@Research Paper <#LINE#>Simple and sensitive LC-ESI-MS method for estimation of sildenafil in plasma samples<#LINE#>Sandeep @Zaware,Neel @Lahoti,Hrushikesh @Shinde <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2023-017.pdf<#LINE#>Synergen Bio Private Limited, Old Mumbai - Pune Highway, Wakadewadi, Shivajinagar, Pune, Maharashtra - 411003, India@Synergen Bio Private Limited, Old Mumbai - Pune Highway, Wakadewadi, Shivajinagar, Pune, Maharashtra - 411003, India@Synergen Bio Private Limited, Old Mumbai - Pune Highway, Wakadewadi, Shivajinagar, Pune, Maharashtra - 411003, India<#LINE#>20/9/2023<#LINE#>20/8/2024<#LINE#>The quantity of sildenafil in human plasma was determined using a simple and incredibly accurate LC-ESI-MS approach. Thermo, Hypurity Cl8, 100*4.6 mm, 5µm, was injected with sildenafil and sildenafil d3 (internal standard), which were extracted from the plasma using the solid phase extraction technique. Acetonitrile: 0.1% Formic Acid (70:30, v/v) made up the mobile phase, which was supplied isocratically at a flow rate of 0.6 mL/min. The run time was 3 minutes, and the MRM mode for sildenafil and internal standard sildenafil d3 was found at m/z 475.2→283.2 and 478.2→283.2. The calibration curve for sildenafil was linear between 25.0 and 2000 ng/mL, and the detection limit was 25.0 ng/mL. A validated LC-MS/MS method was used to determine drug concentrations.<#LINE#>Vardi, M., & Nini, A. (2007).@Phosphodiesterase inhibitors for erectile dysfunction in patients with diabetes mellitus.@Cochrane Database of Systematic Reviews, (1).@Yes$Ralph, D., & McNicholas, T. (2000).@UK management guidelines for erectile dysfunction.@BMJ, 321(7259), 499-503.@Yes$Cohen, J. S. (2000).@Sildenafil and nonnitrate antihypertensive medications.@JAMA, 283(2), 201-202.@Yes$Pistos, C., Papoutsis, I., Dona, A., Stefanidou, M., Athanaselis, S., Maravelias, C., & Spiliopoulou, C. (2008).@Off-line HPLC method combined to LC–MS for the determination of sildenafil and its active metabolite in post-mortem human blood according to confirmation criteria.@Forensic Science International, 178(2-3), 192-198.@Yes$Lewis, R. J., Johnson, R. D., & Blank, C. L. (2006).@Quantitative determination of sildenafil (Viagra®) and its metabolite (UK-103,320) in fluid and tissue specimens obtained from six aviation fatalities.@Journal of analytical toxicology, 30(1), 14-20.@Yes$Dumestre-Toulet, V., Cirimele, V., Gromb, S., Belooussoff, T., Lavault, D., Ludes, B., & Kintz, P. (2002).@Last performance with VIAGRA®: post-mortem identification of sildenafil and its metabolites in biological specimens including hair sample.@Forensic science international, 126(1), 71-76.@Yes$Tsokos, M., & Fehlauer, F. (2001).@Post-mortem markers of sepsis: an immunohistochemical study using VLA-4 (CD49d/CD29) and ICAM-1 (CD54) for the detection of sepsis-induced lung injury.@International journal of legal medicine, 114, 291-294.@Yes$Ku, H. Y., Shon, J. H., Liu, K. H., Shin, J. G., & Bae, S. K. (2009).@Liquid chromatography/tandem mass spectrometry method for the simultaneous determination of vardenafil and its major metabolite, N-desethylvardenafil, in human plasma: application to a pharmacokinetic study.@Journal of Chromatography B, 877(1-2), 95-100.@Yes$Nevado, J. B., Flores, J. R., Penalvo, G. C., & Farinas, N. R. (2002).@Determination of sildenafil citrate and its main metabolite by sample stacking with polarity switching using micellar electrokinetic chromatography.@Journal of Chromatography A, 953(1-2), 279-286.@Yes$Weinmann, W., Bohnert, M., Wiedemann, A., Renz, M., Lehmann, N., & Pollak, S. (2001).@Post-mortem detection and identification of sildenafil (Viagra) and its metabolites by LC/MS and LC/MS/MS.@International Journal of Legal Medicine, 114, 252-258.@Yes$Wang, Y., Wang, J., Cui, Y., Fawcett, J. P., & Gu, J. (2005).@Liquid chromatographic-tandem mass spectrometric method for the quantitation of sildenafil in human plasma.@Journal of Chromatography B, 828(1-2), 118-121.@Yes$Vos, R. M., Chahbouni, A., Sinjewel, A. & Swart, E. L. (2008).@Quantitative analysis of sildenafil and desmethylsildenafil in human serum by liquid chromatography–mass spectrometry with minimal sample pretreatment.@Journal of Chromatography B, 876(2), 283-287.@Yes$Langtry, H. D. & Markham, A. (1999).@Sildenafil: a review of its use in erectile dysfunction.@Drugs, 57(6), 967-989.@Yes$Meesters, R., & Voswinkel, S. (2018).@Bioanalytical method development and validation: from the USFDA 2001 to the USFDA 2018 guidance for industry.@J. Appl. Bioanal, 4(3), 67-73.@Yes$Submissions—Content, A. N. D. A. (2014).@Guidance for Industry.@Center for Biologics Evaluation and Research (CBER).@Yes <#LINE#>Green Nanotechnology synthesized silver Nanoparticles: characterization and testing its antibacterial activity<#LINE#>Swati @Bhatia,Siya @Upadhyay <#LINE#>8-15<#LINE#>2.ISCA-RJCS-2024-009.pdf<#LINE#>Sage University, Indore, India@Sage University, Indore, India<#LINE#>16/5/2024<#LINE#>30/10/2024<#LINE#>Developing eco-friendly strategies “for metallic nanoparticle synthesis using natural extracts has gained significant traction. This study explores the potential of Carica papaya leaf extract for the biogenic synthesis of metallic nanoparticles and evaluates their subsequent antimicrobial activity. A reduction reaction under ambient conditions, employing leaf extract, facilitated the nanoparticle formation from metal salts. Characterisation techniques encompassing UV-Vis spectroscopy, FTIR, XRD, and TEM corroborated the successful synthesis of well-dispersed, spherical nanoparticles. The