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Abstract

Nigella sativa (N. sativa) is widely recognized for its pharmacological potential, largely attributed to thymoquinone (TQ), a
key bioactive compound. Although TQ biosynthesis has been reported in various plants and microorganisms, its enzymatic
pathway in N. sativa remains inadequately characterized. This study investigates the role of peroxidase enzymes in TQ
biosynthesis, using thymol-a known precursoras the substrate, hypothesizing that the antioxidant capacity of N. sativa arises
from robust enzymatic defense mechanisms. Peroxidase activity was evaluated in the leaves, buds, and fruits of the Rajendra
Shyama cultivar using 1% hydrogen peroxide (H, O_ ) in Tris buffer at different pH 6.5, 7.0 and 7.5. Absorbance analyses at
254 nm and 274 nm were used to monitor TQ and thymol formation, respectively. Results revealed plant part-specific
variations in enzymatic activity, with leaves unveiling the highest and fruits the lowest peroxidase activity. Optimal activity
was observed at pH 6.5, which suggests a preference for slightly acidic to neutral conditions for effective TQ biosynthesis.
Notably, differential absorbance patterns and correlation studies indicate the possible involvement of metabolites other than
thymol in the biosynthetic pathway. These findings provide new insights into the enzymatic dynamics of N. sativa, with
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significant implications for therapeutic exploitation and metabolic engineering.
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Introduction

Nigella sativa (N. sativa) Linn., a dicotyledonous annual herb
native to the Mediterranean region, is globally recognized for its
traditional medicinal uses’. The plant grows up to 45 cm tall,
having blue flowers and produces small, black, funnel-shaped
seeds®. Nutritionally, the seeds are rich in vegetable proteins,
fiber, minerals and vitamins. Phytochemical analyses have
revealed hundreds of compounds, especially alkaloids, saponins,
sterols and essential oils®. Major constituents include saturated
and unsaturated fatty acids, nigellone, thymoquinone (TQ),
thymohydroquinone (THQ), dithymoquinone (DTQ), thymol
(Thy), carvacrol (CV), a-pinene, d-limonene, p-cymene and o-
hederin®®.

TQ, a monoterpene quinone (2-isopropyl-5-methylbenzo-1,4-
quinone), is the principal bioactive component responsible for
most pharmacological effects of N. sativa®. These include
antimicrobial, antiviral, immunomodulatory, anti-inflammatory,
antioxidant, anticancer, neuroprotective and gastroprotective
activities’. Furthermore, TQ shows therapeutic potential in oral
health, cardiovascular and reproductive disorders, respiratory
ailments and bone-related conditions®®.

Known for its therapeutic importance, the biosynthetic pathway
of TQ has encouraged extensive research. Key intermediates in
TQ biosynthesis include y-terpinene, p-cymene, CV and Thy'°.
Enzymes such as monoterpene synthase, geraniol synthase,
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geranyl diphosphate synthase, superoxide dismutase, alcohol
dehydrogenase and peroxidases are implicated in this pathway.
These metabolites and enzymes not only found in N. sativa, but
are also found in plants like thyme, oregano and peppermint™*?,
as well as microbes such as Streptomyces®® and Castellaniella

defragrans™.

Peroxidases are oxidoreductase enzymes that catalyze the
oxidation or reduction of varied substrates. In the presence of

hydrogen peroxide (H; O, ), they are crucial for
biotransforming phenols, aromatic amines and other organic
compounds™.  Experimental studies have shown that

peroxidases efficiently oxidize phenolic compounds into their
corresponding quinones, which generates bioactive molecules
involved in plant defense and secondary metabolism®®. Class 111
plantperoxidases (secretory) participate in removal of H, O, ,
lignin biosynthesis and suberization’. In plants, these functions
lead to the quinone formation, such as TQ in N. sativa. Notably,
peroxidases also have importance for human health, including
pathogen killing via myeloperoxidase and protection against
oxidative damage via glutathione peroxidases*®*.

