α)λs are performed. In all that follows, we impose the steady

state condition λj = λf. Further it is useful to define � ≡ ��
��

 and

�′ ≡ ��
��

 which are the relevant ratio on which all the quantities

we are interested in will depend, e.g, r = 50 means that a

join/fail event takes place every half an hour for a stabilization

which takes place once every 36 seconds. The parameters of the

problem are hence: K, N, α and r. All relevant measurable

quantities should be entirely expressible in terms of these

parameters.

Analysis of Efficiency Based on Our Technique: In this

section we first want to compute the number of incorrect

pointers in Chord system with the structure maintenance

technique presented in section 4 based on our approach.

In order to get a master-equation description which keeps all the

details of the system and is still tractable, we make the

definition that the state of the system is the product of the states

of its nodes, which in turn is the product of the states of all its

pointers. Now we need only consider how many kinds of

pointers there are in the system and the states these can be in.

Consider first the successor pointers:

Let’s assume w(r, α) and d(r, α) the number of nodes that their

successor pointer is incorrect of failed and W(r, α) and D(r, α)

the corresponding size of these sets.

In our structure maintenance technique, each node periodically

contacts its first successor, possibly correcting it and reconciling

with its successor list. Therefore, the numbers of wrong kth

successor pointers are not independent quantities but depend on

the number of wrong first successor pointers
24

.

We consider only s1 here. We write an equation for

W1(r, α) by accounting for all the events that can change it in a

micro event of time Δt. An illustration of the different cases in

which changes in W1 take place due to joins, failures and

stabilizations is provided in table-2.

Table-2

Changes in W1, number of incorrect successors

Before a Join After a Join Wt(t+Δt)

+1

0

Before a Failure After a Failure Wt(t+Δt)

+1

-1

0

+1-1=0

Before Successor

Stabilization

After Successor

Stabilization

Wt(t+Δt)

0

-1

In some cases W1 increases/decreases while in others it stays

unchanged. For each increase/decrease, table -3 provides the

corresponding probability.

By the implementation of the join protocol, a new node ny,

joining between two nodes nx and nz, has its s1 pointer always

correct after the join. However the state of nx.s1 before the join

makes a difference. If nx.s1 was correct (pointing to nz) before

the join, then after the join it will be wrong and therefore W1

increases by 1. If nx.s1 was wrong before the join, then it will

remain wrong after the join and W1 is unaffected. Thus, we need

to account for the former case only. The probability that nx.s1 is

correct is 1–w1 and from that follows the term c1.

For failures, we have 4 cases. To illustrate them we use nodes

nx, ny, nz and assume that ny is going to fail. First, if both nx.s1

and ny.s1 were correct, then the failure of ny will make nx.s1

wrong and hence W1 increases by 1. Second, if nx.s1 and ny.s1

were both wrong, then the failure of ny will decrease W1 by one,

since one wrong pointer disappears.

Third, if nx.s1 was wrong and ny.s1 was correct, then W1 is

unaffected. Fourth, if nx.s1 was correct and ny.s1 was wrong, then

the wrong pointer of ny disappeared and nx.s1 became wrong,

therefore W1 is unaffected. For the first case to happen, we need

to pick two nodes with correct pointers, the probability of this is

(1 − W�)�. For the second case to happen, we need to pick two

nodes with wrong pointers, the probability of this is W2 From

these probabilities follow the terms c2 and c3.

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 101

Table -3

Gain/Loss functions for W1

Fk(t+Δt) Rate of Changes

� (!) + 1 "� = #$%∆!'()%*�+

� (!) − 1 "� = (,$-∆!).(�, ,)

� (!) + 1 "0 = #$1∆!'(1 − ()�[1 − 3�(4)]
� (!) + 2 "6 = #$1∆!'(1 − ()�[3�(4) − 3�(4)]
� (!) + 3 "8 = #$1∆!'(1 − ()�[3�(4) − 30(4)]

Finally, successor stabilization does not affect W1, unless the

stabilizing node had a wrong pointer. The probability of picking

such a node is w1. From this follows the term c4.