presence of biomolecules within the extract was identified as crucial for both nanoparticle reduction and stabilisation, as evidenced by FTIR analysis. XRD patterns confirmed the crystalline nature of the nanoparticles, with distinct peaks corresponding to specific crystal planes. This antimicrobial efficacy is attributed to the synergistic action between the metallic nanoparticles themselves and the inherent bioactive compounds present within the Carica papaya leaf extract.” In conclusion, this work presents a facile and environmentally benign approach for nanoparticle synthesis utilising Carica papaya leaf extract. The synthesised nanoparticles demonstrate promising antimicrobial properties, highlighting the potential of natural extracts for the development of novel biocompatible nanomaterials with diverse applications in the biomedical and environmental fields. Further research is warranted to elucidate the precise mechanisms underlying their antimicrobial action and explore their potential therapeutic applications.<#LINE#>Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019).@Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment.@Journal of Nanostructure in Chemistry, 9, 1-9.@Yes$Castillo-Henríquez, L., Alfaro-Aguilar, K., Ugalde-Álvarez, J., Vega-Fernández, L., Montes de Oca-Vásquez, G., & Vega-Baudrit, J. R. (2020).@Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area.@Nanomaterials, 10(9), 1763.@Yes$Paul, A., Smith, J., & Kumar, R. (2021).@Comparison of Jamun (Syzygium cumini) Seed Extract and Carica Papaya Extract: A Review of Medicinal Properties and Potential Applications.@Journal of Ethnopharmacology, 25(4), 123-135@No$Sarker, M. M. R., Khan, F., & Mohamed, I. N. (2021).@Dengue fever: Therapeutic potential of carica papaya L. leaves.3 Frontiers in pharmacology, 12, 610912.@undefined@Yes$Ibrahim Khan, K. S., & Khan, I. (2019).@Nanoparticles: Properties, applications and toxicities.@Arabian journal of chemistry, 12(7), 908-931.@Yes$Alfuraydi, A. A., Devanesan, S., Al-Ansari, M., AlSalhi, M. S., & Ranjitsingh, A. J. (2019).@Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities.@Journal of Photochemistry and Photobiology B: Biology, 192, 83-89.@Yes$Rana, M. S., Alam, M. M., Ikram, A., Zaidi, S. S., Salman, M., & Khurshid, A. (2020).@Cocirculation of COVID‐19 and dengue: A perspective from Pakistan.3 Journal of medical virology, 93(3), 1217.@undefined@Yes$Bhuiyan, M. S. H., Miah, M. Y., Paul, S. C., Aka, T. D., Saha, O., Rahaman, M. M., ... & Ashaduzzaman, M. (2020). 3Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity.@Heliyon, 6(8).@undefined@Yes$Ms. Priyanka S. Sawarkar (2020).@A Review on: Carica Papaya Used as Herbal Medicine in Primary Dysmenorrhoea.@International Journal of Scientific and Research Publications, 10(9), September 2020.@Yes$Khatua, A., Priyadarshini, E., Rajamani, P., Patel, A., Kumar, J., Naik, A., ... & Meena, R. (2020).@Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: a novel approach in nanoparticle synthesis.@Journal of Cluster Science, 31, 125-131.@Yes$Jain, A., Ahmad, F., Gola, D., Malik, A., Chauhan, N., Dey, P., & Tyagi, P. K. (2020).@Multi dye degradation and antibacterial potential of Papaya leaf derived silver nanoparticles.@Environmental Nanotechnology, Monitoring & Management, 14, 100337.@Yes$Khalil, M., Teunissen, C. E., Otto, M., Piehl, F., Sormani, M. P., Gattringer, T., ... & Kuhle, J. (2018).@Neurofilaments as biomarkers in neurological disorders.@Nature Reviews Neurology, 14(10), 577-589.@Yes$Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O@Antimicrobial resistance in developing countries. Part II: strategies for containment.@The Lancet infectious diseases, 5(9), 568-580.@Yes$Paul, A., Smith, J., & Kumar, R. (2021).@Comparison of Jamun (Syzygium cumini) Seed Extract and Carica Papaya Extract: A Review of Medicinal Properties and Potential Applications.@Journal of Ethnopharmacology, 25(4), 123-135@No$Cai, C., Wang, Y., Wang, P., & Zou, H. (2024).@Evidential-Reasoning-Type Multi-Attribute Large Group Decision-Making Method Based on Public Satisfaction.@Axioms, 13(4), 276.@Yes <#LINE#>In-Silico investigation of drug delivery efficacy, Chemical Reactivity Properties and Bioactivity Scores in the Treatment of Arterial Hypertension<#LINE#>Rodrigue Chabi @Doco,Simplice @Koudjina,Alice M.T. Kpota @Houngue,Guy Y.S. @Atohoun <#LINE#>16-24<#LINE#>3.ISCA-RJCS-2024-013.pdf<#LINE#>Laboratory of Chemical Physics-Materials and Molecular Modeling (LCP3M) University of Abomey-Calavi (UAC), 03 BP 3409 Cotonou – Benin@Laboratory of Chemical Physics-Materials and Molecular Modeling (LCP3M) University of Abomey-Calavi (UAC), 03 BP 3409 Cotonou – Benin and National High School of Applied Biosciences and Biotechnologies (ENSBBA) National University of Sciences, Technologies, Engineering and Mathematics (UNSTIM), BP 486 Abomey, Sogbo-Aliho – Benin@Laboratory of Chemical Physics-Materials and Molecular Modeling (LCP3M) University of Abomey-Calavi (UAC), 03 BP 3409 Cotonou – Benin@Laboratory of Chemical Physics-Materials and Molecular Modeling (LCP3M) University of Abomey-Calavi (UAC), 03 BP 3409 Cotonou – Benin<#LINE#>19/9/2024<#LINE#>3/12/2024<#LINE#>In the present work carried out a comparative study of the anti-hypertensive properties of five natural molecules: S-Allycysteine (contained in garlic), Capsaicin (contained in chilli pepper), Gingerol (contained in ginger), Piperidine and Geraniol (contained in bay leaves). By using quantum chemical approaches as density functional theory (DFT) and molecular docking strategies through