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Abstract  

A distributed system is a collection of autonomous computers that appear to their user as one single coherent system. The 

main goal of any distributed system is sharing resources in a controlled and efficient way. But before any resources can be 

shared, they should be located. Structured peer-to-peer (P2P) systems have been recognized as an efficient approach to solve 

the resource locating and discovery problem in large-scale dynamic distributed systems. Efficiency of structured 

P2Presource discovery approaches attributed to their structured property. However, system dynamism (a.k.a. Churn) caused 

by changes in the system membership, i.e., nodes that join or leave the system or simply fail, perturbs the structure of the 

system and endangers the expected correctness and efficiency of resource discovery solutions. In this paper we propose an 

approach to dynamic searching and discovery of resources that adapts its operation dynamically with the dynamism in the 

system by using a structure maintenance technique that we have already presented in our recent paper. Although our 

approach is general enough to be applied to a lot of structured P2P systems, for the sake of brevity here we implemented this 

resource discovery approach for a well-known structured P2P system called Chord. We analyzed the efficiency of our 

presented resource discovery mechanism using master equation approach of physics and by experiments. We see how the 

simulation results and theoretical analyses both show the improved efficiency of our resource searching and discovery 

mechanisms. 
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Introduction 

Distributed systems have emerged with the main goal of sharing 

resources in a controlled and efficient way. But before any 

resources can be shared, they should be located. The process of 

locating a resource in any distributed system is called resource 

searching and discovery
1
. Designing an efficient resource 

discovery mechanism becomes more challenging when the scale 

of the system gets larger and the dynamism becomes a part of 

the system behavior
2
.  

 

Peer-to-Peer (P2P) systems have emerged as a type of 

distributed system to partly resolve this issue. From the point of 

view of their proposed resource discovery mechanism, P2P 

systems evolved through three generations
3
. 

 

Resource discovery solutions proposed in the last generation of 

P2P systems also known as structured P2P systems have been 

praised because of their efficient behavior and guarantees for 

discovering queried resources
4
. These properties have been 

attributed to the structured property of these systems. A system 

is considered to be structured if a specific constant pattern of 

relation exists between system entities. Since nodes and 

resources are the two main entities in a P2P system, there should 

be a specific and durable pattern of relation between nodes and 

resources in a structured P2P system. This pattern should be 

maintained in the whole lifetime of the system so as to 

guarantee the accuracy and efficiency of any resource searching 

and discovery solution for such systems. 

 

The structure of a structured P2P system is created by consistent 

hashing
5
, i.e., the application of a hash function on a unique 

property of a node or resource, resulting in a unique identifier
6,7

. 

So a unique identifier from a common identifier space is 

assigned to each node and each resource in the system. These 

identifiers determine which resources are placed on which 

nodes, and this is the pattern of relations between nodes and 

resources. At the same time, each node in the system maintains 

some pointers to some other nodes in the system that is the 

pattern of relations between nodes in the system. As such, 

resource discovery in such systems becomes a routing problem 

wherein each node uses its routing pointers to choose the next 

node to forward a received query. Given a node identifier, a 

message can be delivered in few logical hops. Resources in 

structured P2P systems can be discovered correctly and 

efficiently only if the structure of the system is properly 

maintained. 

 

Continuous and arbitrary arrivals and departures of nodes in 

structured P2P systems is the source of system dynamism (also 

known as Churn) that perturbs the system structure as well as 

the accuracy and performance of any resource discovery therein. 

The reason is that with arrival or departure of a node, some 

pointers in some other nodes may now point to wrong nodes. So 
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maintaining the structure of a structured P2P system with low 

overhead and high robustness in the presence of churn is a great 

challenge to be resolved
7
. 

 

Most of current structured P2P systems are based on periodic 

protocols for structure maintenance. Structure maintenance 

techniques based on periodic approach update the system 

structure at specific time intervals. The main challenge in 

techniques that are based on periodic approach is that a trade-off 

between robustness and bandwidth consumption has to be made 

on selecting the maintenance period durations. If the routing 

information is not maintained frequently enough, the system 

will not be robust as the routing information becomes outdated 

quickly. On the other hand, if the routing information is 

maintained too often, bandwidth consumption will be high
9
. 

 

Some other structured P2P systems use structure maintenance 

techniques that we categorize them in an approach that is based 

on only system traffic. In these type of structure maintenance 

techniques, there is no separate procedure for maintaining the 

routing pointers; instead, any out-of-date or erroneous routing 

entry is eventually corrected on-the-fly thereby, eliminating 

periodic bandwidth consumption. However, this approach 

assumes that the ratio of the number of routing messages to the 

dynamism in the system is high enough such that there are 

enough routing messages to correct the routing information. The 

routing information will become outdated if this ratio is low. 

Hence, the performance will be poor since a routing hop might 

lead to a failed node. 

 

In this paper we propose a new structure maintenance approach 

that allows the system to automatically adapt to the dynamism, 

while avoiding unnecessary periodic bandwidth consumption. 

