@Research Paper <#LINE#>Establishing the presence and mitigations of perfluoro octane sulphonic acid (PFOS) in the Ugandan market<#LINE#>Mulongo @George,Bagumire @Ananias,Opio @Alfonse,Abola @Benard <#LINE#>1-12<#LINE#>1.ISCA-RJCS-2024-005.pdf<#LINE#>Department of Chemistry, Faculty of Science, Gulu University, Gulu, Uganda@National Food Safety Foundation (NFSF), the Affiliated Institution of the Food Safety Associates Limited, Kampala, Uganda@Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda@Department of Mathematics, Faculty of Science, Gulu University, Gulu, Uganda<#LINE#>17/4/2024<#LINE#>19/7/2024<#LINE#>A study was conducted to determine the presence of perfluoro octane sulphonic acid (PFOS)-containing chemicals and products imported and used in Uganda’s environment and to evaluate the performance of the legal and institutional frameworks used to reduce their presence in the environment. The study called for an interaction with public officials and private-sector business individuals, and the performance of a content analysis of the legal and institutional framework to govern the management at the source, movement and distribution, disposal at waste disposal sites, and management of waste products. Results indicate several PFOS-containing chemicals and products from countries that historically used PFOS for commercial and industrial processes. There are inadequacies observed in import management, waste collection, and waste disposal methods from sources to waste dumping sites. The weak legal and institutional frameworks and poor collection, handling, and disposal methods risk populations to exposure to PFOS. The results indicate poorly structured organization plans of the country, for the entry, movement, distribution, and disposal of emerging persistent organic pollutants (POPs) in the environment for low-income and developing countries like Uganda. There is a need to establish Public-Private Sector partnerships, structure specialized administrative units, and purchase specialized equipment for PFOS analysis.<#LINE#>Audenaert, F., Lens, H., Rolly, D., & Vander Elst, P. (1999).@Fluorochemical textile repellents—synthesis and applications: A 3M perspective.@Journal of the Textile Institute, 90(3), 76-94.@Yes$Banks, R. E., Smart, B. E., and Tatlow J. C (1994).@Organofluorine Chemistry: Principles and Commercial Applications.@Plenum Press, New York, pp 1-88. ISBN: 978-1-4899-1204-6.@Yes$Johansson, N., Eriksson, P., and Viberg, H. (2009).@Neonatal Exposure to PFOS and PFOA in Mice Results in Changes in Proteins which are Important for Neuronal Growth and Synaptogenesis in the Developing Brain.@Toxicol. Sci., 108(2), 412–418. https://doi.org/10.1093/toxsci/kfp029.@Yes$Paul, A. G., Jones, K. C., and Sweetman, A. J (2009).@A@First Global Production, Emission, and Environmental Inventory for Perfluorooctane Sulfonate.@Yes$Yu W. G., Liu W. and Jin Y. H. (2009).@Effects of Perfluorooctane Sulfonate on Rat Thyroid Hormone Biosynthesis and Metabolism. Environ.@Toxicol. Chem., 28(5), 990. https://doi.org/10.1897/08-345.1.@Yes$Shi, X., Du, Y., Lam, P. K. S., Wu, R. S. S., and Zhou, B. (2008).@Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS.@Toxicol. Appl. Pharmacol., 230(1), 23–32. https://doi.org/ 10.1016/j.taap.2008.01.043.@Yes$Smithwick M., Evans T., Solomon K. R., and Stirling I. (2006).@Temporal Trends of Perfluoroalkyl Contaminants in Polar Bears (Ursusmaritimus) from Two Locations in the North American Arctic, 1972–2002.@Environ. Sci. Technol., 40(4), 1139. https://doi.org/10.1021/es051750h.@Yes$3M The Science of Organic Fluorochemistry (1999). https://fluoridealert.org/wp-content/pesticides/pfos.fr.final. docket.0006.pdf@undefined@undefined@Yes$The Stockholm Convention (2010).@Stockholm Convention on Persistent Organic Pollutants (POPs): as amended in 2009, pp1 – 63.@The Secretariat of the Stockholm Convention, Geneva, Switzerland. https://www.stockholm-en.pdf (SECURED) (unep.org)@No$UNEP (2010).