@Research Paper <#LINE#>Zr (IV) Complex derived from Salicylaldehyde and 2,4-dinitrophenylhydrazine Schiff base Ligand: Synthesis, Characterization and Biological Evaluation<#LINE#>Brajesh @Nainvi,Ashok @Singh,Nand @Lal <#LINE#>1-6<#LINE#>1.ISCA-RJCS-2025-001.pdf<#LINE#>Department of Chemistry, V.S.S.D. College, Kanpur 208002 UP, India@Department of Chemistry, V.S.S.D. College, Kanpur 208002 UP, India@Department of Chemistry, V.S.S.D. College, Kanpur 208002 UP, India<#LINE#>19/1/2025<#LINE#>8/7/2025<#LINE#>The Schiff base complex of Zirconium (IV) nitrateis synthesized with ligand obtained by condensation of Salicylaldehyde and 2,4-dinitrophenylhydrazine. The ligand and complex are characterized using Spectroscopic techniques, including FTIR, UV-Visible, 1HNMR and13CNMR. The biological activities of the metal-ligand complex have been investigated in relation to both gram-positive and gram-negative bacteria as well as various fungal species.<#LINE#>Wang, X. Y., Avendaño, C., & Dunbar, K. R. (2011).@Molecular magnetic materials based on 4d and 5d transition metals.@Chemical Society Reviews, 40(6), 3213-3238.@Yes$Lekha, L., Raja, K. K., Rajagopal, G., & Easwaramoorthy, D. (2014).@Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines.@Journal of organometallic chemistry, 753, 72-80.@Yes$Sinn, E., & Harris, C. M. (1969). Schiff base metal complexes as ligands1. Coordination Chemistry Reviews, 4(4), 391-422.@undefined@undefined@Yes$Singh, P., Yadav, P., Sodhi, K. K., Tomer, A., & Mehta, S. B. (2024).@Advancement in the synthesis of metal complexes with special emphasis on Schiff base ligands and their important biological aspects.@Results in Chemistry, 7, 101222.@Yes$Gupta, K. C., & Sutar, A. K. (2008).@Catalytic activities of Schiff base transition metal complexes.@Coordination Chemistry Reviews, 252(12-14), 1420-1450.@Yes$Ghanghas, P., Choudhary, A., Kumar, D., & Poonia, K. (2021).@Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications.@Inorganic Chemistry Communications, 130, 108710.@Yes$Chohan, Z. H., Arif, M., Akhtar, M. A., & Supuran, C. T. (2006). Metal‐based antibacterial and antifungal agents: synthesis, characterization, and in vitro biological evaluation of Co (II), Cu (II), Ni (II), and Zn (II) complexes with amino acid‐derived compounds. Bioinorganic Chemistry and Applications, 2006(1), 083131.@undefined@undefined@Yes$Süleymanoğlu, N., Demir, E. E., Direkel, Ş., & Ünver, Y. (2020).@Theoretical study and antimicrobial activities of New Schiff base derivatives with thiophene.@Journal of Molecular Structure, 1218, 128522.@Yes$Şabik, A. E., Karabörk, M., Ceyhan, G., Tümer, M., & Dığrak, M. (2012).@Polydentate schiff base ligands and their La (III) complexes: Synthesis, characterization, antibacterial, thermal, and electrochemical properties.@International Journal of Inorganic Chemistry, 2012(1), 791219.@Yes$Dalapati, S., Jana, S., Alam, M. A., & Guchhait, N. (2011). Multifunctional fluorescent probe selective for Cu (II) and Fe (III) with dual-mode of binding approach. Sensors and Actuators B: Chemical, 160(1), 1106-1111.@undefined@undefined@Yes$Basak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G., & Rodriguez, M. G. (2007).@Three new pseudohalide bridged dinuclear Zn (II) Schiff base complexes: Synthesis, crystal structures and fluorescence studies.@Polyhedron, 26(17), 5104-5112.@Yes$Naeimi, H., Safari, J., & Heidarnezhad, A. (2007).@Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine.@Dyes and Pigments, 73(2), 251-253.@Yes$Gaballa, A. S., Asker, M. S., Barakat, A. S., & Teleb, S. M. (2007).@Synthesis, characterization and biological activity of some platinum (II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine.@Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(1), 114-121.@Yes$Maity, D., Drew, M. G., Godsell, J. F., Roy, S., & Mukhopadhyay, G. (2010).@and characterization of Cu (II) complexes of tetradentate and tridentate symmetrical Schiff base ligands involving o-phenelenediamine, salicylaldehyde and diacetylmonoxime.@Transition Metal Chemistry, 35(2), 197-204.@Yes$Naeimi, H., & Moradian, M. (2010).@Synthesis and characterization of nitro-Schiff bases derived from 5-nitro-salicylaldehyde and various diamines and their complexes of Co (II).@Journal of Coordination Chemistry, 63(1), 156-162.@Yes <#LINE#>Synthesis, studying the spectral, thermal aspects and in vitro Antimicrobial activity of Novel Azo Co-ordination Polymers<#LINE#>Subhash B. @Thakor,V.G. @Patel <#LINE#>7-14<#LINE#>2.ISCA-RJCS-2025-008.pdf<#LINE#>Shri PHG Muni, Arts & Science College, Gujarat University, Kalol–382721, Gujarat, India@Department of Chemistry, Municipal Arts & Urban Bank Science College, Mehsana, Gujarat, India<#LINE#>18/5/2025<#LINE#>25/7/2025<#LINE#>4,6-Dinitroresorcinol was reduced in alcoholic alkali to give a novel azo polymer, poly [azo(1-napthol)]. These co-ordinationpolymers of polyazochelates we reprepared with cu+2, Ni+2, Co+2, Mn+2 and Zn+2 metal ions. The novel polymer synthesized at Batch: 1 were characterized by following techniques such as elemental analysis, IR spectra & thermo gravimetric analysis. The co-ordination polymers were characterized by elemental Analysis, IR spectral and diffuse reflectance spectral studies and were evaluated for their thermalst ability by thermogravimetric Analysis. The number average molecular weight (Mn) was determined by non aqueous conductometric titration. Furthermore, the magnetic susceptibilities of these coordination polymers have been examined. Antimicrobial efficacy of all these compound also been scrutinized.<#LINE#>Kaliyappan, T. and Kannan P. (2000).@Co-ordination polymers.@Prog. Polym. Sci., 25(3), 343-370.@Yes$Miriam Dimartino, L. Sessa, Martina Dimatteo Barbara Panunzi, S. Piotto and S. Concilio. (2022).@Azobenzeneas Anti microbialmolecules.@27(17), 5643.@Yes$H.U.R. Shahetal (2021).@syntheticofazo derivatives a brief over view.@J. Mol. Struct., 1244, 131181.@Yes$Patel, R.D., Patel, H.S. and Patel, S.R. (1987).@Co-ordination polymers of bis (8-hydroxy 5-quinolylmethylene) sulphide (BHQS).@Eur. Polym. J; 23, 229-231.@Yes$Vashi, R.T. and Patel, S.B. (2009).@Synthesis, Characterization and Antifungal Activity of Novel Quinazolin-4-one Derivatives Containing 8-Hydroxyquinazoline Ligand and its Various Metal Complexes.@E-Journal of Chemistry, 6(S1), S445-S451.@Yes$Hany M. Abd El, Lateef, maim khalaf amera mohmoyd kandeel and Autara Aly abdon. (2023).@Synthesis, characterization, antimicrobial Density functional theory and molecular Docking studies of Novel Mn(II), Fe(III) and Cr(III) complexes incorporating 4(2-hydroxyphenyl azo)1-napthol(Az).@ACS omega.@Yes$Patel, K. D. and Panchani, S.C. (2004).@Coordination Polymers of 4,4’-(8-Quinolinolyl methylenoxy) diphenyl sulfide.@E-Journal of Chemistry, 1(3), 158-163.@Yes$Patel, H.S., Dixit, R.B. and Shah, T.B. (2001).@Co-ordination Polymers of 1,6-bis(8-hydroxy quinolin-5-yl)- 2,5-dioxa-3-methyl hexane.@Int. J. Polym. Material., 49(27).@Yes$Obadahun J, Oparah E.N., Agho o.B., Okheh .Q, (2020).@Synthesis, characterization and Antimicrobial properties of polyaniline Encapsulated Azo Dye.