ADMET analysis, drug-like properties predictions have been provided and characterized. Ananalysis of the various results obtained leads to the following conclusions that all of these molecules can be used in clinical trials because they are pharmacologically very active. Overall, all of the five compounds studied had a strong inhibitory effect on the angiotensin II receptor type (ATR1), as protein responsible for arterial hypertension. The complexes formed between each of the molecules and ATR1 were stabilised by Van der Waals (VdW) forces and the hydrogen bonds have been established between the inhibitors and the amino acids sites. Moreover, Piperidine, Geraniol and S-Allycysteine stand out the most biologically active. They have the best antihypertensive properties of the five molecules. Definitively, garlic and bay leaves appears to be the best choice for treating high blood pressure.<#LINE#>Kellerborg, K., Danielsson, A. K., Allebeck, P., Coates, M. M., & Agardh, E. (2016). Disease burden attributed to alcohol: how methodological advances in the Global Burden of Disease 2013 Study have changed the estimates in Sweden. Scandinavian journal of public health, 44(6), 604-610.@undefined@undefined@Yes$Beaney, T., Schutte, A. E., Tomaszewski, M., Ariti, C., Burrell, L. M., Castillo, R. R., ... & Kramer, B. K. (2018).@May Measurement Month 2017: an analysis of blood pressure screening results worldwide.@The Lancet Global Health, 6(7), e736-e743.@Yes$Mills, K. T., Stefanescu, A., & He, J. (2020).@The global epidemiology of hypertension.@Nature Reviews Nephrology, 16(4), 223-237.@Yes$Bundy, J. D., Li, C., Stuchlik, P., Bu, X., Kelly, T. N., Mills, K. T., ... & He, J. (2017).@Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis.@JAMA cardiology, 2(7), 775-781.@Yes$Kwak, J. S., Kim, J. Y., Paek, J. E., Lee, Y. J., Kim, H. R., Park, D. S., & Kwon, O. (2014).@Garlic powder intake and cardiovascular risk factors: a meta-analysis of randomized controlled clinical trials.@Nutrition research and practice, 8(6), 644-654.@Yes$Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017).@Targeting free radicals in oxidative stress-related human diseases.@Trends in pharmacological sciences, 38(7), 592-607.@Yes$Xu, Z., Lin, T., Wang, Y., & Liao, X. (2015).@Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time.@Innovative Food Science & Emerging Technologies, 31, 28-36.@Yes$Liu, F., Wang, Y., Li, R., Bi, X., & Liao, X. (2014).@Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars.@Innovative Food Science & Emerging Technologies, 21, 35-43.@Yes$Watson, R. R. (Ed.). (2018).@Polyphenols in plants: isolation, purification and extract preparation.@Academic Press.@Yes$Zaki, N., Hasib, A., Dehbi, F., El Batal, H., Hakmaoui, A., Meftah, H., Hanine, H., Latrache, H., Ouatmane, A. (2023). Physicochemical, nutritional and antioxidant characteristics of paprika produced by semi-industrial process from Niora (Capsicum annuum L.) grown in three Moroccan regions. Revue Nature Et Technologie, 10(02), 01–12.@undefined@undefined@No$Loizzo, M. R., Pugliese, A., Bonesi, M., De Luca, D., O’Brien, N., Menichini, F., & Tundis, R. (2013).@Influence of drying and cooking process on the phytochemical content, antioxidant and hypoglycaemic properties of two bell Capsicum annum L. cultivars.@Food and chemical Toxicology, 53, 392-401.@Yes$Hu, X., Saravanakumar, K., Jin, T., & Wang, M. H. (2021).@Effects of yellow and red bell pepper (paprika) extracts on pathogenic microorganisms, cancerous cells and inhibition of survivin.@Journal of Food Science and Technology, 58, 1499-1510.@Yes$Yu, X. H., Cui, L. B., Wu, K., Zheng, X. L., Cayabyab, F. S., Chen, Z. W., & Tang, C. K. (2014).@Hydrogen sulfide as a potent cardiovascular protective agent.3 Clinica chimica acta, 437, 78-87.@undefined@Yes$Yu, Y. P., Chi, X. L., & Liu, L. J. (2014).@A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury.@The Scientific World Journal, 2014(1), 432318.@Yes$Rashidian, A., Mehrzadi, S., Ghannadi, A. R., Mahzooni, P., Sadr, S., & Minaiyan, M. (2014).@Protective effect of ginger volatile oil against acetic acid-induced colitis in rats: a light microscopic evaluation.3 Journal of integrative medicine, 12(2), 115-120.@undefined@Yes$Kolluru, G. K., Shen, X., Bir, S. C., & Kevil, C. G. (2013). 3Hydrogen sulfide chemical biology: pathophysiological roles and detection.3 Nitric oxide, 35, 5-20.@undefined@undefined@Yes$Saim, N., & Meloan, C. E. (1986). 3Compounds from leaves of bay (Laurus nobilis L.) as repellents for Tribolium castaneum (Herbst) when added to wheat flour. Journal of Stored Products Research, 22(3), 141-144.@undefined@undefined@Yes$Shameli, A., Hamid Raeisi, A., Pourhasan, B., Naeimi, H., & Mehdi Ghanbari, M. (2012).@The One-Pot Three Components of lodone, Schiff Base and Epoxide for Synthesis of lodohydrins.@Oriental Journal of Chemistry, 28(2), 749.@Yes$Fereyduni, E., Kamaee, M., Soleymani, R., & Ahmadi, R. (2012). The substitution effect on the aromaticity of some n-phenylacetamide derivatives: A DFT study. Journal of Theoretical and Computational Chemistry, 11(06), 1331-1339.@undefined@undefined@Yes$Soleymani, R., Farsi-Madan, S., Tayeb, S., Ghesmat-Konandeh, K. (2012).@The Influence of H2O-attaching on the NMR parameters in the Zigzag and Armchair AIN Nanotubes: A DFT study.@Orient J Chem. 28(2), 703–714.@Yes$Islam, M. A., & Pillay, T. S. (2020).@Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies.@Journal of Biomolecular Structure and Dynamics, 38(6), 1798-1809.@Yes$Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M., Cheeseman, J. R., ... & Fox, A. D. (2009). Gaussian Inc. Wallingford Ct, 2009.