ResearchJournalofChemicalSciences______________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 94 Processing of Elephant Dung and its Utilization as a Raw Material for Making Exotic Paper Nadeem Farah, Moazzam Amna, Yaqoob Naila and Rehman Ishtiaq DepartmentofEnvironmentalScience,LahoreCollegeforWomenUniversity,Jailroad,Lahore,PAKISTANAvailable online at: www.isca.in, www.isca.me Received 10th August 2014, revised 14th August 2014, accepted 18th August 2014 Abstract Paperisoneofthemostindemandcommoditiesoftheworld.Excessivedeforestationhasledtoscarcityofwoodresources,anditisneededtoconservethemtoprotecttheintegrityoftheecosystem.Thepulpandpaperscientistsarecontinuouslystrugglingfornon-woodrawmaterialsthatcanbepulpedintoexoticpapersofhighvalue.Inthepresentstudy,anattemptwasmadetoinvestigatethepotentialofelephantdungasnon-conventionalrawmaterialtomakeexoticpaper.Forthispurpose,elephantdungwasdriedundersunfor4-5hoursandtheninovenat105°Cfor30min.Thedungsamplewasthencookedbychemithermomechnical(CTMP),semi-chemicalandchemicalsoda-anthraquinonepulpingprocessesindifferentexperimentaltrialsbyvaryingthealkalidose.Thepaperswerethentestedfordifferentphysicalandopticalpropertiestoestimatethequalityoftheelephantdungpaper.Inthecurrentstudy,theoptimumcookingconditionstomakeelephantdungpaperintermsofmaximumpropertieswas14.0%NaOHand0.5%Anthraquinone(AQ)ono.d.p.Differenttypeofexoticpaperscanbeproducedfromelephantdungsuchaswritingsheets,diaries,scrapbooksandgreetingcardsinwidevarietyofstylesandcolorsthatcouldattracttheattentionoftouristsandartlovers;resultinginrevenuegenerationthatcouldbeusedforthebettermentofelephantsandtheirowners. Keywords: Elephantdung,exoticpaper,non-woodpaperproducts,elephantdungrecycling,deforestation. Introduction Paperanditsproductsareoneofthemostindemandcommoditiesoftheworld.Theimportanceofpaperisdemonstratedbythefactthatitsconsumptionperpersonisassociatedwiththewelfarestandardandliteracyrateofcountry. Therawmaterialsforpaperproductionarewood,nonwoodandrecycledfiber.Wood,however,is90%contributortoglobalpaperproductionUsingwoodforpaperproductionresultsinnegativeenvironmentalimpactsbecauseofcuttingtrees(deforestation)whichendangersthebiodiversityandhencethewholeforestecosystemisdisrupted.Duetoexcessiveindustrialconsumptionofwood,thetimberresourcesoftheworldaredwindlingwhiletheconsumptionofpaperisincreasingdaybyday.Adoptingnon-woodrawmaterialsforpaperproductionissolutiontoecosystemthreatscausedbyovercuttingoftreesformanufactureofpaperfromwood.Even5-10%shareofnon-woodrawmaterialsinthepapermarketcouldhaveeconomicandenvironmentalbenefits. Nonwoodfibersaretraditionallyclassifiedasindustrialcrops,naturalplantsandtheagriculturalbyproductsIncomparisontowoodfibers,thenonwoodfibersvaryinchemicalcompositionandphysicalpropertiesThevariationsdependontheclimaticconditions,thetypeofsoilandtheplantspecies. ElephantdungispotentialrawmaterialforproductionofexoticpaperElephantsareherbivoresandtheirdungcontainsundigestedplantfibersmakingtheexcretaanexcellentrawmaterialforpaperproductionDigestibilityofelephantshasbeenstudiedinbothwildandcaptiveandisestimatedtobe30-45%inwildand35-39%incaptive10Hence,50-60%offibrousfoodconsumedbyanelephantisexcretedundigested. AnElephantcanproduceupto240pounds(110Kg)ofdungperday11Thedungproducedperdaycanbeusedtoproduce265sheetsofpaper(anaveragesizeof30×25inches).Therearecurrentlybetween470,000and630,000wildAfricanelephants12whileinAsiathereareapproximately50,000elephantsinthewild.ThecountrieshomestoelephantsareIndia,MyanmarandAfricaandelephantdungpapercanbeusedtomakewiderangeofproductsfromsimplewritingsheets,todiariesandlargescrapbooks.Theinquisitivetouristmarketprovidesopportunityforartisanstogeneraterevenuethroughthepresenceofelephants.Conventionally,Elephantdungpaperismadelikeanyotherhandmadepaper.Theprocessinvolvestheformationofliquidsuspensionofboiledandwasheddungfibersthataresometimesmixedwithrecycledpaperandwoodglue.Theresultantpulpisthendrainedthroughwiremeshandmatofinterwovenfibersisobtained.Thematispressedanddriedtoobtainpaper13Therearemanyadvantagesofmakingpaperfromelephantdung.Thedungiswastematerialandabsolutelyfree.Itisgoodbusinessstrategytoutilizewasteintousefulproduct.Thepapermanufacturedfromdunggeneratesrevenueandmakepeoplerealizethatelephantsarenotjustliabilitiesbutassets. Thecurrentstudyisanattempttomanufacturepaperfromelephantdung.Keepinginmindthegrowingdemandforpaper,it ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 95 isneedofthehourtomakeinnovationsinthepulpandpaperindustry.Evenlittleshareofeco-friendlyfibersinpapermakingwillsavetimberresourcestosomeextent.Thedemandforexoticpapersisincreasingbothlocallyandinternationallyspeciallyamongpeoplewhohaveaneyeforcreativityandnatureconservation.Elephantdungpaperisnotonlyexoticbutalsogivesmessageofanimalconservationandprotectionwhilereducingthegraveproblemofdungdisposal. Material and Methods Materials: Elephantdung,SodiumHydroxide,Anthraquinone(AQ),surfactant Sample PreparationThedungboluseswereseparatedusingforkshapedwoodbranches,spreadonlargeplasticsheetsanddriedforfivehoursundersun(averagetemperature40 5°C)toavoidfungalandbeetlegrowth.Theairdrieddungwasthenplacedinhotairovenat105°Cfor30minutestodisinfectthedung.Thesamplewasthenstoredinziplockpolyethylenebagsatroomtemperatureuntilfurtherexperimentation. Evaluation of Chemical Properties of Elephant Dung: Thepretreatedelephantdungsamplewasthoroughlymixedandthenrepresentativesamplewascollectedforthechemicalanalysisofrawmaterialaccordingtostandardmethods.Table-1showstheresultsforchemicalanalysisofdungsample.Thetestsperformedwere: Moisture Content: TAPPItestmethod(T210cm-03,2003)wasusedtocalculatethemoisturecontentoftheelephantdungsample.2.0ofspecimenwasweighedintared,driedweighingbottleandheatedinelectricovenat105°Ctoconstantweight.Thebottlewasthenreweighedandpercentmoisturewascalculatedbyformula14 \n  \r  Where:W2weightofbottleandspecimenpriortodrying,W1weightofbottleandspecimenafterdrying,WTtareweightofbottle.Alpha Cellulose (TAPPItestmethod203cm-99,2009) 1.5ofelephantdungsamplewastakenand100.0mlof17.5%NaOHwasaddedintwoinstallmentsof15.0mland25.0mlrespectively.Thesamplewasstirredfor15minutesafterbothadditionsofNaOHreagent.100.0mlofdistilledwaterwasthenaddedandcontentsofthebeakerwerecoveredandallowedtostandfor30minutes. Theresultantpulpsuspensionwasstirredandfiltered.5.0mlofthefiltrateand10.0mlof0.5Npotassiumdichromatesolutionwastakenin250mlflask.30.0mlofconcentratedSOwasaddedcautiously,whileswirlingtheflask.50.0mlofwaterwasaddedtothemixtureaftercoolingitfor15minutesandthenleftuntilroomtemperaturewasachieved.Titrationwascarriedoutwith0.1NferrousammoniumsulfatesolutionwithanendpointofpurplebyaddingtwotofourdropsofFerroinindicator.blanktitrationsubstitutingthepulpfiltratewith2.5mlof17.5%NaOHand2.5mlofwaterwascarriedout.Thealpha-cellulosepercentagewascalculatedusingformula15: \r   !"