@7(7), 229-236.@Yes$Canakcid Serin S. (2019).@Synthesis of new Azo dye polymers based on napthol by oxidative polycondensation: antimicrobial activity and fastness studies.@27(1).@Yes$Ali, Y., Hamid, S. A., & Rashid, U. (2018).@Biomedical applications of aromatic azo compounds.@Mini reviews in medicinal chemistry, 18(18), 1548-1558.@Yes$Kitagawa, S., Kitaura, R., & Noro, S. I. (2004).@Functional porous coordination polymers.@Angewandte Chemie International Edition, 43(18), 2334-2375.@Yes$Kitagawa, S., & Uemura, K. (2005).@Dynamic porous properties of coordination polymers inspired by hydrogen bonds.@Chemical Society Reviews, 34(2), 109-119.@Yes$Roesky, H. W. and Andruh, M. (2003). Co-ord. Chem. Rev., 236, 91.@undefined@undefined@No$Janiak, C. (2003).@Engineering coordination polymers towards applications.@Dalton Transactions, (14), 2781-2804.@Yes$Patel, N. H., Patel, K. N., & Patel, M. N. (2002).@Synthesis and characterization of coordination chain polymers of some transition metals with Schiff base.@Synthesis and reactivity in inorganic and metal-organic chemistry, 32(10), 1879-1887.@Yes$Jerca, F. A., Jerca, V. V., & Hoogenboom, R. (2022).@Advances and opportunities in the exciting world of azobenzenes.@Nature Reviews Chemistry, 6(1), 51-69.@Yes$Zhang, G. Q., Yang, G. Q. and Ma, J. S. (2006). Cryst. Growth Des., 6, 357.@undefined@undefined@No$Ghosh, A. K., Ghoshal, D., Ribas, J., Mostafa, G., & Chaudhuri, N. R. (2006).@Hydrogen-bonded assembly of water and chloride in a 3D supramolecular host.@Crystal growth & design, 6(1), 36-39.@Yes$Zang, S., Su, Y., Li, Y., Zhu, H., & Meng, Q. (2006).@One dense and two open chiral metal− organic frameworks: crystal structures and physical properties.@Inorganic chemistry, 45(7), 2972-2978.@Yes$Xu, Y., Yuan, D., Wu, B., Han, L., Wu, M., Jiang, F. and Hong, M. (2006). Cryst. Growth Des., 6, 1168.@undefined@undefined@No$Desousa, G.A., (1978). J. Poly. Sci. Polym. Chem., 16, 2671.@undefined@undefined@No$Charles, R. G., Freiser, H., Friedel, R., Hilliard, L. E., & Johnston, W. D. (1956).@Infra-red absorption spectra of metal chelates derived from 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 4-methyl-8-hydroxyquinoline.@Spectrochimica Acta, 8(1), 1-8.@Yes$Murrey, P. R., Baran, E. J., Pfuller, M. A., Tenovov, F. C., & Yolken, R. H. (1995).@An antimicrobial agent and susceptibility testing Americal Soc.@Microbiology, Washington DC, 1327.@Yes$Arthinton, B. A. (2000).@Motley. M DW Warnoek, and CJ Morrison.3 J. Clin. Microbilogy, 38, 1254.@undefined@Yes$Parekh, H., Panchal, P., & Patel, M. (2006).@Transition metal (II) ions with dinegative tetradentate schiff base: Synthetic, thermal, spectroscopic and coordination aspects.@Journal of thermal analysis and calorimetry, 86(3), 803-807.@Yes$Charles, R. G., Freiser, H., Friedel, R., Hilliard, L. E., & Johnston, W. D. (1956).@Infra-red absorption spectra of metal chelates derived from 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 4-methyl-8-hydroxyquinoline.@Spectrochimica Acta, 8(1), 1-8.@Yes$Hathway, B.J. and Tomilson, A.A.G. (1980). Co-ord. Chem. Rev., 5(1).@undefined@undefined@No$Pancholi, H. B., & Patel, M. M. (1996).@Characterization and antimicrobial activities of some new coordination polymers.@Journal of Polymer Materials, 13(4), 261-267.@Yes$Pappalardo, R. (1960).@Note on the optical absorption of MnCl2 and MnBr2.@The Journal of Chemical Physics, 33(2), 613-614.@Yes$Figgis, B. N., Lewis, J. and Wilkins, R. G. (1960).@Modern coordination chemistry.@Edited by Lewis, J. & Wilkins, RG New York: Interscience, 403-406.@Yes$Nikolav, A.V., Logvineko, V. A. and Mychina, L.T. (1969).@Thermal Analysis.@Academic Press, NewYork, Vol.2,p. 779.@No$Panchal, P. K., Parekh, H. M., Pansuriya, P. B., & Patel, M. N. (2006).@Bactericidal activity of different oxovanadium (IV) complexes with Schiff bases and application of chelation theory.@Journal of Enzyme Inhibition and Medicinal Chemistry, 21(2), 203-209.@Yes$Tweedy, B. G. (1964).@Plant extracts with metal ions as potential antimicrobial agents.@Phytopathology, 55(8), 910-914.@Yes <#LINE#>Feasibility of Bioethanol production from selected Livestock manure<#LINE#>O.A. @Akinyele,A.I. @Bamgboye <#LINE#>15-23<#LINE#>3.ISCA-RJCS-2025-009.pdf<#LINE#>Department of Agricultural and Bio-Environmental Engineering, Federal College of Agriculture, Ibadan, Nigeria@Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria<#LINE#>9/6/2025<#LINE#>3/8/2025<#LINE#>The study aimed to determine the bioethanol potential of three selected livestock manure. The manure was hydrolysed by dilute H2SO4 (250, 350 and 450 ml) at 100℃ for 30 mins. Maximum reducing sugar (glucose) was obtained from hydrolysis of 20 kg poultry manure by 450 ml H2SO4 at 100℃ for 30 mins. Ethanol was produced from 10, 15 and 20 kg each of cow, pig and poultry manure through biochemical conversion process. Ethanol of 4.0, 6.25 and 10.0 l/kg; 4.5, 6.75 and 10.5 l/kg; and 4.0, 6.5 and 10.25 l/kg were produced from 10, 15 and 20 kg each from cow, pig and poultry manure, respectively. The amount of ethanol produced increases with the quantity of manure applied in all the three samples, which also increases with the concentration of acid used for hydrolysis at 24 hours fermentation time. The hydrolysis process enhanced the quantity of ethanol obtained, as the temperature was high enough to break cellulosic material in the manure. The ethanol was obtained at a cooling temperature of 70-75℃, while at 90.1℃, the distilled liquid turns to steam which may actually lead to reduction in the quantity of ethanol produced. The study shows that the livestock manure has a good reducing sugar potential to produce ethanol. Hence, the bioethanol production substantially reduced the pollution strength of the livestock manure.<#LINE#>Akinyele, O.A. and Bamgboye, A.I. (2021).@Ethanol production from livestock manure: A review.@Research Journal of Chemical Sciences, 11(2), 7-19.@Yes$Woldesenbet, A.G., Shiferaw, G. and Chandravanshi, B.S. (2013).@Bioethanol production from poultry manure at Bonga poultry farm in Ethiopia.@African Journal of Environmental Science and Technology, 7(6), 435-440. DOI: 10.5897/AJEST2013.1443.@Yes$Sajid, K., Rehan, M. and Nizami, A-S. (2025).@Optimizing bioethanol production by comparative environmental and economic assessments of multiple agricultural feedstocks.@Processes, 13, 1027. https://doi.org/10.3390/pr13041027@Yes$Scott, F., Quintero, J., Morales, M., Conejeros, R., Cardona, C. and Aroca, G. (2013).@Process design and sustainability in the production of bioethanol from lignocellulosic materials.@Bio. Technol., 16(3), 1-7@Yes$Chen, S., Wen, Z., Liao, W., Liu, C., Kincaid, R.L. and Harrison, J.H. (2005).@Studies into using manure in a bio-refinery concept.@Applied Biochemistry and Biotechnology, 121-124, 999-1015.@Yes$Liao, W., Liu, Y., Liu, C. and Chen, S. (2004).@@Optimising dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material - dairy manure.@Yes$Wen, Z., Liao, W. and Chen, S. (2004).@@Hydrolysis of animal manure lignocellulosics for reducing sugar production.