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Abstract 

Nigella sativa (N. sativa) is widely recognized for its pharmacological potential, largely attributed to thymoquinone (TQ), a 

key bioactive compound. Although TQ biosynthesis has been reported in various plants and microorganisms, its enzymatic 

pathway in N. sativa remains inadequately characterized. This study investigates the role of peroxidase enzymes in TQ 

biosynthesis, using thymol-a known precursoras the substrate, hypothesizing that the antioxidant capacity of N. sativa arises 

from robust enzymatic defense mechanisms. Peroxidase activity was evaluated in the leaves, buds, and fruits of the Rajendra 

Shyama cultivar using 1% hydrogen peroxide (H₂ O₂ ) in Tris buffer at different pH 6.5, 7.0 and 7.5. Absorbance analyses at 

254 nm and 274 nm were used to monitor TQ and thymol formation, respectively. Results revealed plant part-specific 

variations in enzymatic activity, with leaves unveiling the highest and fruits the lowest peroxidase activity. Optimal activity 

was observed at pH 6.5, which suggests a preference for slightly acidic to neutral conditions for effective TQ biosynthesis. 

Notably, differential absorbance patterns and correlation studies indicate the possible involvement of metabolites other than 

thymol in the biosynthetic pathway. These findings provide new insights into the enzymatic dynamics of N. sativa, with 

significant implications for therapeutic exploitation and metabolic engineering. 
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Introduction 

Nigella sativa (N. sativa) Linn., a dicotyledonous annual herb 

native to the Mediterranean region, is globally recognized for its 

traditional medicinal uses
1
. The plant grows up to 45 cm tall, 

having blue flowers and produces small, black, funnel-shaped 

seeds
2
. Nutritionally, the seeds are rich in vegetable proteins, 

fiber, minerals and vitamins. Phytochemical analyses have 

revealed hundreds of compounds, especially alkaloids, saponins, 

sterols and essential oils
3
. Major constituents include saturated 

and unsaturated fatty acids, nigellone, thymoquinone (TQ), 

thymohydroquinone (THQ), dithymoquinone (DTQ), thymol 

(Thy), carvacrol (CV), α-pinene, d-limonene, p-cymene and α-

hederin
4,5

. 

 

TQ, a monoterpene quinone (2-isopropyl-5-methylbenzo-1,4-

quinone), is the principal bioactive component responsible for 

most pharmacological effects of N. sativa
6
. These include 

antimicrobial, antiviral, immunomodulatory, anti-inflammatory, 

antioxidant, anticancer, neuroprotective and gastroprotective 

activities
7
. Furthermore, TQ shows therapeutic potential in oral 

health, cardiovascular and reproductive disorders, respiratory 

ailments and bone-related conditions
8,9

. 

 

Known for its therapeutic importance, the biosynthetic pathway 

of TQ has encouraged extensive research. Key intermediates in 

TQ biosynthesis include γ-terpinene, p-cymene, CV and Thy
10

. 

Enzymes such as monoterpene synthase, geraniol synthase, 

geranyl diphosphate synthase, superoxide dismutase, alcohol 

dehydrogenase and peroxidases are implicated in this pathway. 

These metabolites and enzymes not only found in N. sativa, but 

are also found in plants like thyme, oregano and peppermint
11,12

, 

as well as microbes such as Streptomyces
13

 and Castellaniella 

defragrans
14

. 

 

Peroxidases are oxidoreductase enzymes that catalyze the 

oxidation or reduction of varied substrates. In the presence of 

hydrogen peroxide (H₂ O₂ ), they are crucial for 

biotransforming phenols, aromatic amines and other organic 

compounds
15

. Experimental studies have shown that 

peroxidases efficiently oxidize phenolic compounds into their 

corresponding quinones, which generates bioactive molecules 

involved in plant defense and secondary metabolism
16

. Class III 

plantperoxidases (secretory) participate in removal of H₂ O₂ , 

lignin biosynthesis and suberization
17

. In plants, these functions 

lead to the quinone formation, such as TQ in N. sativa. Notably, 

peroxidases also have importance for human health, including 

pathogen killing via myeloperoxidase and protection against 

oxidative damage via glutathione peroxidases
18,19

. 

