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Abstract 

Waves are one of the energy resources that intensively studying nowadays. The awareness about climate changes, global 

warming etc makes many researchers interested in developing the new source of the renewable energy by using the ocean 

waves. The energy from waves is become popular because it is the natural energy and it does not extinct like other sources 

of energy such as oil. One of the technologies to extract the energy from ocean waves that is becoming popular among the 

researchers nowadays is oscillating water column (OWC). In this paper, the mild-slope equation is further extended to be 

applied to the OWC problem. The mild slope equation is a powerful tool to study the phenomenon of combined refraction-

diffraction of ocean waves over a mild topography. Therefore, in this paper, we will present the analytical solution for the 

long waves propagating over a circular hump located at the bottom of an ocean with a hollow circular cylinder floating on 

the top of the free surface. Then, an example is given to compare our new analytic solution in a special case of the two-

layer fluid model, i.e h2 = 0 with the solution obtained by Mac Camy and Fuchs. To further verify our solution, we have 

also compared our solution when the hump height, d is small enough with the flat bottom. Then, by using the new solution, 

we then discuss the effects of the hump dimensions and the hollow cylinder structures on the wave diffraction. Finally, the 

main findings in this chapter will be briefly summarized at the end of this paper. 
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Introduction 

In recent years, there has been a great deal of interest in 

renewable energy resources with regards to combating climate 

changes. One of the renewable energy resources comes from 

ocean waves. Many researchers have been impressed by the 

force and energy extracted from the ocean waves. Renewable 

analysts believe that the global power potential represented by 

waves that hit all coastlines worldwide is estimated to provide 

up to 1 TW (1 terawatt=10
12

 watt). Therefore, ocean waves 

represent an enormous source of renewable energy as it is 

believed that the market potential for energy from the waves is 

in a very high demand if the technology to extract the energy 

from waves is successfully developed.  A variety of 

technologies have been proposed to capture the energy from 

the waves. These technologies can be installed either in 

onshore or offshore locations. One of the technologies to 

extract the energy from ocean waves that is becoming popular 

among the researchers nowadays is oscillating water column 

(OWC)
1
. 

 

The OWC consists of a partially submerged concrete or steel 

structure that has an opening to the sea below the waterline. It 

encloses a column of air above a column of water. As waves 

enter the air column, they cause the water column to rise and 

fall. This alternately compresses and depressurizes the air 

column. As the wave retreats, the air is drawn back through the 

turbine as a result of the reduced air pressure on the ocean side 

of the turbine.  Figure 1 is one of the examples of an OWC 

prototype installed by Oceanlinx Limited Australia at Port 

Kembla, NSW, Australia. This device has successfully 

converted ocean wave energy into electricity in a number of 

tests being conducted since it was installed.  

 
Figure-1 

An OWC prototype locate at Port Kembla, NSW, Australia 

 

Early theories for OWC are introduced by Garret
2
, who solved 

the first order diffraction problem for a suspended cylinder in 

ocean of a finite depth. Since then, various mathematical 

approaches of problems relating to OWC devices have been 

discussed in the literature over the years. For examples, many 

authors had presented their work related to a simple two-

dimensional OWC models, such as Evans
3,4

, Smith
5
, and 

Sarmento and Falceao
6
. Recently, Falceao and Rodrigues

7
 and 

Falceao
8
 had developed a stochastic model to evaluate the 
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average performance of an OWC energy device equipped with 

Wells turbine.  

 

More recently, Martin-rivas and Mei
9
 have carried out a 

theoretical study of a single OWC being installed at the tip of a 

breakwater, with vertical circular cylinder open in all direction. 

In the same year, they also presented the linearized theory of an 

OWC installed on a straight coast with the vertical cylinder half 

embedded in the cliff and open on the seaside
10

. 

 

In this paper, we construct an analytic solution for long waves 

propagating over a circular hump located at the bottom of a 

single-layer ocean but with the hollow cylinder floating at the 

top of the free surface. Then, in section 3, an example is given 

to compare our new analytic solution in a special case of the 

two-layer fluid model, i.e h2 = 0 with the solution obtain by Mac 

Camy and Fuchs
11

. Using the new solution, we then discuss the 

effects of the hump dimensions and the hollow cylinder 

structures on the wave refraction. Finally, the main findings in 

this paper are briefly summarized in section 4. 

 

Methodology  

In this section, we presented the derivation of the mild-slope 

equation in a two-layer fluid model with free surface on the top 

by removing the rigid lid approximation that have been 

discussed by Zhu and Harun
12

 . For the OWC problem, we will 

treat our case as for a single layer problem. Then, we will used 

the results that we have derived for the mild-slope equation in a 

two-layer fluid to solve an OWC problem. The reason that we 

have solved our problem using the two-layer model is, we need 

to satisfy all the boundary conditions that exist in this case. By 

using the two-layer fluid model, it is much easier to determine 

the boundary condition in both layers. Hence, in this section, 

first, the two-layer fluid model is presented. Then, we use the 

result to derive an analytic solution for long waves that are 

propagating over a circular hump and also over a flat bottom 

with a hollow cylinder located at the free surface. 

 

The two-layer fluid model: Considering a two-layer system 

depicted in Figure 2, under a Cartesian Coordinate system in 

which x and y denote a pair of orthogonal horizontal coordinates 

and z denotes the vertical coordinate measured positively 

upwards from the free surface. By assuming that the two fluids 

are immiscible, the flow within each layer is irrotational, the 

free surface and the interfacial waves are of small amplitude 

relative to their wavelength, the velocity potential Φ(x, y, z, t) 

can be written as 

 

Φ��, �, �, �� = 	Φ
��, �, �, ��,																		−ℎ
 ≤ � ≤ 0,
Φ���, �, �, �� ,													− ℎ ≤ � ≤ −ℎ
.�  (1) 

    

 
Figure-2 

A definition sketch for a two-layer fluid with free surface on 

top 
 

The usual assumptions of the the linearized theory and removal 

of the harmonic time dependant �����
 lead to the equations for 

the time dependant velocity potential,  ���, �, ��  
���, �, �� = 	 �
��, �, �, �� ,						− ℎ
 ≤ � ≤ 0,		����, �, �, �� ,								− ℎ ≤ � ≤ −ℎ
. �                   (2) 

 

These equations therefore can be solved by using the following 

conditions on all the boundaries of the domain: ����� − ��
 = 0,																										� = 0,                            (3) 

 ����� = ����� ,																												� = −ℎ
,                            (4) 

�
  ����� − ��
! = ��  ����� − ��
! ,			� = −ℎ
,	                     (5) 

 ������� + ∇ℎ ∙ ∇��� = 0,																	� = −ℎ,												                       (6) 

 ������� + ∇��� = 0,																		 − ℎ ≤ � ≤ −ℎ
,					                      (7) 

 

where � = %�/', ∇= �( (�⁄ , ( (�⁄ �,  g is the gravitational 

acceleration, and the densities and the waves heights of the 

upper and lower fluid layers are denoted by ρ1, h1, and  ρ2, h2 

respectively, with ρ1 ≤ ρ2 and h = h1 + h2. Using the separation 

of variables, we set �*��, �, �� = +*��, ��,*���,	 in the 

equations above, where j= 1,2,  and we obtained 

 ��-���� + .�,
 = 0,								 − ℎ
 ≤ � ≤ 0,                             (8) 

 �-��� − �,
 = 0,																										� = 0,              (9) 

 �-��� = �-��� ,																												� = −ℎ
,                           (10) 

 

�
  �-��� − �,
! = ��  �-��� − �,
! ,			� = −ℎ
,		            (11) 

 ��-���� + ∇ℎ ∙ ∇�,� = 0,																	� = −ℎ,											           (12) 

 

z=0

h1  p1 O1

h2  p2  O2

ni(x,y)

x

z=-h

z=-h1

nf(x,y)
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��-���� + .�,� = 0,																		 − ℎ ≤ � ≤ −ℎ
,					         (13) 

 

a direct solution for these equations are 

  ,
 = . cosh�.�� + � sinh�.��,			ℎ
 ≤ � ≤ 0,           (14) 

 

		,� = 5 6789�5:��;< 8=>9�5:��8=>9	�5:�� cosh?.�� + ℎ�@ , −ℎ ≤ � ≤ −ℎ
      (15) 

 

with the wave number k satisfying the dispersion relation %A��
	�� coth�.ℎ
� coth�.ℎ��	�–%�'.	���coth�.ℎ
� coth�.ℎ��� +'�.���� − �
� = 0                                                                        (16) 

 

Since equation (16) is a quadratic in ω
2
, there are two possible 

roots of ω. These two roots correspond to each layer of the 

fluids, one is for the upper layer and another one is for the lower 

layer. Equation (16) can also be reduced to a single-layer fluid 

when �
 = ��13
. 