@undefined@undefined@Yes$Denningten, R., Keith, T., Millam, J., Denningten, T. K., & Millam, J. (2009).@Gaussview version 5.0. 8, Gaussian, Inc, 235 wallingford CT.@Gaussview Version, 5(8).@Yes$Becke, A. D. (1993).@Density‐functional thermochemistry. III. The role of exact exchange.@The Journal of chemical physics, 98(7), 5648-5652.@Yes$Lee, C., Yang, W., & Parr, R. G. (1988).@Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.@Physical review B, 37(2), 785.@Yes$M.J. Frisch, J.A. Pople and J.S. Binkley (1984).@Self-Consistent molecular orbital methods. Supplementary functions for Gaussian basis sets.@J. Chem. Phys., 80(7) (1984) 3265–3269.@Yes$Ghosh, S., Chandar, N. B., Lo, R., & Ganguly, B. (2016).@Effective docking program for designing reactivator for treating organophosphorus inhibited AChE.@JSM Chem, 4, 1032.@Yes$Hanane, B.,Abdelouahab, C., Abderrahmane, B., Amina, M., Soulef, H.K.,El Hassen, M. (2014).@Theoretical Study of the Interactions Involved in the Inhibition of Mycobacterium Tuberculosis Methionine Aminopeptidase by Several Molecules.@Computational Biology and Bioinformatics, 2(5), 63–73.@Yes$Jia, C-Y., Li, J-Y., Hao, G-F., Yang, G-F. (2020).@A drug-likeness toolbox facilitates ADMET study in drug discovery.@Drug Discov Today, 25(1), 248–258.@Yes$Shahryari, S., Mohammadnejad, P., Noghabi, K.A. (2021)@Screening of anti-acinetobacter baumannii phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions.@R Soc Open Sci, 8(8), 201652.@Yes$Koudjina, S., Houngbeme, A.G., Agbogba, I.D.P., Atohoun, G.Y.S. and Gbenou, J.D. (2023)@Phytochemical Analysis and Bioactivities Studies of Fresh Leaves and Flowers from C. roseus, L. multiflora and P. amarus, Beninese Medicinal Plants Used Against Diabetes.@Internation Journal of Pharmacy and Chemistry, 9(5), 56–66.@Yes$Pandey, V.K., Srivastava, S., Ashish, Dash, K.K., Singh, R., Dar, A.H., Singh, T., Farooqui, A., Shaikh, A.M., Bela Kovacs, B. (2024).@Bioactive properties of clove (Syzygium aromaticum) essential oil nanoemulsion: A comprehensive review.@Heliyon, 10, e22437.@Yes <#LINE#>Synthesis, Structural elucidation, Pharmacological evaluation of Metal complexes with 2-Pyrazoline derivatives and Metalation effect on the Antimicrobial activity<#LINE#>Nikita @Sharma,Mamta @Ahuja <#LINE#>25-28<#LINE#>4.ISCA-RJCS-2024-014.pdf<#LINE#>Department of Chemistry, Govt. Meera Girls College, MLSU Udaipur, Rajasthan, India@Department of Chemistry, Govt. Meera Girls College, MLSU Udaipur, Rajasthan, India<#LINE#>3/10/2024<#LINE#>5/12/2024<#LINE#>1-Acetyl-5-(4-chlorophenyl/4-nitrophenyl)-3-(4-aminophenyl)-2-pyrazolines and their metal complexes have been synthesized and are being characterized through molecular weight determination, molar conductance, magnetic susceptibility, and spectroscopic techniques. The IR data have indicated that the coordination of ligands with the metal ions (Fe²⁺, Co²⁺, and Ni²⁺) occurs via azomethine nitrogen and carbonyl oxygen atoms. Microanalytical data, along with electronic spectral analysis and magnetic moment studies, suggested an octahedral geometry around the metal ions with a 1:2 metal-ligand ratio. Additionally, the complexes demonstrated significantly enhanced in vitro antimicrobial activity compared to the free ligand. The anti-microbial activities of these derivatives have been studied by screening them against bacteria such as Bacillus subtilis, Staphylococcus aureus, and Escherichia coli and fungi such as Penicillium chrysogenum and Aspergillus niger by the Agar Well Diffusion method.<#LINE#>Masih, A. Agnihotri, A. K., Srivastava, J. K., Pandey, N., Bhat, H. R., and Singh, U. P. (2020).@Discovery of novel pyrazole derivatives as a potent anti-inflammatory agent in RAW264.7 cells via inhibition of NF-kB for possible benefit against SARS-Cov-2.@Journal of Biochemical and Molecular Toxicology, 35(3), e22656.@Yes$Abu-Melha, S., Edress, M. M., Riyadh, S. M., Abdelaziz, M. R., Elfiky, A. A., and Gomha, S. M. (2020).@Clean grinding technique: a facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro).@Molecules, 25(19), 4565.@Yes$Kumar, R., Bajia, B., and Srivastava, Y. K. (2015).@Synthesis and antibacterial activity of some pyrazolines using more techniques.@Biomedical and Pharmacology Journal, 1(1), 173-176.@Yes$Zhang, T., Dong, M., Zhao, J., Zhang, X., and Mei, X. (2019).@Synthesis and antifungal activity of novel pyrazolines and isoxazolines derived from cuminaldehyde.@Journal of pesticide science, 44(3), 181-185.@Yes$Aggarwal, N. N., Gatphoh, B. F. D., Kumar, M. V., Ghetia, S., and Revanasiddappa, B. C. (2021).@Synthesis in silico analysis and antidepressant activity of pyrazoline analogs.@Thai Journal of Pharmaceutical Science, 45(1), 24-31.@Yes$Bellam, M., Gundluru, M., Sarva, S., Chadive, S., Netala, V. R., Tartte, V., and Cirandur, S. R. (2017).@Synthesis and antioxidant activity of some new N-alkylated pyrazole-containing benzimidazoles.@Chemistry of Heterocyclic Compounds, 53(2), 173-178.@Yes$Dudeja, M., Malhotra, R., Gupta, M. P., and Dhindsa, K. S. (1993).@Synthesis and characterization of cobalt(II), nickel(II) and copper(II) complexes of 1-acetyl-5-aryl-3-(substituted thienyl)-2-pyrazolines and their microbiocidal activity.@Indian Journal of Chemistry, 32A, 975-979.@Yes$Perez, C., & Anesini, C. (1994).@In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi.@Journal of Ethnopharmacology, 44(1), 41-46.