Then we present a family of efficient resource discovery 

mechanisms by applying a structure maintenance technique 

based on this new structure maintenance approach. 

 

We analyze the efficiency of our presented resource discovery 

mechanisms using master equation approach of physics and 

experiments. We see how the simulation results confirm the 

theoretical analyses. 

 

Related Works 

As stated in Section 1, the arrivals and departures of nodes 

to/from the system disrupt the system structure and so 

jeopardize the desired properties of any good structured P2P 

system. To maintain the system structure under churn, different 

systems have adopted different techniques to return the system 

into its ideal structure. By far different structure maintenance 

techniques used in current structured P2P systems has been 

studied
8
. We categorize these techniques into two approaches 

(table-1). 

 

As stated in table -1, most structured P2P systems such as 

Chord
10

, Koorde
20

, Viceroy
12

, CAN
13

, Ulysses
14

, Pastry
15

 and 

Tapestry
16

 use structure maintenance techniques that fall in the 

periodic stabilization approach wherein all routing pointers are 

periodically looked up and updated. The main challenge of this 

approach is that a trade-off between robustness and bandwidth 

consumption has to be made. If the routing information is not 

maintained frequently enough, the system will not be robust as 

the routing information becomes outdated quickly. On the other 

hand, if the routing information is maintained too often, 

bandwidth consumption will be high. 

 

Table-1 

Structure Maintenance Approaches and Techniques 

Maintenance 

Approach 

Maintenance Technique 

Periodic 

Stabilization 

Chord
10

, Koorde
11

, Viceroy
12

, CAN
13

, 

Ulysses14, Pastry15, Tapestry16 

On-Traffic 

Correction 

DKS
17

, Self-Contained Techniques
18,19

, 

Kademlia
20 

 

In contrast, some structured P2P systems
17-20 

maintain the 

system structure with techniques that are based on system 

traffic. These structure maintenance techniques fall in the 

category of on-traffic correction approach. These techniques 

maintain the system structure by piggy-backing technical 

information on common system messages instead of 

periodically maintaining the system structure. Although these 

techniques have lower maintenance traffic compared to 

techniques that use the periodic stabilization approach, the 

correction of each out-of-date routing entry depends highly on 

how frequently this routing entry is used. So techniques that use 

the on-traffic correction approach do not work efficiently in 

systems wherein the ratio of the dynamism of the system to the 

number of transferred messages is high. 

 

In techniques that use the periodic stabilization approach, 

choosing an appropriate maintenance frequency entails a 

tradeoff between robustness and bandwidth consumption. A 

solution suggested by Mahajanet al.
7 

is to self-tune the system 

by dynamically adapting to the operating conditions of the 

system instead of configuring the maintenance frequency 

statically and conservatively. Self-tuning requires knowledge 

about the global state of the system such as the number of nodes 

in the system and the rate of dynamicity in the system
6
. As there 

is no central authority in such systems, global system state is 

figured out by estimation. Additionally, self-tuning is done 

periodically and has very high communication overhead. 

 

The structure maintenance technique proposed in Chord2
21

 uses 

more stable and powerful nodes as superpeers to reduce the 

maintenance costs in a structured P2P system. The proposed 

technique relies on superpeers for correction of routing 

information, so the failures of any superpeer can jeoperdise the 

proper working of the maintenance technique. 

 

In Section 4 we propose a new approach for structure 

maintenance and then present an efficient resource discovery 
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mechanism that maintains its structure based on this approach 

under churn. But before that, as we want a common 

infrastructure for our analysis, we introduce the Chord 

structured P2P system in the next section. 

 

Chord Overview 

In this section, we present an overview of the Chord
10

 P2P 

system that we have used to investigate the feasibility of our 

proposed approach to be reported in Section 4.  

 

Chord is a distributed lookup protocol and a well-known 

structured P2P system. It provides a primary operation: it maps 

a given key to the node that is responsible for that key. A hash 

function assigns each node and each data item to an identifier in 

a ring modulo 2
m
, called identifier space. 

 

Structure in Chord: Chord is a structured P2P system with a 

constant pattern of relations between its entities – that is data 

items and nodes. A data item with the identifier k is assigned to 

the first node whose identifier is equal to or follows k in the 

identifier space denoted by successor (k) (pattern of relations 

between nodes and data items). Each node needs only to 

maintain a link to its successor (pattern of internode relations). 

In order to lookup a desired data item with the identifier of k, a 

node can forward the query through the successor links until it 

reaches the successor (k). It’s just like a linear search for an 

identifier in a list of identifiers. 

 

To make the lookup process scalable, each node also maintains 

links to mother nodes called fingers. The i’th finger of the node n 

points to the node successor (n+2
i
), 1≤i<m. By maintaining 

fingers, linear search turns into a binary search that can locate a 

node in an N node network size in at most O(log N) sent messages 

and by O(log N) hops of forwarding queries through fingers. 