## Where:V1titrationofthepulpfiltrate,ml,V2blanktitration,ml,exactnormalityoftheferrousammoniumsulfatesolution,volumeofthepulpfiltrateusedintheoxidation,ml,oven-dryweightofpulpspecimen(g)Acid Insoluble Lignin (TAPPItestmethod222om-02,2002) 2.0ofpulverizedelephantdungsamplewastakenand40.0mlof72.0%sulphuricacidwasaddedinsmallincrementswithconstantstirring.Thetemperatureofthemixturewasapproximately2°C.Afterthespecimenwasdispersed,thebeakerwascoveredandleftinwaterbathat20°Cfor30minutes.300-400mlofwaterandthesamplewasaddedto2000.0mlflaskandthefinalvolumewasmaintainedat1540.0mlbyaddingdistilledwater.Thecontentsoftheflaskwereboiledinreflexcondenserforfourhoursandleftovernight.Thesupernatantwassiphonedoffandresidueswerewashedwithhotwater,driedinovenat105°C,cooledindessicatorandlignin(%)wascalculatedbyusingequation16: \n%\n  &\n'\n (\n'\n) 'Table-1 Chemical analysis of elephant dung sample Chemical parameters Composition (%) Moisture8.20 Alphacellulose 71.67 Acidinsolublelignin 30.50 Steps Involved in Production of Paper from Dried Elephant Dung: Sand removal by decantation method: Thedriedsampleofelephantdungwassubmergedinbucketfilledwithwater.Thesamplewasstirredfor2-3minutesandthenallowedtosettlefor15-20minutes.Thedungsamplebeinglessdensewillfloatonthesurfaceofwaterandsandbeingdenserwillbesettleddownatthebottomofthebucket.Thedungwasthencollectedfromtopbydecantationandwashedseveraltimeswithdistilledwatertoremoveresidualsandandmudparticlesifanywhichclungtothedungbecauseoflyingonthegroundpriortocollectionfromelephanthouse.Thewashedsamplewasthenmanuallypressedtohighconsistency(�25%)andstoredinrefrigeratorat4°Cpriortofurtherexperimentation.Pulping of Elephant Dung Samples: Threedifferentcookingtrialswerecarriedouttopulpelephantdungsample.Foreachtrial1000.0o.d.elephantdungsamplewasfedintheclosedlooprevolvingdigesterfollowedbytheadditionofcookingliquor.Figureshowsschematicofpulpingprocess. Thedetailofeachexperimentaltrialisgiveninthetable1. ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 96 Figure-1 Schematic showing the pulping process of elephant dung Table-2 Pulping Conditions of Various Experimental Trials Cooking Trial Pulping Type Cooking Chemicals Cooking Temperature (ºC) Cooking Time (minutes) Cooking Pressure (bar) Consistency (%) C-1 Chemithermo-mechanical 4.0%NaOHono.d.p 0.5%AQono.d.p 0.1%surfactantono.d.p 165 45 6-8 15 C-2 Semi-Chemical 10.0%NaOHono.d.p 0.5%AQono.d.p 0.1%surfactantono.d.p 165 45 6-8 15 C-3 Chemical 14.0%NaOHono.d.p 0.5%AQono.d.p 0.1%surfactantono.d.p 165 45 6-8 15 Tomaintaintheconsistency,makeupwaterwasaddedtoproducesteaminthedigesterandtofacilitatethepulpingprocess.Attheendofeachpulpingtrial,thedigesterwasswitchedoffandsteamwasallowedtorelease. Washing of Pulp: ThecookedsampleofelephantdungwastransferredinthepulpwashertowashitthoroughlywithwatertillneutralpHwasachieved.Washingwasdoneon#40meshwirescreen.Defibration of Pulp: Thepulpobtainedafterallcookingtrialswasdefibratedusinglaboratorydefibratorat3000r.p.mfor60secondstodisintegratethepulp.Straining of Pulp: