International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Kaluza-Klein Dust Filled Universe with Time Dependent ? in Creation Field Cosmology

Author Affiliations

  • 1Department of Mathematics, JijamataMahavidyalaya, Buldana – 443 001, Maharashtra, INDIA
  • 2Department of Mathematics, ShriShivaji Science and Arts College, Chikhli –443201, Maharashtra, INDIA

Res. J. Recent Sci., Volume 3, Issue (ISC-2013), Pages 53-57, (2014)


The solution of field equations in the creation field with variable cosmological constant have been obtained for Kaluza-Klein universe. Following Hoyle and Narlikar, we have assumed that universe is filled with dust distribution. To get deterministic solution, a relation between shear (σ) and expansion (θ)is assumed. The physical aspects of the model are also studied.


  1. Smooth G.F. et al., Structure in the COBE differential microwave radiometer first-year maps, Astro. Phys. J., 396(1), L1-L5, (1992)
  2. Bondi H. and Gold T., The steady state theory of the expanding universe, Mon. Not. R. Astron. Soc., 108, 252 (1948)
  3. Hoyle, F. and Narlikar J.V., A Conformal theory of gravitation, Proc.Roy.Soc.A, Math.Phys.Sci., 294(1437),138-148, (1966)
  4. Narlikar J.V., Singularity and matter Creation in Cosmological Models, Nat. Phys. Sci., 242, 135-136 (1973)
  5. Narlikar J.V. and Padmanabhan T., Creation-field cosmology: A possible solution to singularity, horizon, and flatness problems, The Ame. Phys. Soc,. Phys. Rev. D, 32,1928-1934, (1985)
  6. Chatterjee, S. and Banerjee, A., C-field cosmology in higher dimensions, Gen. Rel. Grav., 36(2),(2004)
  7. Singh T. and Chaubey R., Bianchi type I, III, V, VI and Kantowski-Sachs universes in creation field cosmology, Astro. Spa.Sci., 321, 5-18, (2009)
  8. Katore S.D., Plane Symmetric Universe in Creation Field Cosmology, The Afr. Rev. Phys., 8, 0024 (2013)
  9. Ng Y.J., The Cosmological Constant Problem, Int. J. Mod. Phys, D, 1, 145 (1992)
  10. Weinberg S., The Cosmological constant problem, Rev. Mod.Phys., 61, 1 (1989)
  11. Zel’dovich Ya. B, The Cosmological constant and the theory of elementary particles, Sov. Phys. Usp.,11, 381-393 (1968)
  12. Linde A.D., Erratum: Is the Lee constant a cosmological constant?, JETPLett., 19, 183 (1974)
  13. Krause L.M. and Turner M.S., The cosmological constant is back, Gen. Relat.Grav., 27(11), 1137-1144 (1995)
  14. Doi: 10.1007/BF02108229.
  15. Langacker P., Grand Unified Theories and Proton Decays, Phys. Rep., 72, 185-385 (1981)
  16. Bertolami O., Brans-Dicke cosmology with a scalar field dependent cosmological term, FortschrPhys., 34 (2), 829-833 (1986)
  17. Chen W., Wu Y.S., Implification of a cosmological constant varying as R sup minus 2, Phys Rev. D., 41, 695-698 (1990)
  18. Berman M.S., Cosmological models with variable cosmological term, Gen. Rel. Grav., 23, 465-469 (1991)
  19. Pradhan A.,Pandey P., Jotania K., Some Cosmological Models with Variable , comm.Theor. Phys., 50, 279-288 (2008)
  20. Bali R. and Saraf S., Bianchi type-I Dust filled universe with Decaying vacuum energy in C-field cosmology”, IJRRAS, 13(3), 800-805 (2012)Doi: 10.1393/ncb/i2010-10941-0.
