12th International Science Congress (ISC-2024) on 8th and 9th December 2024.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN. 

Copolymer Modified Electrode with Hydroxyl and Amino Derivatives of Anthraquinones for Oxygen Reduction

Author Affiliations

  • 1Manonmaniam Sundranar University, Tirunelveli, India and Department of Chemistry, Chandy College of Engineering, Thoothukudi, India
  • 2Department of Chemistry, Sri K.G.S Arts and Science College, Srivaikuntam, India
  • 3Department of Chemistry, V.O.Chidambaram College, Thoothukudi, India

Res.J.chem.sci., Volume 6, Issue (9), Pages 36-42, September,18 (2016)

Abstract

The electrochemical characterisation of poly (3-methylthiophene-co-3,4-ethylenedioxythiophene) modified glassy carbon electrode with hydroxyl and amino derivatives of anthraquinones were determined. The consequence of pH on the electrochemical behaviour and stable behaviour towards the modified poly(3-methylthiophene-co-3,4-ethylenedioxythiophene) were investigated. Using chronoamperometric and chronocoulometric techniques, the diffusion coefficient values and the number of electrons were calculated. Excellent electrocatalytic response was given by hydroxyl and amino derivatives of anthraquinones combined with the copolymer poly(3-methylthiophene-co-3,4-ethylenedioxythiophene) for oxygen reduction. The glassy carbon electrode coated with the copolymer was described using Scanning electron microscope.