@Yes$Davison, B., Evans, B., Finkelstein, M., McMillan, J., Liao, W. and Wen, Z. (2005).@Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure, in: 26th symposium on biotechnology for fuels and chemicals.@Humana Press, 1017-1030.@No$Rajput, C. and Shrivastav, P. (2025).@Comparative analysis of bioethanol production from agricultural wastes using Saccharomyces cerevisiae, Aspergillus niger, and their co-culture.@International Journal of Advanced Biochemistry Research, 9(1), 105-109.@No$Hamdi, G.M., Abbas, M.N., and Ali, S.A.K. (2024).@Bioethanol production from agricultural waste: A review. Journal of Engineering and Sustainable Development, 28(2).@undefined@Yes$Ahamefule, C.S., Osilo, C., Ahamefule, B.C., Madueke, S.N. and Moneke, A.N. (2024).@Simultaneous production of biofuel from agricultural wastes and bioremediation of the waste substrates: A review.@Current Research in Microbial Sciences, 7, 100305@Yes$Jayakumar, M., Gindaba, G.T., Gebeyehu, K.B., Periyasamy, S., Jabesa, A., Baskar, G., John, B.I. and Pugazhendhi, A. (2023).@Bioethanol production from agricultural residues as lignocellulosic biomass feedstock@Science of The Total Environment, 879, 163158@Yes$Muktham, R., Bhargava, S.K., Bankupalli, S. and Ball, A.S. (2016).@A review on first and second-generation bioethanol production - recent progress.@Journal of Sustainable Bioenergy Systems, 6, 72-92.@Yes$El-Naggar, N.E., Deraz, S., Khalil, A. (2014).@Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: Current status and recent developments.@Biotechnology, 13(1), 1-21.@Yes$Vohra, M., Manwar, J., Manmode, R., Padgilwar, S. and Patil, S. (2014).@Bioethanol production: Feedstock and current technologies.@Journal of Environmental Chemical Engineering, 2, 573-584. http://dx.doi.org/10.1016/j.jece. 2013.10.013@Yes$Zabed, H., Faruq, G., Sahu, J.N., Azirun, M.S., Hashim, R. and Boyce, A.N. (2014).@Bioethanol production from fermentable sugar juice.@The Scientific World Journal, Article ID 957102, 11 pages. http://dx.doi.org/10.1155/ 2014/957102.@Yes$Almodares, A. and Hadi, M.R. (2009).@Production of bioethanol from sweet sorghum: A review.@African Journal of Agricultural Research, 4, 772-780.@Yes$Champagne, P. (2007).@Bioethanol from agricultural waste residues.@Environmental Progress, 27(1), 51-57. DOI 10.1002/ep.@Yes$Galbe, M. and Zacchi, G. (2002).@A review of the production of ethanol from softwood.@Applied Microbiology and Biotechnology, 59, 618-628.@Yes$Akinyele, O.A. (2024).@Energy-cost and environmental impact analyses of bioethanol production from selected livestock manure.@A Ph.D. Thesis in the Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria.@No <#LINE#>A Heterogeneous approach to Sulfide Oxidation using TBHP-Functionalized Polystyrene Resin<#LINE#>Jagdish U. @Chavan,Rajendra V. @Patil,Anil G. @Beldar <#LINE#>24-28<#LINE#>4.ISCA-RJCS-2025-011.pdf<#LINE#>Department of Chemistry, PSGVPM’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, 425409, MS, India@Department of Chemistry, PSGVPM’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, 425409, MS, India@Department of Chemistry, PSGVPM’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, 425409, MS, India<#LINE#>7/3/2025<#LINE#>1/8/2025<#LINE#>Polymer supported reagent based synthetic strategies have been attracted the attention of chemists due to the providence of a heterogeneous reaction environment which eases the work up procedures and the recovered support can be reused. Owing to such advantages, the attempt has been made to develop heterogeneous oxidation method for sulfides under conventional and microwave conditions using resin bounded t-butyl hydroperoxide. The method succeeded to provide excellent yields in a short reaction time compared to conventional reports. The t-butyl hydroperoxide functionalized resin has been prepared and used as a heterogeneous reagent for the oxidation of sulfides. The recovered heterogeneous polymer support was reused for several times after re-functionalization using t-butyl hydroperoxide without loss in activity. The sulfoxides were prepared under the both conventional as well as microwave conditions from sulfides using supported oxidizing reagent.<#LINE#>McKillop, A. and Tarbin, J. A., (1983)@Sodium perborate-a cheap and effective reagent for the oxidation of anilines and sulphides.@Tetrahedron Lett., 24 (14), 1505-1508.@Yes$Khurana, J. M.; Panda, A. K.; Ray, A. and Gogia, A., (1996)@Rapid oxidation of sulfides and sulfoxides with sodium hypochlorite.@Org. Prep. Proced. Int., 28(2), 234-237.@Yes$Weber, J.; Schneider, M.; Salami, B. and Paquer, D., (1986).@Oxydation de sulfure en sulfoxyde par l@Recl. Trav. Chim. Pays-Bas, 105(3), 99-102.@Yes$Barton, D. H.; Li, W. and Smith, J. A. (1998).@Binuclear manganese complexes as catalysts in the selective and efficient oxidation of sulfides to sulfones.@Tetrahedron Lett., 39(39), 7055-7058.@Yes$Kennedy, R. J. and Stock, A. M., (1960).@The oxidation of organic substances by potassium peroxymonosulfate.@J. Org. Chem., 25(11), 1901-1906.@Yes$Trost, B. M. and Curran, D. P. (1981).@Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate.@Tetrahedron Lett., 22(14), 1287-1290.@Yes$Goheen, D. and Bennett, C. (1961).@Oxidation of Dialkyl Sulfides with Nitric Acid.@J. Org. Chem., 26(4), 1331-1333.@Yes$Tse-Lok, H. and Wong, C., (1972).@Ceric Ammonium Nitrate Oxidation of Diaryl Sulfides.@Synthesis, (10), 561-562.@Yes$Leonard, N. J. and Johnson, C. R. (1962).@Periodate oxidation of sulfides to sulfoxides. Scope of the reaction.@J. Org. Chem., 27(1), 282-284.@Yes$Varma, R. S.; Saini, R. K. and Meshram, H. M. (1997).@Selective oxidation of sulfides to sulfoxides and sulfones by microwave thermolysis on wet silica-supported sodium periodate.@Tetrahedron Lett., 38(37), 6525-6528.@Yes$Adam, W. and Hadjiarapoglou, L. (1992).@α-Oxo sulfones by dimethyldioxirane oxidation of thiol esters.@Tetrahedron Lett., 33(4), 469-470.@Yes$Edwards, D. and Stenlake, J., (1954).@The oxidation of alkyl sulphides.@Journal of the Chemical Society (Resumed), 3272-3274.@Yes$Gokel, G. W.; Gerdes, H. M. and Dishong, D. M., (1980).@Sulfur heterocycles. 3. Heterogeneous, phase-transfer, and acid-catalyzed potassium permanganate oxidation of sulfides to sulfones and a survey of their carbon-13 nuclear magnetic resonance spectra.@J. Org. Chem., 45(18), 3634-3639.@Yes$Djerassi, C. and Engle, R. R. (1953).@Oxidations with ruthenium tetroxide.@J. Am. Chem. Soc., 75(15), 3838-3840.@Yes$Venier, C. G.; Squires, T. G.; Chen, Y. Y. and Smith, B. F. (1982).@Peroxytrifluoroacetic acid oxidation of sulfides to sulfoxides and sulfones.@J. Org. Chem., 47(19), 3773-3774.@Yes$Murray, R. W. and Jeyaraman, R., (1985).@Dioxiranes: synthesis and reactions of methyldioxiranes.@J. Org. Chem., 50(16), 2847-2853.@Yes$Breton, G. W.; Fields, J. D. and Kropp, P. J., (1995)@Surface-mediated reactions. 5. Oxidation of sulfides, sulfoxides, and alkenes with tert-butyl hydroperoxide.@Tetrahedron Lett., 36(22), 3825-3828.@Yes$Kaldor, S. W. and Hammond, M., (1991).@A mild, osmium tetraoxide-catalyzed method for the oxidation of sulfides to sulfones.@Tetrahedron Lett., 32(38), 5043-5046.