Afterdisintegratingorrefiningthepulpofdifferenttrials,theshiveswereremovedusingpulpstrainer.Thisstrainerwasfittedwith0.15mmslotscreen.Duringtheprocesswaterisintermittentlyaddedtoseparatethecookedfibersfromshivesandknots(uncookedfibers).Thestrainedslurryisthenagainwashedinpulpwasher,dewateredbymanualpressingtohighconsistency(�25%)andstoredinpolyethyleneziplockbagsat4°Cuntilfurtherprocessingandtestingprocedures.Formation of Handsheets: ThestandardmethodofScandinavianPulp,PaperandBoardTestingCommitteewasusedforsheetmaking17Thepulpsamplewasdisintegratedindistilledwaterusingpulpfiberdisintegratoruntilallfibersweredispersed.Thehandsheetmachinewasopenedandhalffilledwithwaterafterwhichthesheetformerwasclosed.Thepulprequiredfor70grammagesheetwascalculatedonthebasisofareaofsheet.Themeasuredpulpwaspouredinthehandsheetformerandstirredforfewseconds.Thewaterwasthendrainedfromthewateroutlet.Thestrainingpanwaspulledoutandblottingsheetswereusedtopickthehandsheet.Thehandsheetwasthendewateredwithhydraulicpressanddriedat105ºCfortwenty minutes. The samples of handsheets made of pulp from each cooking trial are shown in figure-2. ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 97 Figure-2 (a) Handsheet from pulping trial C-1 (b) Handsheet from pulping trial C-2 (c) Handsheet from pulping trial C-3 Study of Optical Properties of Handsheets Made From Elephant Dung: Brightness (TAPPI testmethod452om-08,2008): Brightnessiscommonlyusedterminpaperindustry. Itisthenumericalvalueofthereflectancefactorofsamplewithrespecttobluelightofspecificspectralandgeometriccharacteristics.ZeroingofthePhotovoltaiccolor,opacity,BrightnessandReflectanceMeterwascarriedoutandbrightnesswasmeasuredusingthebrightnessmeter18. Opacity: Thisisdefinedas100timestheratiooflightreflectedbypaperspecimenwhenbackedbyblackbodyof0.5%reflectance. OpacitywasdeterminedforhandsheetsusingthePhotovoltaicMeteraccordingtoISOmethod19Whiteness and Yellowness: YellownessandwhitenessforallhandsheetswerecalculatedbyusingStandardPracticeforCalculatingYellownessandWhitenessIndicesfromcolorcoordinatesmeasuredbyPhotovoltaicMeter.Standardplatewasplacedandreflectancevaluesofsheetwerenotedforeachfilter.YellownessandwhitenessIndexwerethencalculatedthroughstandardmethod20. Testing of Physical Properties of Handsheets Made From Elephant Dung Pulp: Measurement of Thickness (Caliper): ThethicknessorcaliperofthesheetwasdeterminedinmicronsusingbyLandmicrometer.Thehandsheetwasinsertedintheslitandmovedinlefttorightdirectiontogetreadings.Theaverageofallvalueswasthencalculatedtoberecordedashandsheetthickness21Measurement of Grammage: Grammageismeasureofthedensityofthepaper.Grammageofallhandsheetswascalculatedbyusingtheformula:(SCAN-P6:75)22*++', ./\n' 0%  1% + Where:Areaofhandsheetwas360cmMeasurement of bulk: TAPPItestmethod(T411om-97,1997)wasusedtocalculatethebulkofthepaperbyusingthefollowingformula232345677 98:;;8= �?@75A=BB@7:CA Measurement of Burst Strength: Burstingstrengthismeasureofthemaximumhydrostaticpressurerequiredtorupturethehandsheetspecimenatcontrolledandconstantlyincreasingpressureappliedthroughrubberdiaphragmincircularareaofhandsheet(30.5mmdiameter).Themaximumpressurereadinguptotherupturepointwasrecordedinthepoundpersquareinch(psi)ontheBursting/Mullertester.Theburstindexwasdeterminedbyfollowingequations24(TAPPImethod403om-02,2008). D  \n'E'FD  \n' ' \n !G"D  \n'H%IJF+ KD  \n' 'F*++'  Measurement of Tear Strength: Thehandsheetswerecutusingtearcutterandeachpiecewasthenplacedintheteartester.Thependulumwasraisedtoitsinitialpositionandpointerwascarefullysetagainstthestops. Theinitialknifecutwasmadeandpendulumreleased.Afterthetearwascompletedthependulumwascaughtonthereturnswingwithoutdisturbingthepositionofthepointer.Thescalereadingwasthenrecorded.Tearindexwascalculatedby(TAPPItestmethod414om-88,1998)usingequations25:  '+L 'G !MH%IJ+L+ K '+L)*++' Measurement of Tensile Index: Tensilestripsof10.0cmlongand1.5cmwidewerecutandplacedbetweenclampsoftensiletester.Thevaluesofforcewerenotedfromthetensiletester. ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 98 Thetensileindexwascalculatedby(TAPPItestmethod404cm-92,1992)usingequation26:  \nH%I6L+  \n '++ \nN +\n '++'  Results and Discussion Currentdemandandpracticesaroundtheglobearefocusedtowardsexploitingeverypossiblenon-woodrawmaterialwhichcanbeprocessedintopaper.Cellulosiccontentsareessentialforanymaterialtobemadeintopaper.TheAlphacellulosecontentofelephantdungsamplewashighi.e.71.67%whichispromisingpercentageforrawmaterialusedforpapermaking27. Whenacidinsolubleligninwasstudiedinelephantdungsample,itwasfoundtobesubstantiallyhigh(�30.0%)ascomparedtohardwoodsandsoftwoods30.0%)Thismeansthathighchemicaldoseisrequiredtolowerthechromophoriccontents28. ResultsonTableindicatetheopticalpropertiesofhandsheetsmadefromelephantdungpulpfromthethreepulpingtrials. Brightnessvalueswerenotsatisfactoryforpulpingtrial(C-1)withchemicaldoseof4.0%NaOHandhencerequiredimprovementtocreatepresentableexoticpaper.Thebrightnesswasverylow(19.8%)whichisindicativeoftheincreasedamountofchromophoricgroupsinthecookedpulp.Theyellownessdecreasedandtherewasslightincreaseinwhitenessinpulpingtrial(C-2)anditincreasedfurtherwhenthechemicaldosewasincreasedto14%inpulpingtrial(C-3).Theresultsforopticalpropertiesareshowninfigure3,andforpulpingtrialC-1,c-2andC-3respectively.Opacityofpaperisitsqualityofhidingtheprintonthebacksideofthesheet29ThevalueofopacitydecreasedslightlywithincreaseinchemicalchargebutwashighforC-2andC-3(98.2%)justlikeC1(99.6%) ResultsonTableindicatethephysicalpropertiesofhandsheetsmadefromelephantdungpulpfromthethreecookingtrials. Burstindexisindicativeofthefiberlengths.Thehigherthefiberlengths,thegreatertheburstindex30This(1.27kPam/g)wasfoundtobeverylowforC-1whileotherstrengthpropertiesalsorequiredimprovementsothatdurabilityofthepaperisincreased.Thephysicalpropertiesimprovedwiththeincreaseinchemicalcharge. Therewasnoteworthyincreaseintensileindexwhichisparameterthatdescribesthefibertofiberbondinginthehandsheet.Thishadvalueof52.7Nm/gforC-3and51.104Nm/gforC-2ascomparedto37.9Nm/gforC-1.ImprovementswereobservedintheresultsforbulkaswellastearandburstindicesinhandsheetsmadefromelephantdungpulpC-3incomparisontoC-2andC-1.Theresultsforphysicalpropertiesareshowninfigure4,andforpulpingtrialC-1,c-2andC-3respectively.Thecomparisonofthicknessofhandsheetsfromallpulpingtrialsisshowninfigure9. AmongthecookingtrialsC-1,C-2andC-3carriedout,thebestoptimumpropertieswereachievedforcookingtrialC-3. Table-3 Comparison of Mean Optical Properties of Handsheets Made From Elephant Dung Pulp C-1, C-2 and C-3 Pulping Trials Brightness (%) Opacity (%) Yellowness (%) Whiteness (%) C-1 19.8 99.6 37.83 -13 C-2 27.4 98.2 30.36 -7.3 C-3 33.4 98.2 25.04 0 Table-4 Comparison of Mean Physical