@Yes @Research Article <#LINE#>Estimation of internal pressure and pseudo-gruneisen parameter of binary liquid mixtures from 288.15-318.15K<#LINE#>Naveen @Awasthi <#LINE#>29-38<#LINE#>5.ISCA-RJCS-2024-015.pdf<#LINE#>Department of Chemistry, Janta College Bakewar (206124), Etawah, India<#LINE#>8/10/2024<#LINE#>15/12/2024<#LINE#>From the knowledge of thermal expansion coefficient (α) and isothermal compressibility (βT), various thermodynamic properties were analyzed from the experimental values of density and acoustical parameters for different binary liquid mixtures. In present investigation, mixtures of isomeric alcohols with saturated hydrocarbon at different temperatures over the whole range of mole fraction and one atmospheric pressure were used to determine the theoretical values of internal pressure (Pi), pseudo-gruneisen parameter (Γ) and their excess values. Flory’s statistical theory, Ramaswamy model and model proposed by Glinski were used determine the aforesaid properties and analyze the behaviour of liquid mixtures in terms of the interaction forces acting between the components. Absolute average percent deviation (AAPD) was considered as the criterion for the success of results. Experimental values of properties were utilized to determine the numerical coefficients (Ai) and standard deviation (δ) by redlich- kister equation. Excess values (ΓE) were used to analyze the interactions present between the components of liquids at different temperatures. Non-associated model deals fair agreement in comparison to associated models except few points.<#LINE#>Shukla, R. K., Kumar, A., Awasthi, N., Srivastava, U., & Srivastava, K. (2017).@Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol with benzene from various models at temperature range 298.15–313.15 K.@Arabian Journal of Chemistry, 10(7), 895-905.@Yes$Awasthi, N., Kumar, A., Srivastava, U., Srivastava, K., & Shukla, R. K. (2019).@Excess volume and surface tension of some flavoured binary alcohols at temperatures 298.15, 308.15 and 318.15 K.@Physics and Chemistry of Liquids, 57(6), 800-815.@Yes$Awasthi N., Bhadauria J., Dubey P. (2022).@Viscosity and Excess viscosity for non-polar system from 298.15 to 323.15K.@Research Journal of Recent sciences, 11(2), 23-33@Yes$Knopoff, L., & Shapiro, J. N. (1970).@Pseudo-Grüneisen parameter for liquids.@Physical Review B, 1(10), 3893.@Yes$Shukla, R. K., Shukla, S. K., Pandey, V. K., & Awasthi, P. (2008).@Excess internal pressure, excess energy of vaporization and excess Pseudo-Gruneisen parameter of binary, ternary and quaternary liquid mixtures.@Journal of Molecular Liquids, 137(1-3), 104-109.@Yes$Shukla, R., Shukla, R. K., Gangwar, V., Shukla, S., Tiwari, M., & Tenguriya, K. (2015).@Pseudo-Gruneisen Parameter and Internal Pressure of Binary Mixtures from Different Approaches.@International Journal of Thermodynamics, 18(3), 150-159.@Yes$Pandey, J. D., & Sanguri, V. (2008).@Theoretical estimations of thermodynamic properties of liquid mixtures by Flory@Physics and Chemistry of Liquids, 46(4), 417-432.@Yes$Pandey, J. D., Dubey, N., Dwivedi, D. K., & Dey, R. (2001).@Prediction of heat of mixing from internal pressure data.@Physics and chemistry of liquids, 39(6), 781-790.@Yes$Hildebrand, J.H & Scott, R.L. (1964).@The solubility of non-electrolytes.@3rd ed., Dover publication, New York ,NY (1964)@Yes$Subrahmanayam, S.V., Ramanujappa,T. & Rajgopal, E.S.(1983). Acoustica,52, 125@undefined@undefined@No$Awasthi N., (2023).@Physicochemical study of a binary liquid mixture by ultrasonic speed, isentropic compressibility and acoustic impedance from 288.15-318.15K.@Research Journal of chemical sciences. 13(1), 46-59.@Yes$Awasthi N., (2023).@Estimation of acoustic impedance of binary liquid system from 288.15to 318.15K by associated and non-associated process.@Research Journal of physical sciences, 11(1), 8-13.@Yes$Awasthi N., (2022).@Estimation of heat capacity of isomeric alcohols with long chain saturated hydrocarbon by liquid state models from 288.25-318.15K.@International research journal of modernization in engineering technology and science, 4 (1), 354-259.@No$Awasthi, N., Mishra, D. J., Dwivedi, N., & Pandey, V. K (2024).@Theoretical estimation of heat capacity of binary liquid mixtures at different temperatures by associated and non associated processes.@Research Journal of Chemical Sciences, 14(1), 16-25.@Yes$Troncoso, J., Valencia, J. L., Souto-Caride, M., González-Salgado, D., & Peleteiro, J. (2004).@Thermodynamic properties of dodecane+ 1-butanol and+ 2-butanol systems.@Journal of Chemical & Engineering Data, 49(6), 1789-1793.@Yes$Flory P.J, Orwoll R.A, Vrij A. (1964).@Statistical thermodynamics of chain molecule liquids. II. Liquid mixtures of normal paraffin hydrocarbons.@Journal of the American Chemical Society, 86(17),3515.@Yes$Prigogine I, Ballemans. A (1957).@Method V. A. Molecular theory of solutions.@Amsterdam:North –Holland Publ. Company.@Yes$Prigogine, I., & Saraga, L. (1952).@Test of monolayer model for surface tension of simple liquid.@J. Chem. Phys, 49, 399-407.@Yes$Flory, P. D. (1965).@Statistical thermodynamics of liquid mixtures.@Journal of the American Chemical Society, 87(9), 1833-1838.@Yes$Patterson, D. D., & Rastogi, A. K. (1970).@The surface tension of polyatomic liquids and the principle of corresponding states.@The Journal of Physical Chemistry, 74(5), 1067-1071.@Yes$Ramaswamy, K., & Anbananthan, D. (1981).@Original article unavailable, information taken from Ref.[3].@Acustica, 48, 281-282.@Yes$Glinski J. (2003).@Determination of the conditional association constants from the sound velocity data in binary liquid mixtures.@The Journal of chemical physics., 118(5),2301-7.@Yes$Redlich, O., & Kister, A. T. (1948).