 

n.join (n′) 

1. predecessor := nil; 

2. s := n′.find_successor(n); 

3. successor := s; 

4. build_fingers(s); 

n.find_successor(x) 

1. if (x ε (n,n.successor])        returnn.successor; 

2. else 

3.nnextHop := closest_preceding_node(x);     

4.returnnnextHop.find_successor(x); 

n.closest_preceding_node(x) 

1. fori := m-1 downto 1     

2.if (finger[i] ε (n,x))        return finger[i]; 

3.return n; 

n.build_fingers(s) 

1.i0 := [log(successor-n)] + 1; 

2.for i0 ≤ i< m-1 

3.finger[i] := s.find_successor(n + 2i); 

Figure-1 

Pseudo code for the Join operation
10 

Node Joins: When a node n wishes to join the system, it first 

contacts an existing node n′ in the network and asks n′ to find 

n’s immediate successor. Then n can build its finger table with 

the help of its successor. Figure-1 shows the pseudo-code for 

the join operation. 

 

Structure Maintenance: To ensure that discovery process 

executes correctly in a dynamic system that nodes join and fail 

continuously, each node’s successor pointer must always be up-

to-date. This is assured by using a “stabilization” protocol that 

each node periodically executes and updates successor pointers 

(figure-2)
10

. 

 

n.stabilization() 

1.check_predecessor(); 

2.   x := successor.predecessor; 

3.   if (x ε (n, successor)) 

// successor changed due to new node 

4.successor := x; 

5.successor.notify(n); 

s.notify(n) 

1.if (predecessor = nil or n ε (predecessor, s))     

2.   predecessor := n; 

n.check_predecessor() 

1.if (predecessor has failed)   predecessor := nil; 

n.fix_successor_list() 

1. <s1, . . . ,sr>:= successor.successor_list; 

2.successor_list := <successor, s1, . . . , sr-1>; 

n.fix_successor() 

1.  if (successor has failed) 

2.     successor := smallest alive node in successor_list; 

Figure-2 

Pseudo-code for the structure maintenance
10

 

 

After node n joins the system, some nodes that are pointing to 

n’s successor in their finger table, should update their finger 

table. Because intrinsically, the join operation does not make the 

remainder of the network aware of n, nodes have no idea when 

fingers should be updated. To solve this problem, Chord allows 

each node to periodically execute fix_fingers() to keep fingers 

updated (figure-3). 

 

n.fix_fingers() 

1.    build_fingers(n); 

Figure-3 

Periodically refreshing the whole finger table
10

 

 

Analysis: In the Chord maintenance algorithm, the execution of 

stabilization() costs four messages, while the execution of 

fix_fingers() costs O(log2
N
) messages (because logN executions 

of find_successor() are generated, each of which costs at most 

logN messages). So the maintenance of finger tables accounts 

for most of the overhead. 
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Proposed Approach and Technique 

Working with structure maintenance techniques that use the 

periodic stabilization approach, all pointers in the system are 

updated periodically, creating a lot of overhead. They do not 

guarantee the robustness of the system either. In our proposed 

structure maintenance approach, each node needs not to 

periodically update all its pointers. Each node only checks a 

very small number of pointers periodically and by detection of a 

change in them, calls a mechanism that updates all the other 

pointers in the system that need to be updated. 

 

Overview: As we want to show that a family of efficient 

resource discovery mechanisms can be constructed by applying 

our approach on existing structured P2P systems, we first need 

to show its applicability to a specific structured P2P system. We 

selected the Chord structured P2P system as it is very popular 

and commonplace. So here we present a technique derived from 

our approach for structure maintenance and apply it to the 

Chord system. 

 

Application on Chord: The Chord maintenance technique 

presented in Section 3 uses a periodical scheme for routing table 

maintenance that frequently refreshes all the routing table 

entries of all nodes. To lessen the maintenance overhead and 

increase the robustness of Chord, we remove the costly periodic 

routing table maintenance in our technique for Chord system by 

using a lighter event-oriented version of the periodic successor 

maintenance. 

 

To illustrate what exactly structure perturbation means, let’s 

consider two cases in a ring (figure-4.).  When a node b joins 

the system between the nodes a and c, the responsibility of the 

ring area that lies between a and b transfers from c to b, so some 

nodes that have a routing table entry targeting in this range of 

ring, should update some of their finger table entries from c to b. 

On the other hand, when a node b that lies between nodes a and 

c leaves the system or fails, node c becomes responsible for the 

ring area between a and b, so some nodes that had routing table 

entries pointing to b, should update some of their fingers to 

point to c instead of the failed b. 

 

   
Figure-4 

Changes in the responsibility of ring areas when node b 

joins or leaves the system 

 

Upon detection of a structure perturbation, we return the system 

into its structured shape by activating a structure maintenance 

protocol to identify the affected nodes and notify them to update 

their affected fingers. To effectively identify the affected nodes, 

each node and its predecessor, store objects called pointer 

objects. Upon every structure perturbation and membership 

change, these pointer objects identify and notify the affected 

nodes in parallel. 

 

In the next section we look closely at node join and failure 

operations in our technique and illustrate how the system 

structure is maintained in case of membership changes. 