Recent studies have further highlighted the dual importance of
these enzymes. Rasuli et al.”* have demonstrated the enhanced
Thy and CV biosynthesis in Thymus vulgaris via biostimulant
treatment, which underscores the peroxidase-mediated
regulation of monoterpene-derived quinones. Simultaneously,


http://www.isca.in/
http://www.isca.in/

Research Journal of Recent Sciences

ISSN 2277-2502

Vol. 15(1), 5-10, January (2026)

Jiang et al.?! have reported the novel therapeutic applications of
plant-derived peroxidases in oxidative stress management.

Taking into consideration, the role of peroxidase and Thy in TQ
biosynthesis, this study was undertaken to investigate the
enzymatic involvement of peroxidase using Thy as a substrate.
Our previous HPLC analysis suggested Thy and CV as the key
intermediates. This work aims to identify the most likely
substrate and clarify the enzymatic steps leading to TQ
formation. By addressing this mechanistic gap, the study offers
insights into the bioconversion of the cost-effective molecule
Thy into high-value TQ.

Materials and Methods

Plant Material: The Rajendra Shyama (RS) cultivar of N.
sativa was selected as the standard for investigating enzymes
involved in the conversion of Thy to TQ. Leaf, bud and fruits
were collected to assess hydrogen peroxide (H, O, )-dependent
oxidoreductase activity, with a special focus on peroxidase
enzymes'0#%,

Homogenate Preparation: Fresh plant parts (0.25 g) were
washed with double-distilled water and blot-dried. A 20% (w/v)
homogenate was prepared using extraction buffer containing
100mM Tris-HCI (pH 7.0) and 0.1% insoluble polyvinyl
polypyrrolidone (PVPP) to remove phenolic compounds and
prevent enzyme inhibition?. The homogenate was incubated on
ice for 15 minutes and centrifuged at 4696.8 x g at 4°C for 15
minutes. The clear supernatant was collected in another
centrifuge tube and used as the crude enzyme extract.

Protein Estimation: The protein content of enzyme extracts
was quantified following the standard Bradford assay”’, using
bovine serum albumin/ BSA (Sigma, USA) as the calibration
standard.

Reaction Mixture and Enzymatic Assay: Enzyme activity
assays were performed for leaf, bud and fruits at pH 6.5, 7.0 and
7.5. The reaction mixture contained 100 mM Tris buffer, 0.3%
H, O, as the electron acceptor and 1upg/mL Thy as the
substrate. Enzyme activity was monitored
spectrophotometrically at 254 nm and 274 nm to detect changes
in absorbance corresponding to TQ and Thy, respectively?®*°.
Activity values were expressed as relative absorbance units.

Statistical Analysis: All the data were analyzed independently
and subjected to correlation analysis to evaluate relationships
among the measured variables. Activity  values were
expressed as relative absorbance units, providing a measure of
substrate oxidation under varying conditions.

Results and Discussion

The peroxidase activity was evaluated at 254 and 274 nm to find
its involvement in Thy to TQ conversion, if any. The three pH
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levels were selected to monitor TQ formation in the leaf, bud
and fruits of RS cultivar. When the activity profile was observed
at 254 nm, it revealed clear pH-dependent variations (Figure-1).
At pH 6.5, leaf showed the highest activity (0.478), followed by
bud (0.344), while fruit exhibited the negative activity (-0.133).
At pH 7.0 and 7.5, activity was declined across all the plant
parts, with negative values recorded, suggesting optimal
biosynthetic  conditions are slightly acidic.When the
spectrophotometric analysis was done at 274 nm, it revealed
pH-dependent variations in thymol formation/consumption
(Figure-2). In leaves, absorbance decreased progressively from -
0.041 at pH 6.5 to -0.226 at pH 7.5. Buds showed a distinct
pattern with partial recovery at pH 7.0, while fruits exhibited the
most distinct decline in absorbance under alkaline conditions.
These results demonstrate that thymol stability and conversion
are most favorable between pH 6.5 and 7.0.