 

The mild-slope equation in a two-layer fluid model: By 

assuming that the variation of water depth is moderate, the 

velocity potential can be written as �
��, �, �� = D	 EF GH,
 ,				− ℎ
 ≤ � ≤ 0,              (17) 

����, �, �� = D	 EF G�,� ,				− ℎ ≤ � ≤ −ℎ
,              (18) 

and the relationship between GH and G� 	is given by 

 IJIK = <
5 8=>9�5:���	< 6789�5:��,              (19) 

 

with GH and G�	are the free surface waves elevation and 

interfacial waves elevation, respectively. Then, GH and G� can be 

written as 

 GH = L� exp?D�.� − %��@ ,									− ℎ
 ≤ � ≤ 0,
G� = P� exp?D�.� − %��@ ,									− ℎ ≤ � ≤ ℎ
,  
 

where ai  and bi are the incident wave amplitudes for the free 

and interfacial waves respectively. Considering equations (3) 

and (7) as an ordinary differential equation in z, and applying 

the integration by substitution, we have  

 Q �.��
,
 + ,
∇��
�R�:� 	S� + Q �.���,� + ,�∇����R�:� 	S� =
	−�,
∇ℎ
 ∙ ∇�
��TR	−�,�∇ℎ� ∙ ∇����T�:                           (22) 

 

By calculating ∇�
,∇��
, ∇��	and ∇���	from equations (17) 

and (18), then substituting back into equation (22), we have 

obtained by neglecting the higher-order terms, the equation for 

the free surface waves as 

 ∇ ∙ ?U
 ∙ GH@ + .�U
GH + ∇ ∙ �U� ∙ G�� + .�U�G� = 0,           (23) 

where U
 = Q ,
�	S�R�:�U� = Q ,��	S��:��:�
						 

At the interface, by utilizing equation (21) and equations (24) 

and (25), and following the derivation for mild-slope equation, 

we have equations (23) and (26) are the mild-slope equation for 

the two-layer fluid model with the free surface on the top. These 

equations can be reduced to a single-layer mild-slope equation 

derived by Smith and Sprinks
14

, when ρ1 = ρ2 . Thus, the single-

layer mild-slope equation is a special case for two-layer mild-

slope equation, as we have expected. 

 ∇ ∙ �U� ∙ G�� + .�U�G� = 0                          (26) 

 

Wave diffraction around floating structure over a variable 

water depth: Consider a train of plane long waves which 

propagates in two-layer fluids with constant water depth ℎ
R and ℎ�R and is refracted by an axi-symmetric hump-shaped shoal 

located on the ocean floor and diffracted by a hollow cylinder 

located at the free surface of the upper layer as illustrated in 

figure 3. 

 
Figure-3 

A definition sketch of a hump located on the floor in a two-

layer fluid system 

 

The water depth for the lower layer is prescribed by a parabolic 

function: 

 

ℎ� = V �ℎ�R − S�  1 + X�
Y�! , Z < P,

ℎ�R,																																								Z ≥ P,�            (27) 

 

with Z being the radial distance from the origin, and θ being the 

angle measured  counterclockwise from the positive x−axis, P is 

the hump radius, S is the hump height, L	and is determined by 

L = P]:�^�_
_     for a given set of S	L`S	ℎ�R	aD�ℎ	L > P. 

By setting �
 = ��, for the lower layer, the solution that we 

have here is similar to the solution given by Zhu and Harun
15

 in 

the form of: 

 

G�cd� = ∑  P�Df ∈f hf�.Z� + ifjf�
��.Z�! cos�`k�∞fTR ,        (28) 

 G��f = ∑ lfmf�Z� cos�`k�∞fTR ,										             (29) 

(20) 

(21) 

(24) 

(25) 
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where  

mf�Z� = nop.fZp;f																																																																												
∞

fTR
 

             

lf = P�.	Df ∈f qr�5s�tr����5s��qr′ �5s�tr����5s�5ur�s�tr′����5s��ur′ �s�tr����5s�,			  