@Yes$Paquette, L. and Carr, R., (1990).@Phenyl vinyl sulfone and sulfoxide.@Org. Synth., 7, 453-456.@Yes$Trost, B. M. and Braslau, R. (1988).@Tetra-n-butylammonium oxone. Oxidations under anhydrous conditions.@J. Org. Chem., 53(3), 532-537.@Yes$Kagan, H. and Rebiere, F., (1990).@Some routes to chiral sulfoxides with very high enantiomeric excesses.@Synlett., (11), 643-650.@Yes$Fernandez, I. and Khiar, N. (2003).@Recent developments in the synthesis and utilization of chiral sulfoxides.@Chem. Rev., 103(9), 3651-3706.@Yes$Collins, F. M.; Lucy, A. R. and Sharp, C., (1997)@Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis.@J. Mol. Catal. A Chem., 117(1-3), 397-403.@Yes$Babich, I. and Moulijn, J. (2003).@Science and technology of novel processes for deep desulfurization of oil refinery streams: a review.@Fuel, 82(6), 607-631.@Yes$Kagan, H. B. (2000).@Asymmetric oxidation of sulfides. In Catalytic asymmetric synthesis.@Ojima, I., Ed. Wiley-VCH; pp 327-356.@Yes$Lane, B. S. and Burgess, K., (2003).@Metal-catalyzed epoxidations of alkenes with hydrogen peroxide.@Chem. Rev., 103(7), 2457-2474.@Yes$Lai, K. C.; Lam, S. K.; Chu, K. M.; Wong, B. C.; Hui, W. M.; Hu, W. H.; Lau, G. K.; Wong, W. M.; Yuen, M. F. and Chan, A. O., (2002).@Lansoprazole for the prevention of recurrences of ulcer complications from long-term low-dose aspirin use.@N. Engl. J. Med., 346(26), 2033-2038.@Yes$Sovova, M. and Sova, P. (2003).@Pharmaceutical significance of Allium sativum L. 4. Antifungal effects.@Ceska. Slov. Farm., 52(2), 82-87.@Yes$Kotelanski, B.; Grozmann, R. J. and Cohn, J. N., (1973)@Positive inotropic effect of oral esproquin in normal subjects.@Clin. Pharmacol. Ther., 14(3), 427-433.@Yes$Schmied, R.; Wang, G.-X. and Korth, M., (1991)@Intracellular Na+ activity and positive inotropic effect of sulmazole in guinea pig ventricular myocardium. Comparison with a cardioactive steroid.@Circ. Res., 68(2), 597-604.@Yes$Nieves, A. V. and Lang, A. E., (2002).@Treatment of excessive daytime sleepiness in patients with Parkinson@Clin. Neuropharmacol, 25(2), 111-114.@Yes$Padmanabhan, S.; Lavin, R. C. and Durant, G. J., (2000)@Asymmetric synthesis of a neuroprotective and orally active N-methyl-D-aspartate receptor ion-channel blocker, CNS 5788.@Tetrahedron: Asymmetry, 11(17), 3455-3457.@Yes$Gupta, D.; Beldar, A. and Tank, R., (2006).@Suspension copolymerization of styrene and divinylbenzene: Formation of beads.@J. Appl. Polym. Sci., 101(5), 3559-3563.@Yes$Shaabani, A.; Safaei, H. R. and Bazgir, A., (2000)@Oxidation of Sulfides to Sulfoxides by NaBrO3-NH4Cl in Aqueous Acetonitrile.@@Yes$Chen, F.; Wan, J.; Guan, C.; Yang, J. and Zhang, H., (1996).@Tetrabutylammonium peroxydisulfate in organic synthesis; III1. An efficient procedure for the selective oxidation of sulfides to sulfoxides by tetrabutylammonium peroxydisulfate.@Synthetic communications, 26(2), 253-260.@Yes <#LINE#>Study of the natural aging of Traditionally produced Shea Butter in three communes of Northern Benin: Pehunco, Sinendé, and Kandi<#LINE#>K. Joachim @Dalohoun,F.C. Alexis @Togbé,Egbemimon Daniel @Ahlonsou,Zeynabou Trall @NDA,R. Modéran @Toklo,Roger Gérard @Josse <#LINE#>29-34<#LINE#>5.ISCA-RJCS-2025-015.pdf<#LINE#>Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), National University of Sciences, Technologies, Engineering Et Mathematics, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), National University of Sciences, Technologies, Engineering Et Mathematics, Benin and City and Environment Department, Geosciences, Environment and Applications Laboratory, National University of Sciences, Technologies, Engineering Et Mathematics, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), National University of Sciences, Technologies, Engineering Et Mathematics, Benin and City and Environment Department, Geosciences, Environment and Applications Laboratory, National University of Sciences, Technologies, Engineering Et Mathematics, Benin@City and Environment Department, Geosciences, Environment and Applications Laboratory, National University of Sciences, Technologies, Engineering Et Mathematics, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), National University of Sciences, Technologies, Engineering Et Mathematics, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), National University of Sciences, Technologies, Engineering Et Mathematics, Benin<#LINE#>16/9/2025<#LINE#>30/9/2025<#LINE#>This study investigates the natural aging of traditionally produced shea butter from the northern Beninese communes of Pehunco, Sinendé, and Kandi over a six-month period. The evolution of key quality parameters, including organoleptic properties, unsaponifiable matter, acid value, and peroxide value was monitored under ambient storage conditions. Results indicated significant temporal changes in all metrics. Organoleptic assessment revealed a progressive intensification of color and the emergence of rancid odors in some samples. A significant decline in unsaponifiable matter content (29.16% to 31.80% decrease), indicative of the degradation of bioactive compounds like sterols and tocopherols, was observed. Furthermore, a gradual increase in peroxide value confirmed the advancement of lipid oxidation. While the acid value showed only a modest rise, remaining within quality thresholds, the overall findings demonstrate that natural aging substantially alters shea butter's physicochemical and sensory profile. This study underscores the necessity of optimizing storage conditions, particularly protection from light and oxygen, to preserve the quality, stability, and bioactive integrity of artisanal shea butter for cosmetic and nutritional applications.<#LINE#>Bouvet, J.-M. (2013).@INNOVAKAR: Innovative tools and techniques for sustainable use of the shea tree in Sudano-Sahelian zone—Publishable final activity report.@@Yes$Ky-Dembele, C., Bayala, J., Boffa, J.-M., Kalinganire, A., &Minang, P. A. (2021).@Shea tree crop management in West Africa.@In Tree commodities and resilient green economies in Africa. World Agroforestry (ICRAF).@Yes$Amusa, T. O., Avana-Tientcheu, M. L., Awazi, N. P., & Chirwa, P. W. (2024).@The role of non-timber forest products for sustainable livelihoods in African multifunctional landscapes.@In Trees in a sub-Saharan multi-functional landscape: Research, management, and policy (pp. 153–178). Springer.@Yes$Goreja, W. (2004).@Shea butter: The nourishing properties of Africa’s best-kept natural beauty secret.@TNC International Inc.@Yes$Lovett, P. N. (2015).@Shea butter: Properties and processing for use in food.@In Specialty oils and fats in food and nutrition (pp. 125–158). Elsevier.@Yes$Sualihu, A. (2019).@The effects of shea butter processing and marketing on incomes of rural women in the Northern Region of Ghana [Doctoral dissertation].@@Yes$Merinosy, M. F. F., Achigan-Dako, E. G., Gnanglé, P. C., Kassa, E., & Boffa, J.-M. (2021).@Morphotype classification criteria, nomenclature of shea varieties [Vitellaria paradoxa (C.F. Gaertn)], and influence of sociocultural factors on perceived shea natural variation across parklands in Benin.