Properties of Handsheets Made From Elephant Dung Pulp C-1, C-2 and C-3 Pulping Trial Bulk (cc/g) Tear index (mNm/g) Burst index (kPam/g) Tensile index (Nm/g) Thickness micrometer C-12.51 2.521 1.27 37.9 176 C-22.64 3.591 2.038 51.104 188 C-32.6 4.2 2.3 52.7 181 ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 99 Figure-3 Optical properties of handsheets made from elephant dung pulp – C-1 (C-1 refers to cooking of the pulp sample at conditions mentioned in Table 2) Figure-4 Physical properties of handsheets made from elephant dung pulp – C-1 (C-1 refers to cooking of the pulp sample at conditions mentioned in Table 2) 19.899.637.83-13-2020406080100120Brightness Opacity Yellowness Whiteness Values (%)Optical properties 2.512.5211.2737.910152025303540Bulk Tear Index Burst Index Tensile Index Tensile, Tear, Burst Indices and Bulk valuesPhysical Properties ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 100 Figure-5 Optical properties of handsheets made from elephant dung pulp – C-2 (C-2 refers to cooking of the pulp sample at conditions mentioned in Table 2) Figure-6 Physical properties of handsheets made from elephant dung pulp – C-2 (C-2refers to cooking of the pulp sample at conditions mentioned in Table 2) 27.498.230.36-7.3-2020406080100120Brightness Opacity Yellowness Whiteness Values (%)Optical Properties 2.643.5912.03851.1041015202530354045505560Bulk Tear Index Burst Index Tensile Index Tensile, Tear , Burst indices and Bulk valuesPhysical Properties ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 101 Figure-7 Optical properties of handsheets made from elephant dung pulp – C-3 (C-3 refers to cooking of the pulp sample at conditions mentioned in Table 2) Figure-8 Physical properties of handsheets made from elephant dung pulp – C-3 (C-3 refers to cooking of the pulp sample at conditions mentioned in Table 2) 33.498.225.0420406080100120Brightness Opacity Yellowness Whiteness Values (%)Optical Properties 2.64.22.352.71015202530354045505560Bulk Tear Index Burst Index Tensile Index Tensile, Tear, Burst indices and Bulk valuesPhysical Properties ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 102 Figure-9 Comparison of thickness of handsheets made from elephant dung pulp C-1, C-2 and C-3 (C-1, C-2 and C-3 refers to cooking of the pulp sample at conditions mentioned in Table 2) Conclusion Exoticpapersmadefromnon-woodeco-friendlyfibersarevaluedbyenvironmentalistsandpulpandpaperscientistsallovertheglobe.Inviewofthepresentstudy,itcanbeconcludedthatelephantdungcansuccessfullybeusedasrawmaterialwhenpulpedbychemithermomechnical(CTMP),semi-chemicalandchemicalpulpingprocesses.Thehandsheetsproducedweretestedforphysicalandopticalpropertiesandtheresultsshowedthatthepaperproducedisanestheticallypresentableexoticpaper.Theresearchprovedthatdependingonthepurposeofuse,paperswithdifferentopticalandphysicalpropertiescanbeproducedbyvaryingthecookingconditions.Elephantdungpaperisnotonlyexoticbutalsogivesmessageofanimalconservationandprotectionwhilereducingthegraveproblemofdungdisposal.Acknowledgements i. Dr.AmirSaid,Manager,R,andDepartment,PackagesLimited,Pakistan. ii. LahoreCollegeforWomenUniversity,Lahore,Pakistan.References 1.DiesenM.,Worldpapermarkets,PapermakingScienceandTechnology,EconomicsofthePulpandPaperIndustry 1(1)65-661998)2.FengZ.andAlenR.J.,SodaAQpulpingofwheatstraw,AppitaJournal 