Hence the equation for W1(r, α) is:
9:
9; = λj(1–W) + λf(1–W)

2
 -

λfW
2
 - αλs W That after solving this equation and letting λf=λj we

have:W(r, α) =
�

0<=> ≈
�

=>

And as half of incorrect successor pointers are failed and half

are live wrong ones, the number of failed successor pointers is:

D(r, α) ≈
�

=>.

We now turn to estimating the fraction of finger pointers which

point to failed nodes. This is an important quantity for

predicting lookups. Let fk(r, α) denote the fraction of nodes

having their k-th finger pointing to a failed node and Fk(r, α)

denote the respective number. For notational simplicity, we

write these as simply Fk and fk. We can predict this function for

any k by again estimating the gain and loss terms for this

quantity, caused by a join, failure or stabilization event, and

keeping only the most relevant terms. These are listed in table-4.

A join event can play a role here by increasing the number of Fk

pointers if the successor of the joinee had a failed k-th pointer

(occurs with probability fk) and the joinee replicated this from

the successor (assume that occurs with probability pjoin(k)
10

).

Successor stabilization here detects a change in successor. On

detection of a failed successor (with the probability of D(r, α))

the node notifies all the nodes in the system that point to the

failed node to update their affected finger.

Given a node n with an alive k-th finger (occurs with probability

of (1–fk), when the node pointed to by that finger fails, the

number of failed k-th fingers (Fk) increases. The amount of this

increase depends on the number of immediate predecessors of n

that were pointing to the failed node with their k-th finger. That

number of predecessors could be 0, 1, 2,..etc.

As shown in
21

, the respective probabilities of those cases are: 1

− p1(k), p1(k) − p2(k), p2(k) − p3(k),... etc.

Table -4

Changes in Fk, the number of incorrect k-th finger

Before Join After Join Fk(t+Δt)

+1

Before Failure After Failure Fk(t+Δt)

 +1

+2

+3

… … …

Before Successor

Stabilization

After Successor

Stabilization

Fk(t+Δt)

-1

Table-5

Gain/Loss Terms for Fk(r,α)

Fk(t+Δt) Rate of Change

� (!) + 1 "� = #$%∆!'()%*�+

� (!) − 1 "� = (,$-∆!).(�, ,)

� (!) + 1 "0 = #$1∆!'(1 − ()�[1
− 3�(4)]

� (!) + 2 "6 = #$1∆!'(1 − ()�[3�(4)
− 3�(4)]

� (!) + 3 "8 = #$1∆!'(1 − ()�[3�(4)
− 30(4)]

Solving in the steady state, we get an equation for Fk. here we

don’t care that equation but, we want only compare it with that

in those other approaches, so we look at these with another

sight: With a careful attention on the term c2 we can see that the

finger stabilization in our technique is like a complete periodic

technique with the period of αλsD(r,α) that is α.λs/r.α that is: λf.

This result completely confirms the simulation results presented

in section 6 that shows the system pointers remaining updated

all the times.

In next part of this section we overview the number of incorrect

pointers in the Chord system that uses structure maintenance

technique based on the on traffic correction approach.

Analysis of Efficiency based on On-Traffic Correction

Structure Maintenance Technique: Here we want to show the

results of our theoretical analyses of Chord system with a

structure maintenance technique that is based on the traffic

correction approach. A technique like this is presented for DKS

system
17

 that is a system based on Chord. As in this technique

all the system pointers are considered the same, we don’t talk

about successor and finger maintenance separately. First let’s

look at changes in system pointers in the face of each process in

the system life-time in table-6.