 

Structure Maintenance Technique: In order to reduce 

maintenance costs in our technique, we have removed executing 

fix_fingers() and made the predecessor of a finger’s target 

responsible for maintenance of the finger. More precisely, each 

node and its predecessor store objects called pointer objects. An 

object has the following format: 

pointer_object = <source ,levels> 

 

where source is a node handle (a triple of <IP address; UDP 

port; Node ID>) to a node that has at least one routing table 

entry pointing to n and levels is a binary string of length logN 

and of the form: 

levels[i]=1 if(source. finger[i]==n), i=0…logN 

 

By means of these pointer objects, in case of joining, n can 

know which nodes in the system have fingers targeting to n. 

successor that now should update their fingers, and then can 

direct them to replace n. successor with n in their finger tables. 

In addition, when n departs the system or fails, its predecessor 

can know which nodes have fingers pointing to n with the help 

of its successor pointer objects, and then can direct them to 

replace n with n. successor in their finger tables. 

 

The join operation in our system is similar to the one in Chord. 

In addition, we require n to create its pointer objects with the 

help of its successor.  The following is the new join procedure. 

 

n.join(n′) 

1.    successor = n′.findSuccessor(n); 

3.predecessor = successor.predecessor; 

4.predecessor.ChangeSuccessor(n); 

5.successor.notifyJoin(n); 

6.buildFinger(); 

n.notifyJoin(x) 

1.predecessor.successor = x; 

2.predecessor = x; 

3.for each pointer object obj 

4.transfer a copy of obj to x; 

5.if(obj is not pointing between x and n) 

6.obj.UpdateFinger(x); 

7.removeobj; 

Figure-5 

Node joining with agile structure maintenance in our 

technique 
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Note that when a node n joins the system, three operations 

should be done to bring the system states up-to-date: 

-Update successor and predecessor pointers of its neighboring 

nodes 

-Update the fingers in the system that were pointing to 

n.successor and now should point to n itself. 

-Update and set pointer objects of n and its neighbors 

 

In the above pseudo-code, the first three lines of Join() function 

and the first two lines of notifyJoin() update successor and 

predecessor pointers of nodes n, n.successor and n.predecessor. 

Also line 4 of the join() function process notifies node 

n.successor. Each node checks its pointer objects upon receiving 

the notification and updates its pointer objects, doing so creates 

and transfers the proper pointer objects to n. The pointer objects 

are examined as follows: For each object <source, levels> 

(meaning that some fingers of source point to n), if levels[i]==1 

and source+2
i
 ε(predecessor,n], the object should be transferred 

to n and this object should be deleted from n.successor’s pointer 

objects. 

 

As stated in Section 3, it takes some time for nodes a and c to 

detect the joining of node b in Chord, but this makes system less 

robust and makes resource discovery faulty in some occasions 

when some successor pointers become invalid between periods. 

In our proposed mechanism we modified the join operation to 

immediately make both a and c aware about the arrival of b. 

Doing so we ensure that all the successor and predecessor 

pointers are updated nearly immediately after a node joins the 

system
21,22

. 

 

In our technique, each node n still executes the stabilization 

procedure periodically to detect the failures of nodes. But in 

contrast to Chord, our stabilization is a very light process that 

for each node only checks the aliveness of its successor. Figure-

6 shows the pseudo-code for stabilization process wherein each 

node starts informing affected nodes upon detection of its 

successor’s failure by using its successor’s pointer objects. 

 

//node n periodically executes stabilization to detect failed 

successors 

n.stabilize() 

1. succold=successor; 

2. n.fix_successor(); //if successor has failed fixes it 

3. ifsuccold є (n, successor)  //node succold has left 

4.successor.notifyLeave(n); 

5.      for all successor pointer objects obj 

6.         obj.updateFinger(successor); 

7.         successor.addPointerObj(obj); 

//restructuring after leave of failure detection 

n.notifyLeave( x) 

1.   predecessor = x; 

2.for all pointer objects obj 

3.transfer a copy to x; 

Figure-6 

Stabilization and failure detection 

In our maintenance technique, in order to return the system to its 

structure upon detection of a node failure, three operations 

should be done:v i. Update successor and predecessor pointers 

of its neighboring nodes, ii. Update the fingers in the system 

that were pointing to n and now should point to n.successor, iii. 

Update pointer objects of n.successorand n.predecessor. 

 

Again with respect to figure-4 when a node b that lies between 

nodes a andc leaves the system, node a detects b′s failure after 

a’s first stabilization process. Then as all nodes that were 

pointing to b should now point to c, a  notifies all of its 

successor pointer objects to change their fingers to c instead of 

the failed b. At last a transfers a copy of its successor pointer 

objects to c and receives c’s pointer objects. After that, pointer 

objects of both a andc are eventually updated. 

 

Efficiency Analysis 

In order to being able to compare the efficiency of resource 

discovery mechanisms that makes use of each structure 

maintenance approach, we need to first apply each approach on 

the same specific structured P2P system and then compare their 

efficiency. Asa periodic approach we have the main 

implementation of Chord that is studied in section 3. As an 

example of using the on-traffic correction approach, we assume 

the technique used in DKS
17

system to be applied to Chord with 

minimal modification. At last, as an example of using our 

approach, we have the Chord system using the technique 

proposed completely in Section 4. 