                           (30) 

if = P� 	Df ∈f 5q′r�5s�ur�s��qr �5s�ur′ �s�
u′r�s�tr����5s��5ur �s�tr′����5s�	,					  

and the solution for op,f is obtained by using the Frobenius 

series solution and is in the form of oR,f = 1,																																																																																				 
               (31) o
,f = 0,																																																																																				 
 

op;�,f = − �p;f��p;f;��;v��f�
Y��p;���p;�f;�� op,f,										             (32) 

	w = 0,1,2, … 

 

For the upper layer, inside the cylinder, we have the solution in 

the form of: 

 

m
,f�f = z{,fhf�.Z� − |f�.Z� Q }X~rur�X�qr�5X��
XR SZ +

hf�.Z� Q }X~rur�X��r�5X��
XR SZ                          (33) 

    

where 

 

z{,f = �r′ �5s�qr′ �5s� Q }X	~rur�X�qr�5X�� SZ −XR Q }X	~rur�X��r�5X�� SZXR    (34) 

 

For the region outside the cylinder in the upper layer, we have  

 m�fcd� =i
,fhf�.Z� + i�,fjf�.Z� − jf�.Z� Q �}X	�rtr�5X�qr�5X�� SZ +XRhf�.Z� Q �}X	�rtr�5X�tr�5X�� SZXR                                       (35) 

where 

 

i
,f = −Q �}X	�rtr�5X�tr�5X�� SZ∞s                         (36) 

 

i�,f = −?L�Df ∈f+ i
,f@ qr′ �5X�tr′ �5X�                         (37) 

 

If we set h20 = 0, for d ≥ 0, in equation (37), we found that the 

inhomogeneous terms in this equation and the lower layer 

equation are vanished, resulting in only the Hemholtz equation. 

As a result, equation (37) also reduces to Mac Camy and 

Fuchs
11

 solution. Thus, the Mac Camy and Fuchs
11

 solution is a 

special case for our solution when h20 = 0, as we have expected. 

 

Results and Discussion 

Comparison with the Mac Camy and Fuchs Solutions: Since 

the mild-slope equation for a two-layer fluid model should be 

reduced to the Hemholtz Equations model when h20 = 0, it 

would be interesting to compare both models, as part of the 

verification process.  

 
Figure-4 

Comparison of relative wave amplitudes between MacCamy 

and Fuchs solution and our solution when h20 = 0 along x-

axis 

 

We set h10 = 2.4 and h20 = 0, and take the remaining parameters 

exactly the same as those used in single-layer fluid model 

discussed in Zhu and Harun
15

, i.e, b/L = 0.5, and the wave 

length, L = 120.4. Since, the analytic solution for η involves an 

infinite series, it must be truncated for the purpose of numerical 

solution, so we set N = 70 and M = 30, because the solution had 

already converged with these values. The Bessel and Hankel 

functions in the analytical solution were computed using the 

built-in subroutines in MATLAB.  

 

Figure 4 shows the comparison of the relative wave amplitudes 

along the x- axis for the two and single-layer fluid models. The 

results in this comparison are presented in terms of 

dimensionless coordinates, x/L and the center of the hump is 

located at the origin. As expected, both solutions are identical 

and hardly distinguishable. With the excellent agreement 

between these solutions, we are confident that the derivation of 

our new analytical solution is correct. 
 

Comparison with the flat bottom:  As we already know, the 

flat bottom is the special case for the variable water depth with 

hump is located on the sea floor. Therefore, to gain confidence 

for the non-flat-bottom solution, and in order to further verify 

the newly derived equation, we have compared the solution that 

we obtained from the flat bottom with the solution with a very 

small size hump, d = 10
−6

 being placed on the seabed. 
 

The comparison for these two problems is shown in Figure 5. 

As can been seen, both figures are identical and can’t be 

distinguished. Therefore, this adds to our confidence that our 

derivation was derived correctly. In addition, for the flat bottom 

case, we discovered that it seemed like there was a plane wave 

propagating inside the cylinder because based on our derivation, 

the lower layer is presented by the plane waves. 
 

Topographic and radius Effects: In this section, we discuss 

the effects of the wave refraction when the hump height and 
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radius of the cylinder are varied, while other parameters are held 

constant. 