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 102

Table-6

Changes in Fk, the number of incorrect k-th finger

Before Join After Join Fk(t+Δt)

+1

After Failure Before Failure Fk(t+Δt)

 +1

+2

+3

… … …

Before Receiving a

Query

After Receiving a

Query
Fk(t+Δt)

 −1

Here the difference with our analysis in first part is only in

stabilization part. As there is no periodical stabilization in this

approach, we eliminate the stabilization from those calculations

but we should consider the fact that the cause of correction for

pointers here is receiving a query in a node. As stated before in

A, considering the rate of queries that each node raises in the

system to be λq, with the knowledge that in average each query

will be live in the system for logK hops and so can correct

(logK-1) pointers in its way to destination. So first, the number

of current queries in the system in each time will be ?. $A . log �

and so the rate of reaching a node and being able to correct a

system pointer is $A . (log � − 1), that this node in the case of

using its kth level finger for forwarding the query (with the

probability of K) and failure of this finger (with the probability

of fk(r, α)), that finger will be corrected and so the number of

incorrect fingers in kth level will become minus one.

Table -7

Gain/Loss Terms for Fk(r,α)

Fk(t+Δt) Rate of Change

� (!) + 1 "� = #$%∆!'()%*�+

� (!) − 1 "� = E$F(M −1) × 1
� ∆!I (

� (!) + 1 "0 = #$1∆!'(1 − ()�[1 − 3�(4)]
� (!) + 2 "6 = #$1∆!'(1 − ()�[3�(4) − 3�(4)]
� (!) + 3 "8 = #$1∆!'(1 − ()�[3�(4) − 30(4)]

Again here let’s look at this approach at a point of view of

comparison with other approaches. We can see that a system

that uses a structure maintenance technique of this family will

behave like a periodical technique with a stabilization rate of

$F × J ��
J .

Comparison: In this part we want to compare these three

techniques in the sense of the efficiency of the resource

discovery mechanism based on each technique.

With respect to our analyses in previous parts we presented the

theoretical analysis of the efficiency of resource discovery

mechanism based on three techniques each from one approach

to structure maintenance.

As explained in section 4, we can compare the efficiency of two

resource discovery mechanisms by comparing the number of

correct routing pointers in them in the steady state.

As studied in section 5, for the sake of comparison, we can

consider all of three approaches like a periodic approach but

with different stabilization rate. The rate of stabilization for

routing table pointers in the periodic technique is (1-α)λs, for the

on-traffic correction is
K��

K $A, and for our technique is λf. With

these values we can make good comparison on the efficiency of

resource discovery mechanisms.

For example, for a comparison between the efficiency of the

resource discovery in a system using on-traffic technique and

our technique, we will have better performance in situations

that:
K��

K $A ≥ $1

After solving this equation we will have:

� ′ ≥ �
� − 1

And this means that for example in a peer-to-peer system with a

1024 number of nodes, if � ′ = ��
��

≥ 1.1, then the performance of

a resource discovery using the on-traffic structure maintenance

technique will be higher than the resource discovery mechanism

that uses our approach.

Table -8

Theoretical comparison of Structure Maintenance

Approaches

Higher efficiency

Lower

Overhead

If MN ≥ O
O�P If MN < O

O�P

If

M ≥
 P
P�R

If

M <
P

P�R

If
MS
M ≥

O(P�R)
O�P

If
MS
M <

O(P�R)
O�P

Periodic 2’nd 3’rd 3’rd 2’nd 3’rd

On-

Traffic
1’st 1’st 2 3’rd 1’st

Our

Approach
3’rd 2’nd 1’st 1’st 2’nd

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 103

Above shown data states that our approach will be the best in

the mean comparison.

Maintenance Overhead: Assume a Chord ring with maximum

of N nodes. When a node joins the ring, we need to build its

pointer objects by receiving pointer objects of its successor. The

number of nodes pointing to a node is O(log N) with high

probability. With this in mind, the number of messages will be

O(log N).
10

 After that we should notify the affected nodes to

update their affected fingers with the cost of O(logN) messages.