Further, correlation study was performed to monitor the
relationship between TQ formation and Thy consumption. The
result of correlation analysis is given in Table-1. In leaves, it
showed the mechanistic evidence for efficient conversion by
peroxidase from Thy to TQ. At pH 6.5 vs 7.0, a strong positive
correlation at 254 nm (TQ formation) was accompanied by a
strong negative correlation at 274 nm (Thy consumption),
indicating efficient enzymatic conversion under near-neutral
conditions. This aligns with the optimal activity range of class
111 peroxidases™™".

Similar observations were reported by Botnick et al.”?, who
found increased TQ levels accompanied by decreased
carvacrol/thymol in mature seeds. A strong negative correlation
was observed at 254nm; while an average negative correlation
was observed at 274 nm at pH 6.5 vs 7.5. The correlation
analysis at pH 7 vs 7.5 revealed a negative correlation at 254
nm, while a positive correlation at 274 nm.

Table-1: Correlation between TQ and Thy absorbance in leaf,
bud and fruit after enzyme activity assay at 254 and 274 nm,
respectively.

Parameter pH6.5vs7 pH6.5vs75 | pH7vs7.5
TQ 254nm 0.93 -0.93 -0.74
Thy 274nm -0.93 -0.60 0.84

The correlation analysis at pH 6.5 compared to 7.5 indicated the
inverse relationship between TQ formation and Thy disruption.
It revealed a disruption in enzymatic activity, suggesting altered
protonation states or conformational instability under mildly
acidic conditions®. In contrast, persistence of Thymol was
evident between pH 7.0 and 7.5, which indicated stabilization of
its functional interactions within the near-neutral range® . The
inverse relationship suggests peroxidase-mediated oxidation of
Thy to THQ, followed by conversion to TQ. Similar variations
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have been reported in other medicinal plants?*?>?°. Our previous
HPLC analysis revealed a variable relationship between Thy
and TQ, directing to a complex regulation where environmental
conditions alter the balance between precursor and product®.
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The results at pH 7.5 suggest that alkaline conditions disrupt the
conversion. The higher activity in leaves is consistent with
leaves being primary sites of secondary metabolite
biosynthesis®.
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Figure-1: Change in absorbance at 254 nm for Thymoquinone formation in different plant parts at different pH.
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Figure-2: Change in absorbance at 274 nm for Thymol formation in different plant parts at different pH levels.
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From a biosynthetic perspective, TQ formation begins with vy-
terpinene and p-cymene, leading to Thy or CV. The current
results support the hypothesis that peroxidase catalyzes the
oxidative conversion of Thy to THQ, positioning Thy as the
primary substrate?®?%?¢, Recent studies by Sadeghi et al.’ and
Shaukat et al.** reinforce this interpretation highlighting
enzymatic regulation in TQ pharmacological pathways.
Moreover, Alamri et al.*® demonstrated the bioactivity of thymol
derivatives as substrates in oxidative pathways. Several other
studies have shown that engineered microbial systems can
convert thymol to TQ wusing peroxidases®*’, and
electrochemical catalysis on Pt/CeO, catalysts can directly
oxidize Thy to TQ®. Genome-wide studies further underline the
role of peroxidase families in phenolic metabolism***°. Overall,
this study provides novel evidence for the pH-dependent activity
of peroxidase in N. sativa, highlighting leaf at pH 6.5 as the
most favorable condition for the enzymatic conversion of Thy to

TQ.

Conclusion

In conclusion, this study demonstrates that peroxidase activity
in the RS cultivar plays a pH-dependent role in thymogquinone
biosynthesis. Thymol was identified as the most probable
substrate for enzymatic conversion to thymohydroquinone and
thento thymoquinone, while carvacrol appeared less likely to
participate. The conversion was most constant between pH 6.5
and 7.0, whereas activity declined under alkaline conditions.
This reflects the reduced enzyme stability and altered substrate
dynamics. By clarifying this mechanistic step, this work
advances the understanding of secondary metabolite regulation
and highlights the potential of peroxidase-driven bioconversion
of cost-effective thymol into high-value thymoquinone. These
insights provide a foundation for biotechnological innovations,
including enzyme-based conversion systems and metabolic
engineering strategies, to enhance TQ yield in medicinal plants.
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