@Genetic Resources, 2(5), 21–37.@Yes$Honfo, F., Hell, K., Akissoé, N., Coulibaly, O., Fandohan, P., & Hounhouigan, J. (2011).@Effect of storage conditions on microbiological and physicochemical quality of shea butter.@Journal of Food Science and Technology, 48(3), 274–279. https://doi.org/10.1007/s13197-010-0165-3@Yes$Goumbri, B. W., da Silva, T. L. T., Marini, R. D., Semdé, R., Somé, T. I., & Danthine, S. (2022).@African shea butter properties related to common extraction technologies: A review.@Food and Bioprocess Technology, 15(2), 231–248. https://doi.org/10.1007/s11947-021-02712-0@Yes$Nounagnon, B. S., N’Tsoukpoe, K. E., Kpegba, K., Davou, L., Soro, Y., & Yacouba, H. (2024).@Sustainability challenges in conventional shea butter production in Africa: A review of energy consumption and resource efficiency.@Environment Systems and Decisions, 44(1), 161–176. https://doi.org/10.1007/s10669-024-09959-8@Yes$Thioune, O., Fall, A. B. K., Dieng, S., & Diop, M. (2019).@Focus on the use of shea butter as excipient for ointment.@American Journal of Pharm Tech Research, 9(5), 254–266.@Yes$Lafta, S. S. (n.d.).@The effect of utilizing shea butter mixture on physical and organoleptic properties in chocolate manufacturing.@@Yes$Fakhfakh, J., Affes, M., Jabeur, H., Ayadi, M., & Allouche, N. (2022).@The sweet and embellishing Lyciumarabicum Schweinf. ex Boiss. fruit oil: A potential source of essential ω-6 and ω-9 fatty acids, phytosterols, and carotenoids.@Turkish Journal of Chemistry, 46(6), 1883–1896. https://doi.org/10.55730/1300-0527.3492@Yes$Lettreuch, S., Fusi, D., Castellano, J. M., &McPhee, R. (2022).@Chemical composition and physico-chemical parameters of traditionally extracted oil from Argania spinosa seeds.@Phytothérapie, 20(4), 254–263. https://doi.org/10.3166/phyto-2022-0312@Yes$VE, O., &Inengite, A. (2018).@Extraction and physicochemical analysis of oil extracted from pineapple (Ananas comosus) peels.@@Yes$Gandhi, S. D. (2012).@Comparison of analytical techniques to evaluate the effect of drying on oxidative status of sliced almonds during storage [Master@@Yes$Van Aken, G., & Visser, K. (2000).@Firmness and crystallization of milk fat in relation to processing conditions.@Journal of Dairy Science, 83(9), 1919–1932. https://doi.org/10.3168/jds.S0022-0302(00)75066-7@Yes$Shahidi, F., & Hossain, A. (2022).@Role of lipids in food flavor generation.@Molecules, 27(15), 5014. https://doi.org/10.3390/molecules27155014@Yes$Roy, S., Sarkar, T., & Chakraborty, R. (2022).@Vegetable seeds: A new perspective in future food development.@Journal of Food Processing and Preservation, 46(11), e17118. https://doi.org/10.1111/jfpp.17118@Yes$Abagale, S. A., Oseni, L. A., Abagale, F. K., & Oseifosu, N. (2016).@Chemical analyses of shea butter from Northern Ghana: Assessment of six industrially useful chemical properties.@@Yes$Eknath, K. A. (2017).@Doctorate of Philosophy [Doctoral dissertation].@@Yes$Kolawole, M. T., Ibrahim, A. T., Ogundolie, F., Adams, M. D., Olajugbagbe, T. E., & Titilayo, G. I. (2024).@Qualitative parameters and deterioration kinetics of palm oil, shea butter and their blend use for frying cheese.@Journal of Food Composition and Analysis, 135, 106345. https://doi.org/10.1016/j.jfca.2024.106345@Yes$Sun, G., Sun, S., & Ashfaq, T. (2025).@Enzymatic hydrolysis of oilseeds and their by‐products for controlled aroma formation: A critical review of mechanisms and applications.@Comprehensive Reviews in Food Science and Food Safety, 24(5), e70254. https://doi.org/10.1111/1541-4337.70254@Yes$Zia, M., Shah, S., Shoukat, S., Hussain, Z., Khan, S., & Shafqat, N. (2021).@Physicochemical features, functional characteristics, and health benefits of cottonseed oil: A review.@Brazilian Journal of Biology, 82, e243511. https://doi.org/10.1590/1519-6984.243511@Yes$Erlandsson, J. O. (2025).@Quality of side streams from herring Clupea harengus [Doctoral dissertation].@@Yes <#LINE#>Effect of Temperature on the interaction of Alkali metal ions and 18-crown-6 ether in Binary system<#LINE#>R.S. @Garud,G.P. @Borse,K.H. @Patil <#LINE#>35-41<#LINE#>6.ISCA-RJCS-2025-016.pdf<#LINE#>Department of Chemistry Ranilaxmibai Mahavidyalay, Parola, Dist Jalgaon 425111, MS, India@Department of Chemistry Ranilaxmibai Mahavidyalay, Parola, Dist Jalgaon 425111, MS, India@Department of Chemistry Ranilaxmibai Mahavidyalay, Parola, Dist Jalgaon 425111, MS, India<#LINE#>13/9/2025<#LINE#>2/10/2025<#LINE#>18-crown-6 ether is widely accepted for their selectivity complexation and interaction with higher alkali metal ion, even their binding and complexation efficiency is strongly influenced by the temperature. In this research work, we investigate the effect of Variation of temperature on the stability of the complex and interaction between 18-crown-6 and alkali metals (Rb+ & Cs+) in a binary liquid systems. Viscosity and density measurements were employed to determine molecular interaction and thermodynamic parameters like ∆H#, ∆S#, and ∆G# over a temperature range 298.15K, 308.15K. The excess molar volume (VE), Viscosity deviation (Δη)and other interaction parameters data indicate that at lower temperature rise the binding affinity and complexation due to reduce the molecular movement. The complexation and interaction of 18-crown-6 and alkali metal ion depending on the ion type. The interaction and thermodynamic parameters data revealed that alkali metal ions & 18-crown-6 accepted processes in supramolecular chemistry and recommend possible applications in selective alkali metal ion extraction, drugs separation and design the sensors. In this results the sequence of interaction of 18-crown-6 with alkali metal salts as RbBr > RbCl > CsBr > CsCl.<#LINE#>Kikuchi Y., & Sakamoto Y. (2000).@Complex formation of alkali metal ions with 18-crown-6 and its derivatives in 1, 2-dichloroethane.@Analytica chimica acta, 403(1-2), 325-332.@Yes$Pedersen, C. J. (1988).@The discovery of crown ethers.3 Science, 241(4865), 536-540.@undefined@Yes$Izatt, R. M., Bradshaw, J. S., Nielsen, S. A., Lamb, J. D., Christensen, J. J., & Sen, D. (1985).@Thermodynamic and kinetic data for cation-macrocycle interaction.@Chemical Reviews, 85(4), 271-339.@Yes$Ohtsu, K., & Ozutsumi, K. (2003).@Thermodynamics of solvation of 18-crown-6 and its alkali-metal complexes in various solvents.@Journal of inclusion phenomena and macrocyclic chemistry, 45(3), 217-224.@Yes$Ozutsumi, K., Ohtsu, K., & Kawashima, T. (1994).@Thermodynamics of complexation of 18-crown-6 with sodium, potassium, rubidium, caesium and ammonium ions in N, N-dimethylformamide.@Journal of the Chemical Society, Faraday Transactions, 90(1), 127-131.@Yes$Czech, B. P., Babb, D. A., Son, B., & Bartsch, R. A. (1984).@Functionalized 13-crown-4, 14-crown-4, 15-crown-4, and 16-crown-4 compounds: synthesis and lithium ion complexation.@The Journal of Organic Chemistry, 49(25), 4805-4810.@Yes$El-Nemma, E. M., & Salman, S. R. (2004).@Molecular complexes of crown ethers: Part 8. Effect of surfactant on the charge transfer complexes of 18C6 with picric acid in the presence of alkali metal ions.@Journal of inclusion phenomena and macrocyclic chemistry, 49(3), 267-273.