After transferring these messages, all system states will become

up-to-date. But the dominating task in the join operation is still

construction of the finger table, that like Chord needs O(log
2
 N)

messages. So all together the cost of join is of the order of

O(log
2
 N).

When a node n leaves the system, its departure will be detected

on the next stabilization of its predecessor. First O(log N) nodes

should be notified to update their fingers to point to n.successor

instead of n. It then takes O(logN) messages to transfer pointer

objects from n. predecessor to n.successor and vice versa to

maintain the pointer objects. When a noden leaves the system,

its finger table entries should delete n from their pointer objects.

As this will be done at working time of system, the leaving of a

node costs O(log N) messages.

Each node runs a stabilize process periodically that costs only a

message for each node to check the availability of its successor.

So the stabilize process in our system is of the order O(1).

Table -9 summarizes the comparison. Our system has reduced

the maintenance cost by removing the costly periodic

maintenance of fingers with the cost of O(log
2
N) to the only

successor maintenance with the cost of O(1). As shown in

results section, in each unit of time the number of finger table

entries in the system that are pointing to the correct node is far

more than the number of correct fingers in Chord.

Table-9

Maintenance overhead of Chord using periodic structure

maintenance and our proposed system

 Chord
Our Proposed

Mechanism

Join O(log
2
 N) O(log

2
 N)

Leave -- O(log N)

Periodical

Maintenance
O(log

2
 N) O(1)

Finally, we comment the load added to nodes. For storage,

recall that in our system each node stores O(log N) fingers and

2*O(log N) pointer objects. So again all together each node in

our system still stores O(log N) states which is aligned with the

structured nature of P2P systems. In addition we can make this

real world assumption that storage is not a critical concern in

nodes at all.

Simulation Results

We first show the difference between periodic stabilization in

main Chord system and our approach to structure maintenance.

Figure-7 shows a simulation of a system with N=29 nodes. The

nodes arrive and depart every 2 time units. The curves show the

amount of maintenance bandwidth consumed by a Chord system

running periodic stabilization and a system running our structure

maintenance approach.

Figure-7

The maintenance traffic for the Chord system running

periodic successor stabilization every 10 time units and

fix_finger every 30 time units and our proposed system

running light successor stabilization every 5 units. A leave

and join event occured every 2 time units on average. The

robustness of the system for these simulations is shown in

Figure-8.

Stabilization rate in our proposed mechanism was set to 5. In

Chord, the stabilization rate was set to 10 and fix finger period

was set to 30 such that the amount of maintenance bandwidth

became equal in both systems. Figure-8 shows the robustness of

these systems. Although both systems had the same

maintenance cost, our system was maintained approximately in

legitimate state as expected while approximately half of the

routing pointers in Chord were incorrect.

We now show the reverse by fixing the robustness close to

optimal for Chord and our proposed system, i.e. the routing state

in both systems is set to a legitimate state, to investigate the

amount of maintenance bandwidth consumed in respective

systems. We experimented with many different stabilization and

finger table maintenance rates to find one which matched the

dynamism such that the system would be in approximately

legitimate state at all times.

Figure-9 clearly shows that both systems are approximately

maintained in a legitimate state. However, as Figure-10 shows,

periodic stabilization consumes significantly more traffic than

our proposed system.

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 104

Figure-8

Robustness of the Chord system running periodic successor

stabilization every 10 time units and periodic fixing of

fingers every 30 time units, and the robustness of our

proposed system running periodic stabilization every 5 time

units. A leave and join event happened every 2 time units on

average. Both systems consumed approximately the same

amount of maintenance bandwidth as shown in figure-10

Figure-9

Robustness of the Chord system running periodic

stabilization every 1 time unit and periodic fixing of fingers

every 4 time units, and the robustness of our proposed

system running stabilization every 5 time units. A leave and

join event occurred every 2 time units on average. Both

systems had a legitimate state deviation close to 0 indicating

that the system is approximately in a legitimate state

(robust)