54(2)217-220 (2001)3.YoungJ.,Non-woodrawmaterialforpaper-making,PulpandPaper 66(7), (1992)4.SvenningsenN.,VisvanathanC.,MalinenR.andPatankarM.,Cleanerproductinthepulpandpaperindustry:Technologyfactsheets,AsianInstituteofTechnologyandtheUnitedNationsEnvironmentProgramme(UNEP)1-35 (1999)5.RezayatiC.P.,MohammadiR.J.,HashemiS.J.andKazemiN.S.,Influenceofdimethylformamidepulpingofbagasseonpulpproperties,BioresourceTechnology 97(18)2435–2442 (2006)6.JacobsR.S.,PanW.L.,FullerW.S.andMsKeanW.T.,GeneticandenvironmentalinfluencesonthechemicalcompositionofWashingtonStatewheatstraw,ProceedingsoftheTAPPIPulpingConferenceTAPPIPress 2(1)839-846 (1999)7.GrahamM.D.,WrenS.andAdamsW.M.,AnAssessmentofElephant-CompatibleLivelihoods:TrialsofBeekeeping,ChilliFarmingandtheProductionofDungPaperinLaikipia,Kenya3(1) (2009)8.BrochJ.F.,EducationalUseofElephantDung,JournaloftheInternationalZooEducatorsAssociation 47(11)7-11(2011)9.MeissnerH.H.,SpreethE.B.,DeVillersP.A.,PietersenE.W.,HugoT.A.andTerblancheB.F., Qualityoffoodandvoluntaryintakebyelephantsasmeasuredbyligninindex,SouthAfricanJournalofWildlifeResearch 20(3)104-110 (1990) 150155160165170175180185190195200C-1C-2C-3ValuesThickness (micrometer) ResearchJournalofChemicalSciences___________________________________________________________ISSN2231-606XVol. 4(8), 94-103,August (2014) Res.J.Chem.Sci. International Science Congress Association 103 10.RoehrsJ.M.,BrockwayC.R.,RossD.V.,ReichardT.A.andUllreyD.E.,DigestibilityoftimothyhaybyAfricanelephants,ZooBiology 8(1)331-337 (1989)11.CavendishM., MammalianAnatomy;Anillustratedguide63-65 (2010)12.BlancJ.J.,BarnesR.F.W.,CraigG.C.,DublinH.T.,ThoulessC.R.,Douglas-HamiltonI.andHartJ.A.,AfricanElephantStatusReport2007:AnUpdatefromtheAfricanElephantDatabase,IUCNSpeciesSurvival, (2007)13.GrahamM.D.,WrenS.andAdamsW.M.,AnAssessmentofElephant-CompatibleLivelihoods:TrialsofBeekeeping,ChilliFarmingandtheProductionofDungPaperinLaikipia,Kenya3(1) (2009)14.210cm-03,Samplingandtestingofwoodpulpshipmentsformoisture, (2003)15.203cm-99,Alpha-,Beta-andGamma-celluloseinPulp,TAPPI(2009)16.222om-02,AcidInsolublelignininwoodandpulp,TAPPI (2002)17.SCAN-C26:67,Formationofhandsheets,ScandinavianPulp,PaperandBoardTestingCommittee(1967)18.452om-08,Brightnessofpulp,paperandboard,TAPPI(2008)19.ISO2471,Paperandboard-determinationofopacity(paperbacking)–Diffusereflectancemethod,InternationalOrganizationforStandardization, (1998) 20.ASTME313,StandardPracticeforCalculatingYellownessandWhitenessIndicesfromInstrumentallyMeasuredColorCoordinates,2012)21.SCAN–P7:75,1995,Thickness,micron,ScandinavianPulp,PaperandBoardTestingCommittee(1995)22.SCAN–P6:75,Grammageofpaperandboard,ScandinavianPulp,PaperandBoardTestingCommittee(1995)23.411om-97,Bulkofpaper.TAPPI,(1997)24.403om-02,Burstindexofpaperandpaperboard,TAPPI (2008)25.414om-88,InternalTearingResistanceofpaper,TAPPI,(1998)26.404cm-92,Tensilestrengthofpaper,TAPPI (1992)27.NieschlagH.J.,NelsonG.H.andWolffJ.A.,PerdueR.E.,searchfornewfibercrops,TAPPI,43(1)193-201(1960)28.PotucekF.andMiklikJ.,Displacementwashingofkraftpulpcookedfromblendofhardwoods , ChemicalPaper.,64(2)147-153 (2009)29.ScottW.E.,DearthL.R.andJordanB.D.,Opticalpropertiesofpaper, PulpandPaperManufacture, 9(1)152-191 (1992)30.HornR.A.,Progressinpaperrecycling,PaperTradeJournal 4(2), 76 (1975)