@Yes$Gokel, G. W., & Korzeniowski, S. H. (1982).@Crown Esters and Macrocyclic Polyether Lactones. In Macrocyclic Polyether Syntheses (220-266).@Berlin, Heidelberg: Springer Berlin Heidelberg.@Yes$Salman, S. R., Derwish, G. A., & Al-Marsoumi, S. M. (1995).@Molecular complexes of crown ethers. Part 3. Effect of cations on charge transfer complexes with TCNE.@Journal of inclusion phenomena and molecular recognition in chemistry, 23(3), 175-179.@Yes$Amini, M. K., & Shamsipur, M. (1992).@Complex formation of hydronium ion with several crown ethers in 1, 2-dichloroethane, acetonitrile, and nitrobenzene solutions.@Journal of solution chemistry, 21(3), 275-288.@Yes$El-Nemma, E. M., & Salman, S. R. (2004).@Molecular complexes of crown ethers: Part 8. Effect of surfactant on the charge transfer complexes of 18C6 with picric acid in the presence of alkali metal ions.@Journal of inclusion phenomena and macrocyclic chemistry, 49(3), 267-273.@Yes$Feller, D. (1997).@Ab initio study of M+: 18-crown-6 microsolvation.@The Journal of Physical Chemistry A, 101(14), 2723-2731.@Yes$Semnani, A., & Shamsipur, M. (1991).@A competitive polarographic study of alkaline earth complexes with some crown ethers using the Tl (I)/Tl (Hg) couple as an electrochemical probe.@Journal of electroanalytical chemistry and interfacial electrochemistry, 315(1-2), 95-101.@Yes$Foster, R. (1980).@Electron donor-acceptor complexes.@The Journal of Physical Chemistry, 84(17), 2135-2141.@Yes$Bakshi, M. S., Kohli, P., & Kaur, G. (1998).@Micelle Formation by Anionic and Cationic Surfactants in 18-Crown-6Ether+. BETA. -Cyclodextrin+ Water Systems.@Bulletin of the Chemical Society of Japan, 71(7), 1539-1542.@Yes$Feller, D. (1997).@Ab initio study of M+: 18-crown-6 microsolvation.@The Journal of Physical Chemistry A, 101(14), 2723-2731.@Yes$Shannon, R. D. (1976).@Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.@Foundations of Crystallography, 32(5), 751-767.@Yes$Hawrylak, B., Burke, S. E., & Palepu, R. (2000).@Partial molar and excess volumes and adiabatic compressibilities of binary mixtures of ethanolamines with water.@Journal of solution chemistry, 29(6), 575-594.@Yes$Kannappan, A. N., Vanaja, S., Palanivelu, N., & Rajendran, V. (1994).@Thermodynamic studies on binary liquid mixtures from ultrasonic data.@Indian Journal of Chemical Technology, 1, 124-124.@Yes$Kapadi, U. R., Hundiwale, D. G. & Patil, N. B. (2003).@Thermodynamic interaction of 2, 3-butanediol with water.@Fluid phase equilibria, 208(1-2), 91-98.@Yes$Hage, D. S., & Carr, J. D. (2011).@Analytical chemistry and quantitative analysis.@(Vol. 30). Boston: Prentice Hall.@Yes$Reddy, V. K., Rambabu, K., Devarajulu, T., & Krishnaiah, A. (1995).@Volume of mixing, speed of sound, and viscosity of methyl cellosolve with aliphatic alcohols at 308.15 K.@Journal of Chemical and Engineering Data, 40(1), 124-127.@Yes$Barrat, J. L., & Hansen, J. P. (2003).@Basic concepts for simple and complex liquids.@Cambridge University Press.@Yes$Kapadi, U. R., Hundiwale, D. G., Patil, N. B., & Lande, M. K. (2002).@Viscosities, excess molar volume of binary mixtures of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 K.@Fluid phase equilibria, 201(2), 335-341.@Yes$Borse, G. P. (2017).@Viscosities and densities for binary mi.@Research Journal of Chemical, 7(1), 1-7.@Yes$Aminabhavi, T. M., & Banerjee, K. (2001).@Thermodynamic interactions in binary mixtures of 1-chloronaphthalene with n-alkanes.@Indian Journal of Chemistry Section A, 40(1), 53-64.@Yes$Patra, K., Sadhu, B., Sengupta, A., Patil, C. B., Mishra, R. K., & Kaushik, C. P. (2021).@Achieving highly efficient and selective cesium extraction using 1, 3-di-octyloxycalix [4] arene-crown-6 in n-octanol based solvent system: experimental and DFT investigation.@RSC advances, 11(35), 21323-21331.@Yes$Ali, A., Nain, A. K., & Hyder, S. (1998).@Ion-solvent interaction of sodium iodide and lithium nitrate in N, N-dimethylformamide+ ethanol mixtures at various temperatures.@Journal-Indian Chemical Society, 75, 501-505.@Yes$Kapadi, U. R., Hundiwale, D. G., Patil, N. B., & Lande, M. K. (2003).@Effect of temperature on excess molar volumes and viscosities of binary mixtures of ethylenediamine and water.@Fluid phase equilibria, 205(2), 267-274.@Yes$Franjo, C., Jimenez, E., Iglesias, T. P., Legido, J. L., & Paz Andrade, M. I. (1995).@Viscosities and Densities of Hexane+ Butan-1-ol,+ Hexan-1-ol, and+ Octan-1-ol at 298.15 K.@Journal of Chemical and Engineering Data, 40(1), 68-70.@Yes$Wagner, B.D. (2021).@2 Host–Guest Inclusion.@Supramolecular Chemistry in Corrosion and Biofouling Protection, 17.@Yes <#LINE#>Assessment of Heavy Metals in Hand Dug wells sited close to septic tanks in Badagry Local Government Area of Lagos State, Nigeria using GIS Techniques<#LINE#>Tayo Modupe @Kayode-Isola,Olusoji @OlusegunAdebisi,Olukayode Oluwole @Isola,Sunday @Awe,Kehinde Imisi Temitope @Eniola <#LINE#>42-52<#LINE#>7.ISCA-RJCS-2025-017.pdf<#LINE#>Department of Natural Science Education, College of Science Education, Lagos State University of Education, Oto/Ijanikin, P.M.B.007 Festac Town, Lagos, Nigeria@School of Biosciences, College of Health and Life Sciences, University of Aston, Birmingham, B47ET, United Kingdom@Phamardeko Plc, Agbara, Ogun State, Nigeria@Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Kwara, Nigeria@Environmental and Public Health Research Laboratory, Department of Biological Sciences, Joseph Ayo Babalola University, Kilometre, 36 Akure Ilesha Rd, Ikeji, Nigeria<#LINE#>18/9/2025<#LINE#>4/10/2025<#LINE#>Groundwater contamination has become one of the most pressing environmental challenges of our time. Among the many pollutants that threaten water resources, microbial agents and heavy metals are of particular concern. Microbial contamination can trigger outbreaks of diseases such as cholera, while heavy metals are highly toxic even at very low concentrations. In Nigeria, the persistent shortage of safe drinking water has forced many households to rely on hand-dug wells, often constructed just a few meters from septic tanks, typically at a distance of about nine meters. This reliance on alternative water sources underscores the severity of potable water scarcity across communities. This study addresses the issue by examining the concentration of heavy metals in water samples drawn from fifteen hand-dug wells located near septic tanks in Badagry Local Government Area of Lagos State, Nigeria. Samples were collected in both the rainy and dry seasons, and the presence of iron, copper, manganese, cadmium, lead, and zinc was analyzed using an Atomic Absorption Spectrometer. Findings showed that concentrations of copper, iron, zinc, and cadmium were below the permissible limits set by the World Health Organization (WHO). Manganese levels also fell within the WHO acceptable range. However, lead was consistently detected at concentrations between 0.01 and 0.05 mg/L, exceeding the WHO permissible limit of 0.01 mg/L across all sampled wells. The presence of lead at such levels renders the well water unsafe for human consumption due to its toxic effects, which can cause serious health disorders even when ingested in small amounts. To safeguard public health, regular monitoring and systematic assessment of well water quality are essential. Furthermore, sanitary inspection officers should enforce stricter measures to prevent the indiscriminate introduction of heavy metals into groundwater, thereby ensuring safe and sustainable water supplies for the growing population in the study area.