Figure-10

The maintenance traffic for the Chord system running

periodic stabilization every 1 time unit and periodic fixing of

fingers every 4 time units, and for our proposed system

running stabilization every 5 time units. A leave and join

event occurred every 2 time units on average. Figure-10

shows the robustness for these simulations

Conclusion

We presented a general approach to the maintenance of

structured P2P overlay networks in the face of membership

change (churn) and showed how the approach can be applied to

the Chord structured Peer-to-Peer system. We showed that the

proposed approach increases system robustness while keeping

the maintenance cost low. In our system, bandwidth was

consumed only when necessary.

Experimental results showed that for the same amount of

maintenance bandwidth, our proposed approach made the

system by far more robust when compared to periodic

stabilization. Moreover, even when a periodic stabilization that

adapts itself perfectly to the dynamism in the system was used,

our system yielded the same performance but with a small

fraction of the maintenance cost of periodic stabilization.

By applying our approach on every structured P2P system we

will have an efficient resource discovery, like the one showed

and experimented for Chord system.

References

1. Tanenbaum AS and Van Steen M., Distributed Systems:

Principles and Paradigms, 2nd ed., New Jersey: Prentice

Hall Press, (2006)

2. Mewada Shivlal and Singh Umesh Kumar, Performance

Analysis of Secure Wireless Mesh Networks, Res.J.Recent

Sci., 1(3), 80-85 (2012)

3. Yao Z. and Loguinov D., Analysis of Link Lifetimes and

Neighbor Selection in Switching DHTs, IEEETransactions

on Parallel and Distributed Systems, 22(11), 1834-1841,

(2011)

4. Rao W, Chen L, chee Fu AW and Wang G, Optimal

Resource Placement in Structured Pee-to-Peer Networks,

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(12), 95-105, December (2015) Res.J.Recent Sci.

 International Science Congress Association 105

IEEE Transactions on Parallel and Distributed Systems,

21(7), 1011-1026, (2010)

5. Karger E. Lehman, T. Leighton, R. Panigrahy and M.

Levine, Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on

the World Wide Web, in In STOC ’97: Proceedings of the

29th annual ACM symposium on theory of computing,

New York, (1997)

6. Zhang Q., Miao Z., Zhang Y., Xu W. and Du Y., Multi-

Attribute Resource Discovery in Structured P2P Networks,

Proceedings of the 9th International Symposium on Linear

Drives for Industry Applications, 2(1), Lecture Notes in

Electrical Engineering, 271, 501-508, (2013)

7. R. Mahajan, M. Castro and A. Rowstron., Controlling the

Cost of Reliability in Peer-to-Peer Overlayss, in 2nd

International Workshop on Peer-to-Peer Systems (IPTPS

’03), Berkeley, CA, USA, (2003)

8. S. El-Ansary, Designs and Analyses in Structured P2P

Systems, Ph.D. Thesis, Department of Microelectronics

and Information Technology, The Royal Institute of

Technology (KTH), Stockholm, Sweden, (2005)

9. Krishnamurthy S., El-Ansary S., Aurell E. and Haridi S.,

Comparing Maintenance Strategies for Overlays, in

Parallel, Distributed and Network-Based Processing,

Toulouse, France, (2008)

10. Stoica, Morris R., Liben-Nowell D., Karger D., Kaashoek

M.F., Dabek F. and Balakrishnan H., Chord: A scalable

Peer-to-Peer Lookup Service For Internet Applications," in

Transactions on Networking, (2003)

11. Karger, F. Kaashoek and D.R, Koorde: A simple degree

optimal distributed hash table, in 2nd International

Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley,

CA, USA, February, (2003)

12. Malkhi NR, Viceroy: A Scalable and dynamic Emulation

of the Butterfly, in Proceedings of the 21st ACM

Symposium on Principles of Distributed Computing

(PODC ’02), Monterey, California, August (2002)