@Algebraic representation of thermodynamic properties and the classification of solutions.@Industrial & Engineering Chemistry, 40(2), 345-348.@Yes @Review Paper <#LINE#>Sustainable plant-based antimicrobial agents for textiles application: A Review<#LINE#>Parul @Prajapati,Bharat @Patel <#LINE#>39-49<#LINE#>6.ISCA-RJCS-2024-007.pdf<#LINE#>Department of Textile Chemistry, Faculty of Technology and Engineering, Kalabhavan, The Maharaja Sayajirao University of Baroda, Vadodara – 390 001, Gujarat, India@Department of Textile Chemistry, Faculty of Technology and Engineering, Kalabhavan, The Maharaja Sayajirao University of Baroda, Vadodara – 390 001, Gujarat, India<#LINE#>30/4/2024<#LINE#>1/8/2024<#LINE#>The textile industry is formidably striving to progress towards ecologically and sustainability. This has instigated the research to find an alternative solution for the extensive use of synthetic chemicals in textile wet processing and for cleaner production. Public awareness of infectious and viral diseases has created a requirement for sustainable antimicrobial material. Synthetic antimicrobial agents have intensive use for textile applications but this approach has various environmental concerns. The need for sustainable and ecological antimicrobial textiles has stimulated research in the medical textile field for a promising solution. The current review paper comprises various potent plant-based biomaterials for textile applications as antimicrobial agents and colorants. The antimicrobial activity of plant extracts on textiles is been reviewed in detail. As a future prospect, a few ethnomedicinal Indian plants have been critically reviewed to understand their mechanism and effectiveness in textile application.<#LINE#>Patel, B. H. (2011).@Natural dyes. In Handbook of textile and industrial dyeing (pp. 395-424).@Woodhead Publishing.@Yes$Akca, C. (2020).@Antimicrobial Finishing.@Waste in textile and leather sectors, 21.@Yes$Patel, B., & Kanade, P. (2019).@Sustainable dyeing and printing with natural colours vis-à-vis preparation of hygienic viscose rayon fabric.@Sustainable Materials and Technologies, 22, e00116.@Yes$Shanmugavasan, A., & Ramachandran, T. (2014).@Investigation of extraction processes and phytochemical compositions of various plant extracts to develop curative medical bandages (Doctoral dissertation, Anna University).@@Yes$Patel, B. H., & Tandel, M. G. (2005).@Antimicrobial finishing for textiles: An overview.@Asian Dyer, 31-36.@Yes$Timmis, K., & Brüssow, H. (2020).@The COVID‐19 pandemic: some lessons learned about crisis preparedness and management, and the need for international benchmarking to reduce deficits.@Environmental microbiology, 22(6), 1986-1996.@Yes$Rosenberg, M., Ilić, K., Juganson, K., Ivask, A., Ahonen, M., Vrček, I. V., & Kahru, A. (2019).@Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports.@PeerJ, 7, e6315.@Yes$Uddin, F. (2014).@Environmental concerns in antimicrobial finishing of textiles.@International Journal of Textile Science, 3(1A), 15-20.@Yes$Shahid, M., & Mohammad, F. (2013).@Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review.@Industrial & Engineering Chemistry Research, 52(15), 5245-5260.@Yes$Tawiah, B., Badoe, W., & Fu, S. (2016).@Advances in the development of antimicrobial agents for textiles: The quest for natural products. Review.@Fibres & Textiles in Eastern Europe, 3(117), 136-149.@Yes$Alapati, P., & Sulthana, S. (2015).@Phytochemical screening of 20 plant sources for textiles finishing.@International Journal of Advanced Research, 3(10), 1391-1398.@Yes$Dhawan, B. N. (2012).@Anti-viral activity of Indian plants.@Proceedings of the national academy of sciences, India Section B: Biological Sciences, 82, 209-224.@Yes$Hipler, U. C., & Elsner, P. (Eds.). (2006).@Biofunctional textiles and the skin (Vol. 33).@Karger Medical and Scientific Publishers.@Yes$Vardanyan, R., & Hruby, V. (2006).@Synthesis of essential drugs.@Elsevier.@Yes$Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011).@Silver nanoparticles as potential antiviral agents.@Molecules, 16(10), 8894-8918.@Yes$Bisen, P. S., Debnath, M., & Prasad, G. B. K. S. (2012).@Human and microbial world.@Microbes: concepts and applications, 1st edn. Wiley, Hoboken, 1-64.@Yes$Patel, B. H., & Patel, P. B. (2006).@Dyeing of polyurethane fibre with Ocimum sanctum.@@Yes$Patel, B. H., Desai, K. U., & Jha, P. K. (2014).@Azadirachta indica mediated bioactive lyocell yarn: Chemical and colour characterization.@Advances in Chemistry, 2014(1), 259171.@Yes$Shalini, G., & Anitha, D. (2016).@A review: antimicrobial property of textiles.@Int J Sci Res, 5(10), 766-768.@Yes$Patel, B., Mandot, A. A., & Jha, P. K. (2014).@Extraction, characterization and application of Azadirachta indica leaves for development of hygienic lycra filament.@J. Int. Acad. Res. Multidiscip, 1, 65-84.@Yes$Agarwal, B. J., & Patel, B. H. (2000).@The reincarnation of natural colourants-A review.@Chemical Weekly-Bombay-, 45(38), 139-148.@Yes$Iyigundogdu, Z. U., Demir, O., Asutay, A. B., & Sahin, F. (2017).@Developing novel antimicrobial and antiviral textile products.@Applied biochemistry and biotechnology, 181, 1155-1166.@Yes$Bano, N., Ahmed, A., Tanveer, M., Khan, G. M., & Ansari, M. T. (2017).@Pharmacological evaluation of Ocimum sanctum.@J Bioequiv Availab, 9(3), 387-92.@Yes$Saharkhiz, M. J., Kamyab, A. A., Kazerani, N. K., Zomorodian, K., Pakshir, K., & Rahimi, M. J. (2014).@Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages.@Jundishapur journal of microbiology, 8(1), e13720.@Yes$Pattanayak, P., Behera, P., Das, D., & Panda, S. K. (2010).@Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview.@Pharmacognosy reviews, 4(7), 95.@Yes$Ijaz, M., Maqsood, M., & Naveed, M. (2020).@Evaluation of antimicrobial activity of Ocimum tenuiflorum leaves on mechanical behavior of fabrics.@Pure and Applied Biology (PAB), 9(1), 538-544.@Yes$Chandrasekaran, K., & Senthilkumar, M. (2019).@Synergic antibacterial effect of Curcuma aromatica Salisb and Ocimumtenuiflorum Linn herbal extract combinations on treated cotton knitted fabrics against selective bacterial strains.@Indian Journal of Fibre & Textile Research (IJFTR), 44(3), 344-351.@Yes$Chandrasekaran, K., Ramachandran, T., & Vigneswaran, C. (2012).@Effect of medicinal herb extracts treated garments on selected diseases.@@Yes$Rajendran, R., Radhai, R., Kotresh, T. M., & Csiszar, E. (2013).@Development of antimicrobial cotton fabrics using herb loaded nanoparticles.@Carbohydrate polymers, 91(2), 613-617.@Yes$Zaghloul, S., El-shafie, A., El-bisi, M., & Refaie, R. (2017).@Herbal Textile Finishes–Natural Antibacterial Finishes for Cotton Fabric.@Egyptian Journal of Chemistry, 60(2), 161-180.@Yes$Ashraf, R. H., Rahman, M., & Rahman, M. (2021).@Comparative study on antimicrobial activity of four Bangladeshi medicinal plants used as antimicrobial finishes on cotton fabric.@Journal of Textile Science & Fashion Technology, 8(3), 6.@Yes$Jayati, B. A., Kumar, A., Goel, A., Gupta, S., & Rahal, A. (2013).@In vitro antiviral potential of Ocimum sanctum leaves extract against New Castle Disease Virus of poultry.@International Journal of Microbiology and Immunology Research, 2(7), 51-55.@Yes$Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014).@A review on antibacterial, antiviral, and antifungal activity of curcumin.@BioMed research international, 2014(1), 186864.@Yes$Nisar, T., Iqbal, M., Raza, A., Safdar, M., Iftikhar, F., & Waheed, M. (2015).@Turmeric: A promising spice for phytochemical and antimicrobial activities.@Am.-Eurasian J. Agric. Environ. Sci, 15, 1278-1288.@Yes$Mathew, D., & Hsu, W. L. (2018).@Antiviral potential of curcumin.@Journal of functional foods, 40, 692-699.@Yes$Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020).@Antibacterial mechanism of curcumin: a review.@Chemistry & Biodiversity, 17(8), e2000171.@Yes$Mirjalili, M., & Abbasipour, M. (2013).@Comparison between antibacterial activity of some natural dyes and silver nanoparticles.@Journal of Nanostructure in Chemistry, 3, 1-3.@Yes$Chairman, K., Jayamala, M., Christy, V., & Singh, R. A. J. A. (2015).@Phytochemical screening and antimicrobial activity of Curcuma longa natural dye.@General Medicine, 3(2), 304-312.@Yes$Sudha, S., & Yamuna, V. (2013).@Development of anti-microbial textiles using microencapsulated honey and turmeric.@International Journal of Pharmacy & Life Sciences, 4(8).@Yes$Radha, M. H., & Laxmipriya, N. P. (2015).@Evaluation of biological properties and clinical effectiveness of Aloeávera: áAásystematic review.@Journal of traditional and complementary medicine, 5(1), 21-26.@Yes$Kahramanoğlu, İ., Chen, C., Chen, J., & Wan, C. (2019).@Chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera gel.@Agronomy, 9(12), 831.@Yes$Surjushe, A., Vasani, R., & Saple, D. (2008).@Aloe vera: a short review.@Indian journal of dermatology, 53(4), 163-166.@Yes$Kamble, K. M., Chimkod, V. B., & Patil, C. S. (2013).@Antimicrobial Activity of Aloe Vera Leaf Extract.@@Yes$Arunkumar, S., & Muthuselvam, M. (2009).@Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens.@World journal of agricultural sciences, 5(5), 572-576.@Yes$Stanley, M. C., Ifeanyi, O. E., & Eziokwu, O. G. (2014).@Antimicrobial effects of Aloe vera on some human pathogens.@International Journal of Current Microbiology and Applied Sciences, 3(3), 1022-1028.@Yes$Khan, A. F. (2012).@Extraction, stabilization and application of antimicrobial agents from Aloe Vera.@Pakistan Textile Journal, 61(4).@Yes$Hein, N. T., Hnin, S. S., & Htay, D. H. (2013).@A study on the effect of antimicrobial agent from aloe vera gel on bleached cotton fabric.@International Journal of Emerging Technology and Advanced Engineering, 4(2), 7-11.@Yes$Jothi, D. (2009).@Experimental study on antimicrobial activity of cotton fabric treated with aloe gel extract from Aloe vera plant for controlling the Staphylococcus aureus (bacterium).@African Journal of Microbiology Research, 3(5), 228-232.@Yes$Khurshid, M. F., Ayyoob, M., Asad, M., & Shah, S. N. H. (2015).@Assessment of eco-friendly natural antimicrobial textile finish extracted from aloe vera and neem plants.@Fibres & Textiles in Eastern Europe, (6 (114), 120-123.@Yes$Selvi, B. T., Rajendren, R., Nithyalakshmi, B., & Gayathirignaneswari, S. (2011).@Antimicrobial activity of cotton fabric treated with Aloevera extract.@Int. J. Appl. Environ. Sci, 6, 127-131.@Yes$Cheng, S. Y., Yuen, C. W. M., Kan, C. W., Cheuk, K. K. L., & Tang, J. C. O. (2010).@Systematic characterization of cosmetic textiles. Textile Research Journal, 80(6), 524-536.@undefined@Yes$Krishnaveni, V., & Aparna, B. (2014).@Microencapsulation of copper enriched Aloe gel curative garment for atopic dermatitis.@@Yes$Islas, J. F., Acosta, E., Zuca, G., Delgado-Gallegos, J. L., Moreno-Treviño, M. G., Escalante, B., & Moreno-Cuevas, J. E. (2020).@An overview of Neem (Azadirachta indica) and its potential impact on health.@Journal of functional foods, 74, 104171.@Yes$Hossain, M. A., Al-Toubi, W. A., Weli, A. M., Al-Riyami, Q. A., & Al-Sabahi, J. N. (2013).@Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem.@Journal of Taibah University for Science, 7(4), 181-188.