@Stockholm Convention on Persistent Organic Pollutants: Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting, 23 October 2010, pp 1-44.@The Secretariat of the Stockholm Convention, Geneva, Switzerland. https://www.POPRC.6 Report and Decisions (pops.int)@No$Favreau, P., Poncioni-Rothlisberger, C., Place, B. J., Bouchex-Bellomie, H., Weber, A., Tremp, J., ... & Kohler, M. (2017).@Multianalyte profiling of per-and polyfluoroalkyl substances (PFASs) in liquid commercial products.@Chemosphere, 171, 491-501.@Yes$Bečanová, J., Melymuk, L., Vojta, Š., Komprdová, K., & Klánová, J. (2016).@Screening for perfluoroalkyl acids in consumer products, building materials and wastes.@Chemosphere, 164, 322-329.@Yes$Kotthof, M., Műller, J., Jűrling, H., Schlummer, M., and Fiedler, D. (2015).@Perfluoroalkyl and Polyalkyl Substances in Consumer Products.@Environ Sci. Pollut Res., 22: 14546 – 14559. https://doi.org/10.1007/s11356-015-4202-7.@No$Pontius, F. (2019).@Regulation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in drinking water: A comprehensive review.@Water, 11(10),@Yes$Herzke, D., Olsson, E., & Posner, S. (2012).@Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study.3 Chemosphere, 88(8), 980-987.@undefined@Yes$Xie, S., Wang, T., Liu, S., Jones, K. C., Sweetman, A. J., & Lu, Y. (2013).@Industrial source identification and emission estimation of perfluorooctane sulfonate in China.@Environment international, 52, 1-8.@Yes$Brooke, D., Agency, G. B. E., Footitt, A., & Nwaogu, T. A. (2009).@Environmental Risk Evaluation Report.@@Yes$Place, B. J., & Field, J. A. (2012).@Identification of novel fluorochemicals in aqueous film-forming foams used by the US military.@Environmental science & technology, 46(13), 7120-7127.@Yes$Mumtaz, M., Bao, Y., Li, W., Kong, L., Huang, J., & Yu, G. (2019).@Screening of textile finishing agents available on the Chinese market: An important source of per-and polyfluoroalkyl substances to the environment.@Frontiers of Environmental Science & Engineering, 13, 1-10.@Yes$Lin, B., Chen, Y., and Zhang, G. (2018).@Impact of technological progress on China’s textile industry and future energy saving potential forecast.@Energy, 161, 859 – 869.@Yes$Yue Ruisheng (2008).@China Ministry of Environmental Protection (MEP).@Memo to Mr. Donald Cooper, Secretariat of the Stockholm Convention, April 30, 2008.@No$National Environment Management Authority (NEMA) (2016).@Assessment of PFOS, its salts and PFOSF (Annex B, part III Chemicals)@pp 30 - 36. ISBN: 978-9970-881-24-6.@Yes$Dalahmeh, S., Tirgani, S., Komakech, A. J., Nuwagaba, C. B., and Ahrens, L. (2018).@Per- and polyfluoro alkyl substances (PFASs) in water soil and plants in wetlands and agricultural areas in Kampala, Uganda.@Sci. Total Environ., 631 – 632, 660–667. https://doi.org/10.1016/ j.scitoenv.2018.03.024.@Yes$Essumang, D. K., Eshun, A., Hogarth, J. N., Bentum, J. K., Adjei, J. K., Negishi, J., Nakamichi, S., Habibullah-Al-Mamun Md., and Masunaga, S. (2017).@Perfluoroalkyl acids (PFAAs) in Ghana@Sci. Total Environ., 579, 729 – 735. https://doi.org/10.1016/j.scitotenv.2016.11.035.@Yes$Sinduku, O., Orata, F., Weber, R., and Osibanjo, O. (2013).@Per- and polyfluoro alkyl substances in selected sewage sludge in Nigeria.@Chemosphere, 92, 329–335. https://doi.org/10.1016/j.chemosphere.2013.04.010.@Yes$Orata, F., Quinete, N., Werres, F., & Wilken R. D. (2008).@Determination of perfluorooctanoic Acid and perfluorooctane sulfonate in Lake Victoria Gulf Water.@Bull. Environ. Contam. Toxicol., 82(2), 218 – 222. https://doi.org/10.1007/s00128-008-9543-1.@Yes$UNEP/The Basel Convention (2014).@The Basel Convention on Control of Transboundary Movements of Hazardous Wastes and Their Disposal: Protocol on liability and compensation for damage resulting from transboundary movements of hazardous wastes and their disposal.