13. Ratnasamy S, Francis P., Handley M, Karp R and Shenker

S, A Scalable Content Addressable Network, in ACM

SIGCOMM ’01 Conference, Berkeley, CA, (2001)

14. Kumar, S. Merugu, J. Xu and E. W. Ze, "Ulysses: A

Robust, Low-Diameter, Low-Latency Peer-to-Peer

Network," in ICNP '03 11th IEEE International

Conference on Network Protocols, Washington, DC, USA,

(2003)

15. Druschel P and Rowstron A, Pastry: Scalable, Distributed

Object Location and Routing for Large-Scale Peer-To-Peer

Systems, in IFIP/ACM International Conference on

Distributed Systems Platforms, (2001)

16. Zhao Y., Huang L., Stribling J. and Rhea S.C., Tapestry:

A Resilient Global-Scale Overlay for Service Deployment,

IEEE Journal on Selected Areas in Communications,

22(5), 41-53, (2004)

17. Alima L.O., El-Ansary S., Brand P. and Haridi S.,

DKS(N,k,f): A Family of Low Communicatio, Scalable

and Fault-Tolerant Infrastructures for P2P Applications, in

CCGRID2003- International Workshop on Global and

Peer to Peer Computing on Large Scale Distributed

Systems, Tokyo, Japan, (2003)

18. Aberer K., Datta A. and Hauswitrh M., "Route

Maintenance Overheads in DHT Overlays," The 6th

Workshop on Distributed Data and Structures, EPF

Lausanne, Switzerland, July 8-9, (2004)

19. Aberer K, Datta A and Hauswirth M, Efficient, Self

Contained Handling of Identity, IEEE Transactions on

Knowledge and Data Engineering, 16(2), 36-54, (2004)

20. Maymounkov P. and Mazières David, Kademlia: A Peer-

to-Peer Information System Based on the XOR Metric, in

Peer-to-Peer Systems, 2429, Springer Berlin / Heidelberg,

53-65, (2002)

21. Arbabi M. Sharifi et.al., Mirtaheri SL and Mousavi

Khaneghah SE, A Low Overhead Structure Maintenance

Approach for Building Robust Structured P2P Systems,

IST, Tehran, (2012)

22. Analysis of G-CSF Treatment of CN using Fast Fourier

Transform, Balamuralitharan S. and Rajasekaran S., Res. J.

Recent Sci., 1(4), 14-21(2012)

23. A branch-and-bound procedure for resource leveling in

multi-mode resource constraint project scheduling

problem, Afshar-NadjafiBehrouz, NajjarbashiHojjat and

MehdizadehEsmaeil, Res.J.Recent Sci.,1(7), 33-38 (2012)

24. Krishnamurthy S., El-Ansary S., Aurell E. and Haridi S.,

An Analytical Study of a Structured Overlay in the

Presence of Dynamic Membership, IEEE Transactions on

Networking, 16(4), 814-825, (2008)

25. Krishnamurthy S., El-Ansary S., Aurell E. and Haridi S., A

Statistical Theory of Chord under Churn, in 4th Int.

Workshop on Peer-to-Peer Systems (IPTPS'05), Ithaca,

NY, (2005)

26. El-Ansary S. and Hardi S., An Overview of

StructuredOverlay Networks, in Handbook of Theoretical

and Algorithmic Aspects of Sensor, Ad Hoc Wireless,

Stockholm, Auerbach, 665-683, (2006)

27. Behmaneshfar Ali, Shahbazi S. and Vaezi S., Analysis of

the Sampling in Quality Control Charts in non uniform

Process by using a New Statistical Algorithm,

Res.J.Recent Sci.,1(8), 36-41 (2012)

28. Iyer K. and Khan Z.A., Depression-AReview, Res.J.Recent

Sci., 1(4), 79-87 (2012)