 

Recent studies have further highlighted the dual importance of 

these enzymes. Rasuli et al.
20 

have demonstrated the enhanced 

Thy and CV biosynthesis in Thymus vulgaris via biostimulant 

treatment, which underscores the peroxidase-mediated 

regulation of monoterpene-derived quinones. Simultaneously, 
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Jiang et al.
21 

have reported the novel therapeutic applications of 

plant-derived peroxidases in oxidative stress management. 

 

Taking into consideration, the role of peroxidase and Thy in TQ 

biosynthesis, this study was undertaken to investigate the 

enzymatic involvement of peroxidase using Thy as a substrate. 

Our previous HPLC analysis suggested Thy and CV as the key 

intermediates. This work aims to identify the most likely 

substrate and clarify the enzymatic steps leading to TQ 

formation. By addressing this mechanistic gap, the study offers 

insights into the bioconversion of the cost-effective molecule 

Thy into high-value TQ. 

 

Materials and Methods 

Plant Material: The Rajendra Shyama (RS) cultivar of N. 

sativa was selected as the standard for investigating enzymes 

involved in the conversion of Thy to TQ. Leaf, bud and fruits 

were collected to assess hydrogen peroxide (H₂ O₂ )-dependent 

oxidoreductase activity, with a special focus on peroxidase 

enzymes
10,22,23

. 

 

Homogenate Preparation: Fresh plant parts (0.25 g) were 

washed with double-distilled water and blot-dried. A 20% (w/v) 

homogenate was prepared using extraction buffer containing 

100mM Tris-HCl (pH 7.0) and 0.1% insoluble polyvinyl 

polypyrrolidone (PVPP) to remove phenolic compounds and 

prevent enzyme inhibition
24

. The homogenate was incubated on 

ice for 15 minutes and centrifuged at 4696.8 × g at 4°C for 15 

minutes. The clear supernatant was collected in another 

centrifuge tube and used as the crude enzyme extract. 

 

Protein Estimation: The protein content of enzyme extracts 

was quantified following the standard Bradford assay
27

, using 

bovine serum albumin/ BSA (Sigma, USA) as the calibration 

standard. 

 

Reaction Mixture and Enzymatic Assay: Enzyme activity 

assays were performed for leaf, bud and fruits at pH 6.5, 7.0 and 

7.5. The reaction mixture contained 100 mM Tris buffer, 0.3% 

H₂ O₂  as the electron acceptor and 1µg/mL Thy as the 

substrate. Enzyme activity was monitored 

spectrophotometrically at 254 nm and 274 nm to detect changes 

in absorbance corresponding to TQ and Thy, respectively
28-30

. 

Activity values were expressed as relative absorbance units. 

 

Statistical Analysis: All the data were analyzed independently 

and subjected to correlation analysis to evaluate relationships 

among the measured variables. Activity values were 

expressed as relative absorbance units, providing a measure of 

substrate oxidation under varying conditions. 

 

Results and Discussion 

The peroxidase activity was evaluated at 254 and 274 nm to find 

its involvement in Thy to TQ conversion, if any. The three pH 

levels were selected to monitor TQ formation in the leaf, bud 

and fruits of RS cultivar. When the activity profile was observed 

at 254 nm, it revealed clear pH-dependent variations (Figure-1). 

At pH 6.5, leaf showed the highest activity (0.478), followed by 

bud (0.344), while fruit exhibited the negative activity (-0.133). 

At pH 7.0 and 7.5, activity was declined across all the plant 

parts, with negative values recorded, suggesting optimal 

biosynthetic conditions are slightly acidic.When the 

spectrophotometric analysis was done at 274 nm, it revealed 

pH-dependent variations in thymol formation/consumption 

(Figure-2). In leaves, absorbance decreased progressively from -

0.041 at pH 6.5 to -0.226 at pH 7.5. Buds showed a distinct 

pattern with partial recovery at pH 7.0, while fruits exhibited the 

most distinct decline in absorbance under alkaline conditions. 

These results demonstrate that thymol stability and conversion 

are most favorable between pH 6.5 and 7.0. 

 

Further, correlation study was performed to monitor the 

relationship between TQ formation and Thy consumption. The 

result of correlation analysis is given in Table-1. In leaves, it 

showed the mechanistic evidence for efficient conversion by 

peroxidase from Thy to TQ. At pH 6.5 vs 7.0, a strong positive 

correlation at 254 nm (TQ formation) was accompanied by a 

strong negative correlation at 274 nm (Thy consumption), 

indicating efficient enzymatic conversion under near-neutral 

conditions. This aligns with the optimal activity range of class 

III peroxidases
15-17

. 