 

Now in this section we want to make a comparison and show 

that by applying our structure maintenance approach to any 

structured P2P system, we can make an efficient resource 

discovery family. Our analysis are based on constructing and 

working with master equations
23

, a widely used tool wherever 

the mathematical theory of stochastic processes is applied to 

real-world phenomena. 

 

Previously a master equation analysis of the main Chord 

structured P2P system with the periodic structure maintenance 

technique has been presented
10,21,22

. Here we analyze the Chord 

resource discovery mechanism that uses our structure 

maintenance technique and then the Chord resource discovery 

based on the on traffic correction approach and at last compare 

the efficiency of the resource discovery mechanism in the 

presence of churn. 

 

As stated in section 2, the efficiency of each resource discovery 

mechanism is completely depended on the number of incorrect 

pointers in the system, so here we are going to compare these 

three resource discovery mechanisms by computing the average 

number of incorrect node pointers in the Chord system with a 

structure maintenance technique based on each approach. 

 

Basic Assumptions: Here we introduce the notation used in our 

theoretical analysis. We use K to mean the size of the Chord key 
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space and N the number of nodes. Let � = ���� � be the 

number of fingers of a node and S the length of the immediate 

successor list, usually set to a value of O (log(N)). We refer to 

nodes by their keys, so a node n implies a node with key 

� ∈ 0 ⋯ � − 1. We use p to refer to the predecessor, s for 

referring to the successor list as a whole, and si for the ith 

successor. Data structures of different nodes are distinguished 

by prefixing them with a node key e.g. n′.si, etc. Let fini.start 

denote the start of the ith finger (Where for a node n, ∀� ∈
1 ⋯ �, n.fini. start=� + 2��� and fini.node denote the actual 

node pointed to by that finger. 

 

λj is the rate of joins per node, λf the rate of failures per node, λs 

the rate of stabilizations per node and λq is the rate of queries 

raised per node. We carry out our analysis for the general case 

when the rate of doing successor stabilizations is αλs, is not 

necessarily the same as the rate at which finger stabilizations 

(1−α)λs are performed. In all that follows, we impose the steady 

state condition λj = λf. Further it is useful to define � ≡  ��
��

 and 

�′ ≡  ��
��

 which are the relevant ratio on which all the quantities 

we are interested in will depend, e.g, r = 50 means that a 

join/fail event takes place every half an hour for a stabilization 

which takes place once every 36 seconds. The parameters of the 

problem are hence: K, N, α and r. All relevant measurable 

quantities should be entirely expressible in terms of these 

parameters. 

 

Analysis of Efficiency Based on Our Technique: In this 

section we first want to compute the number of incorrect 

pointers in Chord system with the structure maintenance 

technique presented in section 4 based on our approach. 

 

In order to get a master-equation description which keeps all the 

details of the system and is still tractable, we make the 

definition that the state of the system is the product of the states 

of its nodes, which in turn is the product of the states of all its 

pointers. Now we need only consider how many kinds of 

pointers there are in the system and the states these can be in. 

Consider first the successor pointers: 

 

Let’s assume w(r, α) and d(r, α) the number of nodes that their 

successor pointer is incorrect of failed and W(r, α) and D(r, α) 

the corresponding size of these sets. 

 

In our structure maintenance technique, each node periodically 

contacts its first successor, possibly correcting it and reconciling 

with its successor list. Therefore, the numbers of wrong kth 

successor pointers are not independent quantities but depend on 

the number of wrong first successor pointers
24

. 

 

We consider only s1 here. We write an equation for  

W1(r, α) by accounting for all the events that can change it in a 

micro event of time Δt. An illustration of the different cases in 

which changes in W1 take place due to joins, failures and 

stabilizations is provided in table-2. 

 

Table-2 

Changes in W1, number of incorrect successors 

Before a Join After a Join Wt(t+Δt) 

  
+1 

  
0 

Before a Failure After a Failure Wt(t+Δt) 

  
+1 

  
-1 

  
0 

  
+1-1=0 

Before Successor 

Stabilization 

After Successor 

Stabilization 

Wt(t+Δt) 

  
0 

  
-1 

 

In some cases W1 increases/decreases while in others it stays 

unchanged. For each increase/decrease, table -3 provides the 

corresponding probability. 

 

By the implementation of the join protocol, a new node ny, 

joining between two nodes nx and nz, has its s1 pointer always 

correct after the join. However the state of nx.s1 before the join 

makes a difference. If nx.s1 was correct (pointing to nz) before 

the join, then after the join it will be wrong and therefore W1 

increases by 1. If nx.s1 was wrong before the join, then it will 

remain wrong after the join and W1 is unaffected. Thus, we need 

to account for the former case only. The probability that nx.s1 is 

correct is 1–w1 and from that follows the term c1. 