References

  1. Gonzalez-Cruz R. and Solorza-Feria O. (2003)., Oxygen reduction in acid media by a RuxFeySez (CO)n cluster Catalyst dispersed on a glassy carbon-supported Nafion film., J. Solid State Electrochem, 7(5), 289-295, http://dx.doi.org/10.1007%2Fs10008-003-0353-4.
  2. Mao L., Zhang D., Sotomura T., Nakatsu K., Koshiba N. and Ohsaka T. (2003)., Mechanistic study of the Reduction of oxygen in air electrode with manganese oxides as electrocatalysts., Electrochim. Acta, 48(8), 1015, 10.1016/S0013-4686(02)00815-0.
  3. Vukmirovic M.B., Vasiljevic N., Dimitrov N. and Sieradzki K. (2003)., Diffusion-Limited Current Density of Oxygen Reduction on Copper., J. Electrochem. Soc, 150(1), B10-B-15,10.1149/1.1526554.
  4. Chithra R. and Renuka R. (2003)., Electroreduction of Oxygen on mercury in the presence of titanium silicalite, TS-1., J. Appl. Electrochem, 33(5), 443-446, 10.1023/A:1024497227388.
  5. Peressini S., Tavagnacco C., Costa G. and Amatore C. (2002)., Electrochemical reduction of dioxygen in the presence of 4,6-dimethyl-2-thiopyrimidine in DMF., J. Electroanal. Chem, 532(1-2), 295-302, http://dx.doi.org/10.1016/S0022-0728(02)00838-0.
  6. Ramirez G., Trollund E., Issacs M., Armijo F., Zagal J., Costamagna J. and Aguirre M.J. (2002)., Electroreduction of Molecular Oxygen on Poly-Iron-Tetraaminophthalocyanine Modified Electrodes., Electroanalysis, 14 (7-8), 540-545, 10.1002/1521-4109(200204)14:7/8<540::AID-ELAN540>3.0.CO;2-3.
  7. Lin A.S. and Huang J.C. (2003)., Oxygen reduction on Nafion-bound unpyrolyzed metal macrocyclic complexes., J. Electroanal. Chem, 541, 147-151, http://dx.doi.org/10.1016/S0022-0728(02)01426-2.
  8. Zhang Y., Asahina S., Yoshihara S. and Shirakashi T. (2003)., Oxygen reduction on Au nanoparticle deposited boron-doped diamond films., Electrochim. Acta, 48(6), 741-747, http://dx.doi.org/10.1016/S0013-4686(02)00743-0.
  9. Manisankar P., Pushpalatha A.M., Vasanthkumar S., Gomathi A. and Viswanathan S. (2004)., Riboflavin as an electron mediator catalyzing the electrochemical reduction of dioxygen with 1,4-naphthoquinones., J. Electroanal. Chem, 571(1), 43-50, http://dx.doi.org/10.1016/j.jelechem .2004.04.011.
  10. Golabi S.M. and Raoof J.B. (1996)., Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of it derivatives., J. Electroanal. Chem, 416(1-2), 75-82, http://dx.doi.org/10.1016/S0022-0728(96)04728-6.
  11. Sarapuu A., Vaik K., Schiffrin D.J. and Tammeveski K. (2003)., Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solutions., J. Electroanal. Chem, 541, 23-29, 10.1016/S0022-0728(02)01311-6.
  12. Tammeveski K., Kontturi K., Nichols R.J., Potter R.J. and Schiffrin D.J. (2001)., Surface redox catalysis for O2 reduction on quinine-modified glassy carbon electrodes., J. Electroanal. Chem, 515 (1-2), 101-112, http://dx.doi.org/ 10.1016/S0022-0728(01)00633-7.
  13. Salimi A., Mousavi M.F., Sharghi H. and Shamsipur M. (1999)., Electrocatalysis of O2 Reduction at Glassy Carbon Electrodes Modified with Adsorbed 1,4-Dihydroxy-9,10-anthraquinone Derivatives., Bull. Chem. Soc. Jpn, 72(9), 2121-2127, http://doi.org/10.1246/bcsj.72.2121.
  14. Salimi A., Eshghi H., Sharghi H., Golabi S.M. and Shamsipur M. (1999)., Electrocatalytic Reduction of Dioxygen at the Surface of Glassy Carbon Electrodes Modified by Some Anthraquinone Substituted Podands., Electroanalysis, 11(2), 114-119, 10.1002/(SICI)1521-4109(199902)11:2<114::AID-ELAN114>3.0.CO;2-F.
  15. Manisankar P., Gomathi A. and Velayutham D. (2005)., Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes., J. Solid State Electrochem, 9(9), 601-608, 10.1007/s10008-004-0610-1.
  16. Manisankar P. and Gomathi A. (2005)., Electrocatalytic Reduction of Dioxygen on 9,10-Anthraquinones Incorporated Clay-Modified Glassy Carbon Electrodes., Bull. Chem. Soc. Jpn, 78(10), 1783-1790, 10.1246/bcsj.78.1783.
  17. Manisankar P. and Gomathi A. (2005)., Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions., Journal of Molecular Catalysis, 232(1), 45-52, 10.1016/j.molcata.2005.01.001.
  18. Manisankar P. and Gomathi A. (2005)., Electrocatalytic Reduction of Dioxygen at the Surface of Carbon Paste Electroes Modified with 9,10-Anthraquinone Derivatives and Dyes., Electroanalysis, 17(12), 1051-1057, 10.1002/elan.200403213.
  19. Shi C. and Anson F.C. (1990)., Catalytic Pathways for the Electroreduction of O2 by Iron Tetrakis(4-N-methylpyridyl)Porphyrin or Iron Tetraphenylporphyrin Adsorbed on Edge Plane Pyrolytic Graphite Electrodes., Inorg. Chem., 29, 4298-4305, 10.1021/ic00346a027.
  20. Collman J.P., Denisevich P., Konai Y., Marrocco M., Koval C. and Anson F.C. (1980)., Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins., J. Am. Chem. Soc., 102(19), 6027-6036, 10.1021/ja00539a009.
  21. Zecevic S., Simic-Glavaski P., Yeagar E., Lever A.B.P. and Minor P.C. (1985)., Spectroscopic and electrochemical studies of transition metal tetrasulfonated phthalocyanines: Part V Voltammetric studies of adsorbed tetrasulfonated phthalocyanines (MTsPc) in aqueous solutions., J. Electroanal. Chem, 196, 339-358, http://dx.doi.org/10.1016 /0022-0728(85)80032-2.
  22. Zhang J.J. and Anson F.C. (1993)., Electrocatalysis for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand., Electrochim. Acta., 38(16), 2423-2429, http://dx.doi.org/10.1016/0013-4686(93)85111-B.
  23. Zhang J.J. and Anson F.C. (1993)., Coordination of Fe(III)-Electrodes to produce electrocatalysts for the reduction of O2 and H2O2 (By Alizarin complexone Adsorbed on Graphite)., J. Electroanal. Chem, 353(1-2), 265-280,10.1016/0022-0728(93)8030-y.