 

Similar observations were reported by Botnick et al.
22

, who 

found increased TQ levels accompanied by decreased 

carvacrol/thymol in mature seeds. A strong negative correlation 

was observed at 254nm; while an average negative correlation 

was observed at 274 nm at pH 6.5 vs 7.5. The correlation 

analysis at pH 7 vs 7.5 revealed a negative correlation at 254 

nm, while a positive correlation at 274 nm. 

 

Table-1: Correlation between TQ and Thy absorbance in leaf, 

bud and fruit after enzyme activity assay at 254 and 274 nm, 

respectively. 

Parameter pH 6.5 vs 7 pH 6.5 vs 7.5 pH 7 vs 7.5 

TQ 254nm 0.93 -0.93 -0.74 

Thy 274nm -0.93 -0.60 0.84 

 

The correlation analysis at pH 6.5 compared to 7.5 indicated the 

inverse relationship between TQ formation and Thy disruption. 

It revealed a disruption in enzymatic activity, suggesting altered 

protonation states or conformational instability under mildly 

acidic conditions
31

. In contrast, persistence of Thymol was 

evident between pH 7.0 and 7.5, which indicated stabilization of 

its functional interactions within the near-neutral range
32,33

. The 

inverse relationship suggests peroxidase-mediated oxidation of 

Thy to THQ, followed by conversion to TQ. Similar variations 
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have been reported in other medicinal plants
23,25,26

. Our previous 

HPLC analysis revealed a variable relationship between Thy 

and TQ, directing to a complex regulation where environmental 

conditions alter the balance between precursor and product
34

. 

The results at pH 7.5 suggest that alkaline conditions disrupt the 

conversion. The higher activity in leaves is consistent with 

leaves being primary sites of secondary metabolite 

biosynthesis
35

.

 

 
Figure-1: Change in absorbance at 254 nm for Thymoquinone formation in different plant parts at different pH. 

 

 
Figure-2: Change in absorbance at 274 nm for Thymol formation in different plant parts at different pH levels. 
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From a biosynthetic perspective, TQ formation begins with γ-

terpinene and p-cymene, leading to Thy or CV. The current 

results support the hypothesis that peroxidase catalyzes the 

oxidative conversion of Thy to THQ, positioning Thy as the 

primary substrate
25,26,28

. Recent studies by Sadeghi et al.
29

 and 

Shaukat et al.
30 

reinforce this interpretation highlighting 

enzymatic regulation in TQ pharmacological pathways. 

Moreover, Alamri et al.
18 

demonstrated the bioactivity of thymol 

derivatives as substrates in oxidative pathways. Several other 

studies have shown that engineered microbial systems can 

convert thymol to TQ using peroxidases
36,37

, and 

electrochemical catalysis on Pt/CeO₂  catalysts can directly 

oxidize Thy to TQ
38

. Genome-wide studies further underline the 

role of peroxidase families in phenolic metabolism
39,40

. Overall, 

this study provides novel evidence for the pH-dependent activity 

of peroxidase in N. sativa, highlighting leaf at pH 6.5 as the 

most favorable condition for the enzymatic conversion of Thy to 

TQ. 

 

Conclusion 

In conclusion, this study demonstrates that peroxidase activity 

in the RS cultivar plays a pH-dependent role in thymoquinone 

biosynthesis. Thymol was identified as the most probable 

substrate for enzymatic conversion to thymohydroquinone and 

thento thymoquinone, while carvacrol appeared less likely to 

participate. The conversion was most constant between pH 6.5 

and 7.0, whereas activity declined under alkaline conditions. 

This reflects the reduced enzyme stability and altered substrate 

dynamics. By clarifying this mechanistic step, this work 

advances the understanding of secondary metabolite regulation 

and highlights the potential of peroxidase-driven bioconversion 

of cost-effective thymol into high-value thymoquinone. These 

insights provide a foundation for biotechnological innovations, 

including enzyme-based conversion systems and metabolic 

engineering strategies, to enhance TQ yield in medicinal plants. 
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