<#LINE#>Liddle, E. S., Mager, S. M., & Nel, E. L. (2015). The suitability of shallow hand dug wells for safe water provision in sub-Saharan Africa: Lessons from Ndola, Zambia. Applied Geography, 57, 80–90. https://doi.org/10.1016/j.apgeog.2014.12.010@undefined@undefined@Yes$Carrard, N., Foster, T., & Willetts, J. (2019). Groundwater as a source of drinking water in Southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water, 11(8), 1605. https://doi.org/10.3390/w11081605@undefined@undefined@Yes$Ibrahim, K. O., Gomo, M., Oke, S. A., &Matamanda, A. R. (2021). Hand-dug wells in rural areas of developing countries. Sustainable Water Resources Management, 7(3). https://doi.org/10.1007/s40899-021-00523-x@undefined@undefined@Yes$Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660@undefined@undefined@Yes$Baig, F., Sherif, M., Sefelnasr, A., & Faiz, M. A. (2023). Groundwater vulnerability to contamination in the gulf cooperation council region: A review. Groundwater for Sustainable Development, 23, 101023. https://doi.org/10.1016/j.gsd.2023.101023@undefined@undefined@Yes$Agyemang, V. O. (2025). Groundwater resources development for a sustainable water supply in developing countries: a case study of Ghana. Cleaner Water, 4, 100104. https://doi.org/10.1016/j.clwat.2025.100104@undefined@undefined@Yes$Abadallah, T. (2017). Sustainable initiatives for public bus networks. In Elsevier eBooks (pp. 79–93). https://doi.org/10.1016/b978-0-12-811299-1.00006-x@undefined@undefined@Yes$Xie, X., Shi, J., Pi, K., Deng, Y., Yan, B., Tong, L., Yao, L., Dong, Y., Li, J., Ma, L., Zheng, C., & Jiang, G. (2023). Groundwater quality and public health. Annual Review of Environment and Resources, 48(1), 395–418. https://doi.org/10.1146/annurev-environ-112321-114701@undefined@undefined@Yes$Li, H., Yu, X., Zhang, W., Huan, Y., Yu, J., & Zhang, Y. (2018). Risk assessment of groundwater organic pollution using hazard, intrinsic vulnerability, and groundwater value, Suzhou City in China. Exposure and Health, 10(2), 99–115.@undefined@undefined@Yes$Li, P., Karunanidhi, D., Subramani, T., &Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of Environmental Contamination and Toxicology, 80(1), 1–10. https://doi.org/10.1007/s00244-020-00805-z@undefined@undefined@Yes$Abanyie, S. K., Apea, O. B., Abagale, S. A., Amuah, E. E. Y., & Sunkari, E. D. (2023). Source and factors influencing groundwater quality and associated health implications: A review. Emerging Contaminants, 9(2), 100207. https://doi.org/10.1016/j.emcon.2023.100207@undefined@undefined@Yes$Ladokun, O. A., & Oni, S. O. (2015). Physico-Chemical and microbiological analysis of potable water in Jericho and Molete areas of Ibadan metropolis. Advances in Biological Chemistry, 5(4), 197–202. https://doi.org/10.4236/abc.2015.54016@undefined@undefined@Yes$Krzyk, M., & Drev, D. (2023). Septic tanks as small municipal sewage treatment plants. In N. Ademović, E. Mujčić, M. Mulić, J. Kevrić, & Z. Akšamija (Eds.), Advanced Technologies, Systems, and Applications VII. IAT 2022 (Lecture Notes in Networks and Systems, vol. 539). Springer. https://doi.org/10.1007/978-3-031-17697-5_12@undefined@undefined@Yes$Omowumi, A. (2018). Electrical resistivity and hydrogeochemical evaluation of septic-tanks effluent migration to groundwater. Malaysian Journal of Geosciences, 2(1), 01–10. https://doi.org/10.26480/mjg.02.2018.01.10@undefined@undefined@Yes$Richards, S., Paterson, E., Withers, P. J., & Stutter, M. (2015). Septic tank discharges as multi-pollutant hotspots in catchments. The Science of the Total Environment, 542, 854–863. https://doi.org/10.1016/j.scitotenv.2015.10.160@undefined@undefined@Yes$Oyem, H. H., & Oyem, I. M. (2023). Spatial analysis of heavy metals in septic tank sewage. Caliphate Journal of Science and Technology, 5(2), 193–203. https://doi.org/10.4314/cajost.v5i2.14@undefined@undefined@Yes$Drozdova, J., Raclavska, H., Raclavsky, K., &Skrobankova, H. (2018). Heavy metals in domestic wastewater with respect to urban population in Ostrava, Czech Republic. Water and Environment Journal, 33(1), 77–85. https://doi.org/10.1111/wej.12371@undefined@undefined@Yes$Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691@undefined@undefined@Yes$Laoye, B., Olagbemide, P., Ogunnusi, T., & Akpor, O. (2025). Heavy metal contamination: Sources, health impacts, and sustainable mitigation strategies with insights from Nigerian case studies. F1000Research, 14, 134. https://doi.org/10.12688/f1000research.160148.4@undefined@undefined@Yes$Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972@undefined@undefined@Yes$Jomova, K., Alomar, S. Y., Nepovimova, E., Kuca, K., & Valko, M. (2025). Heavy metals: toxicity and human health effects. Archives of toxicology, 99(1), 153–209. https://doi.org/10.1007/s00204-024-03903-2@undefined@undefined@Yes$Ray, S., & Vashishth, R. (2024). From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerging Contaminants, 10(4), 100358. https://doi.org/10.1016/j.emcon.2024.100358@undefined@undefined@Yes$Lutterodt, G., Van de Vossenberg, J., Hoiting, Y., Kamara, A. K., Oduro-Kwarteng, S., &Foppen, J. W. A. (2018). Microbial Groundwater Quality Status of Hand-Dug Wells and Boreholes in the Dodowa Area of Ghana. International Journal of Environmental Research and Public Health, 15(4), 730. https://doi.org/10.3390/ijerph15040730@undefined@undefined@Yes$Gnimadi, C. J. I., Gawou, K., Aboah, M., Owiredu, E. O., & Adusei-Gyamfi, J. (2024). Assessing the Influence of Hand-Dug Well Features and Management on Water Quality. Environmental Health Insights, 18, 11786302241249844. https://doi.org/10.1177/11786302241249844@undefined@undefined@Yes$Ufoegbune, G. C., Oluwadare, R. O., Layi-Adigun, B. O., Olagoke, V. O., Ilevbaoje, O. O., & Ufoegbune, C. I. (2021). Effect of the Proximity of Hand-Dug Wells to Septic Tanks on Water Quality in Aregbe Community, Abeokuta, Ogun State, Nigeria. FUW Trends in Science and Technology Journal, 6(3), 810-816.@undefined@undefined@Yes$Ugbebor, J. N., & Ntesat, U. B. (2022). Effects of Septic Tank Proximity to Boreholes on Groundwater Contamination at Igwuruta, Rivers State, Nigeria. International Journal of Engineering Science, 11, 10-17.@undefined@undefined@Yes$Abdul, S., Dwumfour-Asare, B., Mensah, G. T., & Owusu-Mensah, I. (2025). Risk assessment of hand-dug well water: a case study of Aflao in Ghana. Journal of Water Sanitation and Hygiene for Development. https://doi.org/10.2166/washdev.2025.333@undefined@undefined@Yes$Gharehbaghi, K., & Scott-Young, C. (2018). GIS as a vital tool for Environmental Impact Assessment and Mitigation. IOP Conference Series Earth and Environmental Science, 127, 012009. https://doi.org/10.1088/1755-1315/127/ 1/012009@undefined@undefined@Yes$Chen, L., Mao, Y., & Zhao, R. (2022). GIS application in environmental monitoring and risk assessment. 