  21. Bali R. and Saraf S., Bianchi type-III Dust filled universe with Time dependent in C-field cosmology, Proc. Natl. Acad. Sci., India, Section A, Phys. Sci., 83(1), 29-32 (2013) Doi: 007/s 40010-012-0055-3. 21.Bali R. and Saraf S., C-field cosmological model for dust distribution with varying in FRW space time, Prespacetime Journal, 4(5), 545-553 (2013)
  22. Nodstrom G., On the possibility of unifying the electromagnetic and the gravitational fields Phys. Z.15, 504 (1914)[arXiv:physics/0702221] English Translation in “Modern Kaluza Klein Theories” ed. by T. Applequist, A. Chodosand P. G. O. Freund, Addison Wesley, Reading ,M.A.(1987)
  23. Kaluza T., On the problem of unity in physics,' Sitzungsber.Preuss.Akad.Wiss.Berlin.Math. Phys. . 1. 966, (1921)
  24. Klein O., Quantum theory and five-dimensional relativity, Z. Phys., 37, 895-906 (1926)
  25. Marciano W.J., Time Variation of the Fundamental Constants and Kaluza-Klein Theories, Phys. Rev.Lett., 52,489-491, (1984)
  26. Ponce de Leon J., Cosmological Models in a Kaluza-Klein Theory With Variable Rest MassGen. Rel. Grav., 20,539-550 (1988)
  27. Chi. L.K., New cosmological models in the five-dimensional space-time-mass gravity theory”,Gen. Rel. Grav., 22, 1347 (1990)
  28. Fukui T., 5-D geometrical property and 4-D property of matter Gen. Rel. Grav., 25, 931-938 (1993)
  29. Liu H. and Wesson P.S., Cosmological solutions and their effective properties of matter in Kaluza-Klein theory, Int. J. Mod. Phys., 3, 627-637 (1994)
  30. Coley A.A., Higher dimensional vacuum cosmologies, Astro. Phys. J.,427(2), 585-602 (1994)
  31. Tegmark, Max., On the dimensionality of space-timeClass. Quant. Grav., 14, L69-L75, (1997), 53-57 (2014)
  32. Overduin J.M., Wesson P.S., Kaluza Klein gravity, Phys. Rep., 283, 303-378 (1997)
  33. Li-Xin Li and J. Richard Gott, III , Inflation in Kaluza-Klein Theory: Relation between the Fine-Structure Constant and the Cosmological Constant, Phys. Rev. D, 58, 103513 (1998)[Astro-ph/9804311]
  34. Wesson P.S., Liu. H., The Cosmological Constant Problem and Kaluza-Klein Theory, Int. J. Mod. Phys. D10, 905-912, (2001) [gr-qc/0104045]
  35. Baysal H. and Yilmaz I., Five Dimensional Cosmological Model with Variable G and A, Chi. Phys. Lett., 24(8),2185-2188 (2007)
  36. Adhav K.S., Gadodia P.S., Bansod A.S. and Pund A.M., Kaluza-Klein Universe in Creation-field Cosmology, J. Vet. Rel., 5(2), 1-11 (2010)
  37. Purohit K.D. and Bhatt Y., Static Extra Dimension and Acceleration of the universe, Int. J. Theo.Phys., 1417-1423 (2011) Doi.10.1007/s10773-010-0650-5.
  38. Panigrahi U.K. and Panigrahi B., Five Dimensional Cosmological Models in the Kaluza Klein Theory, Asian J. Curr.Engg.andMaths., 2(1), 77-79 (2013)
  39. Ram S., Priyanka, some kaluza-klein cosmological model in gravity theory, Astro.Space Sci., 347, 389-397 (2013)Doi: 10.1007/s1o509-013-1513-z.
  40. Hoyle F. and Narlikar J.V., On the avoidance of Singularities in C-field Cosmology, Proc. Roy.Soc. A, Math. Phys. sci., 278(1375), 465-478, (1964a)Doi:10.1098/rspa.1964.0076
  41. Hoyle F. and Narlikar J.V., The C- Field as a Direct Particle Field, Proc. Roy. Soc. of Lon., A, Math. Phys. sci., 282(1389)178-183 (1964b)
  42. Hoyle F. and Narlikar J.V., A new theory of gravitation, Proc. Roy.Soc.A Math. Phys. sci.,28(1389),191-207 (1964c)