 

For failures, we have 4 cases. To illustrate them we use nodes 

nx, ny, nz and assume that ny is going to fail. First, if both nx.s1 

and ny.s1 were correct, then the failure of ny will make nx.s1 

wrong and hence W1 increases by 1. Second, if nx.s1 and ny.s1 

were both wrong, then the failure of ny will decrease W1 by one, 

since one wrong pointer disappears. 

 

Third, if nx.s1 was wrong and ny.s1 was correct, then W1 is 

unaffected. Fourth, if nx.s1 was correct and ny.s1 was wrong, then 

the wrong pointer of ny disappeared and nx.s1 became wrong, 

therefore W1 is unaffected. For the first case to happen, we need 

to pick two nodes with correct pointers, the probability of this is 

(1 − W�)�. For the second case to happen, we need to pick two 

nodes with wrong pointers, the probability of this is W2 From 

these probabilities follow the terms c2 and c3. 
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Table -3 

Gain/Loss functions for W1 

Fk(t+Δt) Rate of Changes 

� (!) + 1 "� = #$%∆!'( )%*�+ 

� (!) − 1 "� = (,$-∆!).(�, ,) 

� (!) + 1 "0 = #$1∆!'(1 − ( )�[1 − 3�(4)] 
� (!) + 2 "6 = #$1∆!'(1 − ( )�[3�(4) − 3�(4)] 
� (!) + 3 "8 = #$1∆!'(1 − ( )�[3�(4) − 30(4)] 

 

Finally, successor stabilization does not affect W1, unless the 

stabilizing node had a wrong pointer. The probability of picking 

such a node is w1. From this follows the term c4. 

Hence the equation for W1(r, α) is:
9:
9;  = λj(1–W) + λf(1–W)

2
 - 

λfW
2
 - αλs W That after solving this equation and letting λf=λj we 

have:W(r, α) = 
�

0<=> ≈ 
�

=> 

And as half of incorrect successor pointers are failed and half 

are live wrong ones, the number of failed successor pointers is: 

D(r, α) ≈ 
�

=>. 

 

We now turn to estimating the fraction of finger pointers which 

point to failed nodes. This is an important quantity for 

predicting lookups. Let fk(r, α) denote the fraction of nodes 

having their k-th finger pointing to a failed node and Fk(r, α) 

denote the respective number. For notational simplicity, we 

write these as simply Fk and fk. We can predict this function for 

any k by again estimating the gain and loss terms for this 

quantity, caused by a join, failure or stabilization event, and 

keeping only the most relevant terms. These are listed in table-4. 

 

A join event can play a role here by increasing the number of Fk 

pointers if the successor of the joinee had a failed k-th pointer 

(occurs with probability fk) and the joinee replicated this from 

the successor (assume that occurs with probability pjoin(k)
10

). 

 

Successor stabilization here detects a change in successor. On 

detection of a failed successor (with the probability of D(r, α)) 

the node notifies all the nodes in the system that point to the 

failed node to update their affected finger. 

 

Given a node n with an alive k-th finger (occurs with probability 

of (1–fk), when the node pointed to by that finger fails, the 

number of failed k-th fingers (Fk) increases. The amount of this 

increase depends on the number of immediate predecessors of n 

that were pointing to the failed node with their k-th finger. That 

number of predecessors could be 0, 1, 2,..etc. 

 

As shown in
21

, the respective probabilities of those cases are: 1 

− p1(k), p1(k) − p2(k), p2(k) − p3(k),... etc. 

 

 

Table -4 

Changes in Fk, the number of incorrect k-th finger 

Before Join After Join Fk(t+Δt) 

  
+1 

Before Failure After Failure Fk(t+Δt) 

  +1 

  
+2 

  
+3 

… … … 

Before Successor 

Stabilization 

After Successor 

Stabilization 

Fk(t+Δt) 

  
-1 

 

Table-5 

Gain/Loss Terms for Fk(r,α) 

Fk(t+Δt) Rate of Change 

� (!) + 1 "� = #$%∆!'( )%*�+ 

� (!) − 1 "� = (,$-∆!).(�, ,) 

� (!) + 1 "0 = #$1∆!'(1 − ( )�[1
− 3�(4)] 

� (!) + 2 "6 = #$1∆!'(1 − ( )�[3�(4)
− 3�(4)] 

� (!) + 3 "8 = #$1∆!'(1 − ( )�[3�(4)
− 30(4)] 

 

Solving in the steady state, we get an equation for Fk. here we 

don’t care that equation but, we want only compare it with that 

in those other approaches, so we look at these with another 

sight: With a careful attention on the term c2 we can see that the 

finger stabilization in our technique is like a complete periodic 

technique with the period of αλsD(r,α) that is α.λs/r.α that is: λf. 

This result completely confirms the simulation results presented 

in section 6 that shows the system pointers remaining updated 

all the times. 

 

In next part of this section we overview the number of incorrect 

pointers in the Chord system that uses structure maintenance 

technique based on the on traffic correction approach. 