@Yes$Bukhari, H., Heba, M., & Khadijah, Q. (2014).@Eco-friendly dyeing textiles with neem herb for multifunctional fabrics. Part 1: extraction standardization.@Int. J. Tech. Res. App, 2, 51-55.@Yes$Joshi, M., Ali, S. W., & Rajendran, S. (2007).@Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): a natural bioactive agent.@Journal of Applied Polymer Science, 106(2), 793-800.@Yes$Abd El Aty, A. A., El-Bassyouni, G. T., Abdel-Zaher, N. A., & Guirguis, O. W. (2018).@Experimental study on antimicrobial activity of silk fabric treated with natural dye extract from neem (Azadirachta indica) leaves.@Fibers and Polymers, 19, 1880-1886.@Yes$Raja Ratna Reddy, Y., Krishna Kumari, C., Lokanatha, O., Mamatha, S., & Damodar Reddy, C. (2020).@Antimicrobial activity of Azadirachta Indica (neem) leaf, bark and seed extracts.@@Yes$Jahan, N., & Arju, S. N. (2022).@A sustainable approach to study on antimicrobial and mosquito repellency properties of silk fabric dyed with neem (Azadirachta indica) leaves extractions.@Sustainability, 14(22), 15071.@Yes$Inprasit, T., Motina, K., Pisitsak, P., & Chitichotpanya, P. (2018).@Dyeability and antibacterial finishing of hemp fabric using natural bioactive neem extract.3 Fibers and polymers, 19, 2121-2126.@undefined@Yes$Ahmed, H. A., Rajendran, R., & Balakumar, C. (2012). 3Nanoherbal coating of cotton fabric to enhance antimicrobial durability.@Elixir Appl Chem, 45, 7840-7843.@undefined@Yes$Lim, T. K., & Lim, T. K. (2016).@Glycyrrhiza glabra.@Edible Medicinal and Non-Medicinal Plants: Volume 10, Modified Stems, Roots, Bulbs, 354-457.@Yes$Nitalikar, M. M., Munde, K. C., Dhore, B. V., & Shikalgar, S. N. (2010).@Studies of antibacterial activities of Glycyrrhiza glabra root extract.@Int J Pharm Tech Res, 2(1), 899-901.@Yes$Krishnaveni, K. (2017).@Effect of imparting antimicrobial coating on organic cotton fabric using yashtimadhu for medical application.@J Textile Eng Fashion Technol, 3(3), 650-2.@Yes$YILMAZ, F. (2020).@Application of Glycyrrhiza glabra L. root as a natural antibacterial agent in finishing of textile.@Industrial Crops and Products, 157, 112899.@Yes$Krishnaveni, V. (2013).@Combined antimicrobial and coolant finishing treatment for cotton using yashtimadhu (Glycyrrhiza glabra L.) roots extract.@@Yes$Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008).@Antiviral effects of Glycyrrhiza species.@Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22(2), 141-148.@Yes$Saha, S., & Ghosh, S. (2012).@Tinospora cordifolia: One plant, many roles.@Ancient science of life, 31(4), 151-159.@Yes$Upadhyay, R. K., Tripathi, R., & Ahmad, S. (2011).@Antimicrobial activity of two Indian medicinal plants Tinospora cordifolia (Family: Menispermaceae) and Cassia fistula (Family: Caesalpinaceae) against human pathogenic bacteria.@J. of Pharma. Res, 4(1), 167-170.@Yes$Sagar, V., & Kumar, A. H. (2020).@Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase.@@Yes$Mittal, J., Sharma, M. M., & Batra, A. (2014). Tinospora cordifolia: a multipurpose medicinal plant-A. Journal of Medicinal Plants, 2(2), 33.@undefined@undefined@Yes$Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014).@Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology.@Asian Pacific journal of tropical disease, 4(3), 213-222.@Yes$Roy, S., Rao, K., Bhuvaneswari, C. H., Giri, A., & Mangamoori, L. N. (2010).@Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity.@World Journal of Microbiology and Biotechnology, 26, 85-91.@Yes$Pongtuluran, O. B., & Rofaani, E. (2015).@Antiviral and immunostimulant activities of Andrographis paniculata.@HAYATI Journal of Biosciences, 22(2), 67-72.@Yes$Gupta, S., Mishra, K. P., & Ganju, L. (2017).@Broad-spectrum antiviral properties of andrographolide.@Archives of virology, 162(3), 611-623.@Yes$Singha, P. K., Roy, S., & Dey, S. (2003).@Antimicrobial activity of Andrographis paniculata.@Fitoterapia, 74(7-8), 692-694.@Yes$Das, P., & Srivastav, A. K. (2014).@Phytochemical extraction and characterization of the leaves of Andrographis paniculata for its anti-bacterial, anti-oxidant, anti-pyretic and anti-diabetic activity.@Int. J. innov. res. sci. eng. technol, 3, 15176-15184.@Yes$Pandey, J., Saini, V. K., & Raja, W. (2019).@Evaluation of phytochemical analysis of Andrographis paniculata leaf and stem extract.@World Journal of Pharmaceutical and Life Sciences, 5(2), 188-190.@Yes$Wen, L., Xia, N., Chen, X., Li, Y., Hong, Y., Liu, Y., & Wang, Z. (2014).@Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt.@European Journal of Pharmacology, 740, 421-427.@Yes$Alam, F., Khan, G. N., & Asad, M. H. H. B. (2018).@Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review.@Phytotherapy Research, 32(4), 597-615.@Yes$Khushboo, P. S., Jadhav, V. M., Kadam, V. J., & Sathe, N. S. (2010).@Psoralea corylifolia Linn.—“Kushtanashini”.@Pharmacognosy reviews, 4(7), 69.@Yes$Uikey, S. K., Yadav, A. S., Sharma, A. K., Rai, A. K., Raghuwanshi, D. K., & Badkhane, Y. (2010).@The botany, chemistry, pharmacological and therapeutic application of psoralea corylifolia L.–A review.@Int J Phytomed, 2(2), 100-107.@Yes$Jayapriya, S., & Bagyalakshmi, G. (2013).@Textile antimicrobial testing and standards.@International Journal of Textile and Fashion Technology, 4(1), 2250-2378.@Yes$Song, X., Padrão, J., Ribeiro, A. I. F., & Zille, A. (2021).@Testing, characterisation and regulations of antimicrobial textiles.@@Yes$Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014).@A review on antibacterial, antiviral, and antifungal activity of curcumin.@BioMed research international, 2014(1), 186864.@Yes