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), 908–917. https://doi.org/10.1109/icgmrs55602.2022.9849269@undefined@undefined@Yes$Dabo, S., Jibril, M. B., Suberu, H., & Ayawa, M. G. (2024). The role of Geographic Information Systems (GIS) as an effective tool in environmental planning and management. Journal of Built Environment and Geological Research. 3(4), 202-208.@undefined@undefined@Yes$Nelly, K. C., & Mutua, F. (2016). Ground water quality assessment using GIS and remote sensing: A case study of Juja location, Kenya. American Journal of Geographic Information System, 5(1), 12-23.@undefined@undefined@Yes$El-Rawy, M., Ismail, E., & Abdalla, O. (2019). Assessment of groundwater quality using GIS, hydrogeochemistry, and factor statistical analysis in Qena governorate, Egypt. Desalination and Water Treatment, 162, 14–29. https://doi.org/10.5004/dwt.2019.24423@undefined@undefined@Yes$Megahed, H. A., GabAllah, H. M., Ramadan, R. H., AbdelRahman, M. A. E., D@undefined@undefined@Yes$Kofidou, M. (2024). Involvement of remote sensing and GIS in sustainable groundwater monitoring: An Overview. JSM Environ Sci Ecol, 12(2), 1097.doi.org/10.47739/2333-7141/1097@undefined@undefined@Yes$Dangendorf, F., Herbst, S., Reintjes, S. Kistemann, T. (2002). Spatial Pattern of Diarrhoeal Illness with regard to Water Supply Structures-A GIS Analysis. International Journal of Hygiene and Environmental Health, 205, 183-191.@undefined@undefined@Yes$American Public Health Association (APHA) (1998). Stand Methods for the Examination of Water and Wastewater. 20th ed. Washington, D.C. Pp 4-67, 4-144, 5-99, 9-94.@undefined@undefined@No$Adefemi, S. O. (2012). Physicochemical and Microbiological Assessment of Groundwater from Ijan-Ekiti South Western Nigeria. Environmental Research Journal, 6(5), 316-320.@undefined@undefined@Yes$Aruleba, J. O. & Ajayi, A. S. (2012). Heavy metal pollution status of soils in some locations at Ado Ekiti, Southwestern Nigeria. International Journal of Agricultural Science, 2(3), 256-264.@undefined@undefined@Yes$Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., et al. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865@undefined@undefined@Yes$Hama Aziz, K. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/d3ra00723e@undefined@undefined@Yes$Adegbola, A. A. and Adewoye, A. O (2012). Impact Assessment of Selected Pollution Sources on Groundwater Quality in Wells in Gambari Community, Ogbomoso, Nigeria. International Journal of Modern Engineering Research, 2(5), 3118-3122@undefined@undefined@Yes$Eruola A.O., Ufoegbune G.C., Eruola A.O. Awomeso J.A. and Abhulimen S.A. (2011). Assessment of Cadmium, Lead and Iron in Hand Dug Wells of Ilaro and Aiyetoro, Ogun State, South-Western Nigeria. Research Journal of Chemical Sciences, 1(9), 1-5.@undefined@undefined@Yes$Gabriel I. O and Donatus M. O. (2011). The use of Anion Geochemistry in Mapping Groundwater Facies of Yola Area, NE Nigeria. Research Journal of Chemical Sciences, 1(6), 30-41.@undefined@undefined@Yes @Review Paper <#LINE#>A Review on the Green Synthesis, Characterization and Antibacterial activity of Magnesium and Zinc oxide Nanoparticles using citrus species peels<#LINE#>Abdullahi @I.,N. @Sharif <#LINE#>53-56<#LINE#>8.ISCA-RJCS-2025-013.pdf<#LINE#>Department of Chemistry, Federal University Gusau, Zamfara State, Nigeria@Department of Chemistry, Federal University Gusau, Zamfara State, Nigeria<#LINE#>18/8/2025<#LINE#>20/9/2025<#LINE#>Environmental pollution has increased as a result of the extensive usage of synthetic materials for nanoparticle manufacturing. Green synthesis, which uses biodegradable materials like the peels of citrus species, has therefore lately become a viable substitute. The current study's objective was to study the use of citrus peels as a natural precursor for the antimicrobial properties, sustainable production, and characterisation of zinc oxide and magnesium oxide nanoparticles.<#LINE#>Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., &Issaabadi, Z. (2019).@An introduction to nanotechnology.@In Interface science and technology (Vol. 28, pp. 1-27). Elsevier.@Yes$Yang, W., Peters, J. I., & Williams III, R. O. (2008).@Inhaled nanoparticles—a current review.@International journal of pharmaceutics, 356(1-2), 239-247.@Yes$Imani, M.M., and Safaei, M., J. (2014). Nanotechnology.@undefined@undefined@Yes$Chavali, M. S., & Nikolova, M. P. (2019).@Metal oxide nanoparticles and their applications in nanotechnology.@SN applied sciences, 1(6), 607.@No$Narayanan, K. B., & Sakthivel, N. (2010).@Biological synthesis of metal nanoparticles by microbes.@Advances in colloid and interface science, 156(1-2), 1-13.@No$Philip, D. (2010).@Honey mediated green synthesis of silver nanoparticles.@SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 75(3), 1078-1081.@Yes$Patil, A. B., & Bhanage, B. M. (2013).@Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation.@Catalysis Communications, 36, 79-83.@Yes$Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., & Chen, C. (2007).@Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.@undefined@Yes$Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., &Sastry, M. (2006).@Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract.@Biotechnology progress, 22(2), 577-583.@Yes$Torrado, A. M., Cortés, S., Salgado, J. M., Max, B., Rodríguez, N., Bibbins, B. P., ... &Domínguez, J. M. (2011).@Citric acid production from orange peel wastes by solid-state fermentation.@Brazilian Journal of Microbiology, 42, 394-409.@Yes$Sadeghi, B., & Gholamhoseinpoor, F. (2015).@A study on the stability and green synthesis of silver nanoparticles using Ziziphoratenuior (Zt) extract at room temperature.@Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 310-315.@Yes$Hussain, A. A., Nazir, S., Irshad, R., Tahir, K., Raza, M., Khan, Z. U. H., & Khan, A. U. (2021).@Synthesis of functionalized mesoporous Ni-SBA-16 decorated with MgO nanoparticles for Cr (VI) adsorption and an effective catalyst for hydrodechlorination of chlorobenzene.@Materials research bulletin, 133, 111059.@Yes$Ammulu, M. A., Viswanath, K. V., Giduturi, A. K., Vemuri, P. K., Mangamuri, U., & Poda, S. (2021).@Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpusmarsupiumrox. b heartwood extract and its biomedical applications.@Journal of Genetic Engineering and Biotechnology, 19(1), 21.@Yes$Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H., & Ding, W. (2018).@Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum.@Frontiers in microbiology, 9, 790.@No$Bindhu, M.R., Umadevi, M., M. Kavin Michael, M.V. Arasu, and N. Abdullah Al-Dhabi (2016).@Matter Letter.@166, 19.@No$Arakha, Manoranjan (2012).@Investigation on the effect of zinc oxide nanoparticles in the aggregation of hen egg lysozyme.@PhD diss..@Yes$Kamaluddeen, S.K. & Ismail, A. (2023).@Green Synthesis, Characterization, Zinc Oxide Nanoparticles.@Research Journal of Chemical Sciences, 13(3), 1-10.@Yes