 

Analysis of Efficiency based on On-Traffic Correction 

Structure Maintenance Technique: Here we want to show the 

results of our theoretical analyses of Chord system with a 

structure maintenance technique that is based on the traffic 

correction approach. A technique like this is presented for DKS 

system
17

 that is a system based on Chord. As in this technique 

all the system pointers are considered the same, we don’t talk 

about successor and finger maintenance separately. First let’s 

look at changes in system pointers in the face of each process in 

the system life-time in table-6. 
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Table-6 

Changes in Fk, the number of incorrect k-th finger 

Before Join After Join Fk(t+Δt) 

  
+1 

After Failure Before Failure Fk(t+Δt) 

  +1 

  
+2 

  

+3 

… … … 

Before Receiving a 

Query 

After Receiving a 

Query 
Fk(t+Δt) 

  −1 

 

Here the difference with our analysis in first part is only in 

stabilization part. As there is no periodical stabilization in this 

approach, we eliminate the stabilization from those calculations 

but we should consider the fact that the cause of correction for 

pointers here is receiving a query in a node. As stated before in 

A, considering the rate of queries that each node raises in the 

system to be λq, with the knowledge that in average each query 

will be live in the system for logK hops and so can correct 

(logK-1) pointers in its way to destination.  So first, the number 

of current queries in the system in each time will be ?. $A . log � 

and so the rate of reaching a node and being able to correct a 

system pointer is $A . (log � − 1), that this node in the case of 

using its kth level finger for forwarding the query (with the 

probability of K) and failure of this finger (with the probability 

of fk(r, α)), that finger will be corrected and so the number of  

incorrect fingers in kth level will become minus one. 

 

Table -7 

Gain/Loss Terms for Fk(r,α) 

Fk(t+Δt) Rate of Change 

� (!) + 1 "� = #$%∆!'( )%*�+ 

� (!) − 1 "� = E$F(M −1) × 1
� ∆!I (  

� (!) + 1 "0 = #$1∆!'(1 − ( )�[1 − 3�(4)] 
� (!) + 2 "6 = #$1∆!'(1 − ( )�[3�(4) − 3�(4)] 
� (!) + 3 "8 = #$1∆!'(1 − ( )�[3�(4) − 30(4)] 

 

Again here let’s look at this approach at a point of view of 

comparison with other approaches. We can see that a system 

that uses a structure maintenance technique of this family will 

behave like a periodical technique with a stabilization rate of 

$F × J ��
J . 

 

Comparison: In this part we want to compare these three 

techniques in the sense of the efficiency of the resource 

discovery mechanism based on each technique. 

 

With respect to our analyses in previous parts we presented the 

theoretical analysis of the efficiency of resource discovery 

mechanism based on three techniques each from one approach 

to structure maintenance. 

 

As explained in section 4, we can compare the efficiency of two 

resource discovery mechanisms by comparing the number of 

correct routing pointers in them in the steady state. 

 

As studied in section 5, for the sake of comparison, we can 

consider all of three approaches like a periodic approach but 

with different stabilization rate. The rate of stabilization for 

routing table pointers in the periodic technique is (1-α)λs, for the 

on-traffic correction is 
K��

K $A, and for our technique is λf. With 

these values we can make good comparison on the efficiency of 

resource discovery mechanisms. 

 

For example, for a comparison between the efficiency of the 

resource discovery in a system using on-traffic technique and 

our technique, we will have better performance in situations 

that:
K��

K $A ≥ $1 

After solving this equation we will have: 

� ′ ≥ �
� − 1 

And this means that for example in a peer-to-peer system with a 

1024 number of nodes, if � ′ = ��
��

≥ 1.1, then the performance of 

a resource discovery using the on-traffic structure maintenance 

technique will be higher than the resource discovery mechanism 

that uses our approach. 

 

Table -8 

Theoretical comparison of Structure Maintenance 

Approaches 

 

Higher efficiency 

 

Lower 

Overhead 
 

If MN ≥ O
O�P If MN < O

O�P 

If 

M ≥
 P
P�R 

If 

M <
P

P�R 

If 
MS
M ≥

O(P�R)
O�P  

If 
MS
M <

O(P�R)
O�P  

Periodic 2’nd 3’rd 3’rd 2’nd 3’rd 

On-

Traffic 
1’st 1’st 2 3’rd 1’st 

Our 

Approach 
3’rd 2’nd 1’st 1’st 2’nd 
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Above shown data states that our approach will be the best in 

the mean comparison. 

 

Maintenance Overhead: Assume a Chord ring with maximum 

of N nodes. When a node joins the ring, we need to build its 

pointer objects by receiving pointer objects of its successor. The 

number of nodes pointing to a node is O(log N) with high 

probability. With this in mind, the number of messages will be 

O(log N).
10

 After that we should notify the affected nodes to 

update their affected fingers with the cost of O(logN) messages. 

After transferring these messages, all system states will become 

up-to-date. But the dominating task in the join operation is still 

construction of the finger table, that like Chord needs O(log
2
 N) 

messages. So all together the cost of join is of the order of 

O(log
2
 N). 