 
Figure-5 

Comparison of relative wave amplitudes between the flat sea 

bottom and tiny little hump along the x-axis 
 

In Figure 6, we plot the relative wave amplitudes along the 

y−axis for different cylinder radii, b/L = 0.25, 0.5, and 1.0 with 

a fixed d = 0.25 and h10 = h20 = 4.8, respectively.  

 
Figure-6 

Comparison of relative wave amplitudes along the yaxis with 

b/L varied 
 

As the radius of the hump, b/L is increased, the relative wave 

amplitude inside and outside the cylinder also increased as can 

be seen along the y- axis. This is due to the concentration of 

wave energy in the lee region of an obstacle, as a result of 

refractive and diffractive focusing, when the disturbance of the 

obstacle is sufficiently large. However, for a small hump radius 

no waves are found inside the cylinder because the latter is 

smaller than the wavelength, as can be clearly seen in figure 6.  
 

Next, we discuss the effects of the wave refraction when the 

height of the hump, d is varied. Figure 7 show the relative wave 

amplitude along the x− axis, for the cases of d = 0.05, 0.25, and 

0.5 with the hump radius being fixed at b/L = 0.5, and h10 = h20 

= 4.8. As can be clearly seen from figure 7, as the height of the 

hump increases, the relative wave amplitude becomes larger as 

expected. 

 
Figure-7 

Comparison of relative wave amplitudes along the x-axis 

with d varied 
 

For a hump with a smaller hump height, d, the refraction effects 

are weak, resulting in smaller wave heights inside and outside 

the cylinder. On the other hand, for a higher hump height, d, 

there is more refractive focusing and thus the reaction to the 

disturbances behind the hump is larger in comparison with the 

lower d. For example, along the x−axis, as we increase the 

height of the hump, from 0.05 to 0.25, the maximum value of 

relative wave amplitude outside the cylinder obtained has 

increased too from 0.5 to 4.1, and if we further increase the 

hump height to 0.5, the maximum value of relative wave 

amplitude obtained is about 8.5. Therefore, we can conclude 

that, the higher the hump high is, the bigger is relative waves 

amplitude will observed. Hence, the OWC device should be 

installed in the shallow water, where waves would produce 

more energy through the diffraction, refraction and shoaling 

processes. 

 

Effect of the cylinder height: In this section, we discuss the 

effect of the wave refraction when the height of the cylinder, 

h10, is varied, while other parameters are held constant. To 

examine this, we set h10 = 2.4, 4.8, and 7.2 with the hump radius 

being fixed at b/L = 0.5, d/L = 0.5 and h20 = 4.8.  

 

The comparison for each value of h10 along the x- axis is shown 

in figure 8. It can be obviously seen that, an increase in the 

height of the cylinder, h10, results in larger relative wave 

amplitudes. From the figure, when we set h10 = 2.4, half of the 

reference cylinder height, h10 = 4.8, we can see that, the relative 

wave amplitude was decreasing with the decrease of the 

cylinder height. On the other hand, when the height of the 

cylinder is 1/2 times higher than the reference cylinder, the 

relative amplitude also becomes bigger in the disturbance area. 

This shows that, the refractive and diffractive effects become 

stronger when we place a bigger obstacle in front of the waves, 

resulting in bigger relative amplitude in the lee region. 
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Figure-8 

Comparison of relative wave amplitudes when h10 are varied 

along the x-axis 

 

Conclusion 

The long waves propagating in single-layer fluid over a circular 

hump with hollow cylinder located at the free surface by using 

the mild-slope equation in two-layer fluid model with free 

surface on the top is studied in this paper. We also compared 

our solution with MacCamy and Fuchs solution when our 

solutions were reduced to their case when h20 = 0, as part of the 

verification process. The two solutions were identical and 

hardly distinguishable.  To further verify our solution, we have 

also compared the solution for the flat bottom and the solution 

with very small hump size. Once again, both solutions were 

identical.  

 

Furthermore, we have also examined and discussed the effects 

of the height of the cylinder, hump dimensions and cylinder 

radius to the wave refraction and diffraction when they are 

varied. When there is an increase in the obstacle, the diffraction 

and refraction effects become stronger, resulting in a bigger 

relative amplitudes. This is important for OWC industry 

because from this results, we can find the best place to install 

the OWC device. 
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