 

When a node n leaves the system, its departure will be detected 

on the next stabilization of its predecessor. First O(log N) nodes 

should be notified to update their fingers to point to n.successor 

instead of n. It then takes O(logN) messages to transfer pointer 

objects from n. predecessor to n.successor and vice versa to 

maintain the pointer objects. When a noden leaves the system, 

its finger table entries should delete n from their pointer objects. 

As this will be done at working time of system, the leaving of a 

node costs O(log N) messages. 

 

Each node runs a stabilize process periodically that costs only a 

message for each node to check the availability of its successor. 

So the stabilize process in our system is of the order O(1). 

 

Table -9 summarizes the comparison. Our system has reduced 

the maintenance cost by removing the costly periodic 

maintenance of fingers with the cost of O(log
2
N) to the only 

successor maintenance with the cost of O(1). As shown in 

results section, in each unit of time the number of finger table 

entries in the system that are pointing to the correct node is far 

more than the number of correct fingers in Chord.  

 

Table-9 

Maintenance overhead of Chord using periodic structure 

maintenance and our proposed system 

 Chord 
Our Proposed 

Mechanism 

Join O(log
2
 N) O(log

2
 N) 

Leave -- O(log N) 

Periodical 

Maintenance 
O(log

2
 N) O(1) 

 

Finally, we comment the load added to nodes. For storage, 

recall that in our system each node stores O(log N) fingers and 

2*O(log N) pointer objects. So again all together each node in 

our system still stores O(log N) states which is aligned with the 

structured nature of P2P systems. In addition we can make this 

real world assumption that storage is not a critical concern in 

nodes at all. 

Simulation Results 

We first show the difference between periodic stabilization in 

main Chord system and our approach to structure maintenance. 

Figure-7 shows a simulation of a system with N=29 nodes. The 

nodes arrive and depart every 2 time units. The curves show the 

amount of maintenance bandwidth consumed by a Chord system 

running periodic stabilization and a system running our structure 

maintenance approach. 

 

 
Figure-7 

The maintenance traffic for the Chord system running 

periodic successor stabilization every 10 time units and 

fix_finger every 30 time units and our proposed system 

running light successor stabilization every 5 units. A leave 

and join event occured every 2 time units on average. The 

robustness of the system for these simulations is shown in 

Figure-8. 

 

Stabilization rate in our proposed mechanism was set to 5. In 

Chord, the stabilization rate was set to 10 and fix finger period 

was set to 30 such that the amount of maintenance bandwidth 

became equal in both systems. Figure-8 shows the robustness of 

these systems. Although both systems had the same 

maintenance cost, our system was maintained approximately in 

legitimate state as expected while approximately half of the 

routing pointers in Chord were incorrect. 

 

We now show the reverse by fixing the robustness close to 

optimal for Chord and our proposed system, i.e. the routing state 

in both systems is set to a legitimate state, to investigate the 

amount of maintenance bandwidth consumed in respective 

systems. We experimented with many different stabilization and 

finger table maintenance rates to find one which matched the 

dynamism such that the system would be in approximately 

legitimate state at all times. 

 

Figure-9 clearly shows that both systems are approximately 

maintained in a legitimate state. However, as Figure-10 shows, 

periodic stabilization consumes significantly more traffic than 

our proposed system. 
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Figure-8 

Robustness of the Chord system running periodic successor 

stabilization every 10 time units and periodic fixing of 

fingers every 30 time units, and the robustness of our 

proposed system running periodic stabilization every 5 time 

units. A leave and join event happened every 2 time units on 

average. Both systems consumed approximately the same 

amount of maintenance bandwidth as shown in figure-10 

 

 
Figure-9 

Robustness of the Chord system running periodic 

stabilization every 1 time unit and periodic fixing of fingers 

every 4 time units, and the robustness of our proposed 

system running stabilization every 5 time units. A leave and 

join event occurred every 2 time units on average. Both 

systems had a legitimate state deviation close to 0 indicating 

that the system is approximately in a legitimate state 

(robust) 

 

 
Figure-10 

The maintenance traffic for the Chord system running 

periodic stabilization every 1 time unit and periodic fixing of 

fingers every 4 time units, and for our proposed system 

running stabilization every 5 time units. A leave and join 

event occurred every 2 time units on average. Figure-10 

shows the robustness for these simulations 

 

Conclusion 

We presented a general approach to the maintenance of 

structured P2P overlay networks in the face of membership 

change (churn) and showed how the approach can be applied to 

the Chord structured Peer-to-Peer system. We showed that the 

proposed approach increases system robustness while keeping 

the maintenance cost low. In our system, bandwidth was 

consumed only when necessary. 

 

Experimental results showed that for the same amount of 

maintenance bandwidth, our proposed approach made the 

system by far more robust when compared to periodic 

stabilization. Moreover, even when a periodic stabilization that 

adapts itself perfectly to the dynamism in the system was used, 

our system yielded the same performance but with a small 

fraction of the maintenance cost of periodic stabilization.  

 

By applying our approach on every structured P2P system we 

will have an efficient resource discovery, like the one showed 

and experimented for Chord system. 
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