@1-116. United Nations, Geneva — 1400778(E) — August 2014 — 1,000 — UNEP/BRS/2014/3. https://www.1400778_E_ inside_OCE_signa.pdf (basel.int)@No$Organization for Economic Cooperation and Development (OECD) (2002).@Cooperation on existing chemicals: Hazard Assessment of Perfluorooctane Sulfonate and its Salts.@Environment Directorate: Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides, and Biotechnology, Organisation for Economic Co-operation and Development, Paris, 21st November 2002. https://www.oecd.org/chemicalsafety/risk-assessment/2382880.pdf (oecd.org)@Yes$The Parliament of Uganda (2020).@The National Environment (Waste Management) regulation.@The Uganda Gazette No. 18, Vol. CXIII. https://www/National Environment (Waste Management) Regulations S.I. No. 49 of 2020.pdf@No$The Parliament of Uganda (2020).@The National Environment Standards (Discharge of Effluent into Water or Land) Regulations.@The Uganda Gazette No. 85, Vol. CXIII. https://www/National Environment (Standards for Discharge of Effluent into Water or Land) Regulations 2020.pdf@No$The Parliament of Uganda (2019).@The Investment Code Act, 2019.@The Uganda Gazette No. 14, Vol. CXII. https://www/THE INVESTMENT CODE ACT, 2019. pdf.@No$The Parliament of Uganda (2019).@The National Environment Act, 2019.@The Uganda Gazette No. 10, Vol. CXII. https://www/National Environment Act, No. 5 of 2019.pdf@No$The Parliament of Uganda (2016).@The National Drug Policy and Authority (Chapter 206) (NDPA), amended by the Narcotic Drugs and Psychotropic Substances (Control) Act, 2016 (Act 3 of 2016), legislation as of 15 February 2016.@https://www/akn/ug/act/statute/1993/13/eng@No$2016-02-15@undefined@undefined@No$The Parliament of Uganda (2016).@The Toxic Chemicals Prohibition Control Act, 2016.@The Uganda Gazette No. 8. https://www/Toxic Chemicals Prohibition Control Act, 2016 (Act 4 of 2016) | Ulii.@No$Ministry of Agriculture Animal Industry and Fisheries (MAAIF), Uganda (2013).@The National Agricultural Policy (NAP), 2013.@https://www/Uganda National Agriculture Policy | PDF | Agriculture | Economic Development (scribd.com).@No$Ministry of Lands, Housing and Urban Development (MLHUD), Uganda (2013).@The National Land Policy (NLP), 2013.@https://www/The-Uganda-National-Land-Policy-February-2013.pdf (mlhud.go.ug).@No$The Parliament of Uganda (2008).@The Atomic Energy Act.@The Uganda Gazette No. 61 Vol. CI. https://www/Atomic Energy Act, 2008 (Act 24 of 2008) | Ulii.@No$Ministry of Tourism, Trade, and Industry (MoTTI), Uganda (2007).@The National Trade Policy (NTP), 2007.@https://www/National Trade Policy (unep.org).@No$The Parliament of Uganda (2007).@The National Agricultural Chemical (Control) Act (NACCA), 2007.@The Uganda Gazette No. 17 Vol. C. https://www/Agricultural-Chemicals- Control-Act-2007.pdf@No$Ministry of Health (MoH), Uganda (2004).@The National Policy on Injection Safety and Health Care Waste Management, 2004.@https://www/policybook.indd (washinhcf.org).@No$The Parliament of Uganda (2006).@The Occupational Safety and Health Act, 2006.@The Uganda Gazette No. 36 Vol. XCVIX. https://www/occupational-safety-and-health-act-2006_0.pdf.@No$The Parliament of Uganda (2000).@The External Trade Act (ETA), 2000.@Free download from Laws. Africa Legislation Commons. FRBR URI: /akn/ug/act/ord/1952/8/ eng@No$2000-12-31@undefined@undefined@No$The Parliament of Uganda (2015).@Narcotic Drugs and Psychotropic Substances (Control) Act, 2016 (Act 3 of 2016).@The Uganda Gazette No. 7, Volume CIX. https://common.laws.africa/akn/ug/act/2016/3/media/publication/ug-act-2016-3-publication-document.pdf.@No$Ministry of Health, Uganda (1999).@The National Health Policy, 1999.@© Ministry of Health, Kampala. https://library.health.go.ug/Sites/default/files/resources/National_Health_Policy_1999_1.pdf@No$The Parliament of Uganda (1998).@The Land (Amendment) Act, 2010 (incorporating The Land (Amendment Acts, 2004 and 2010). The Uganda Gazette Extraordinary No. 10 Volume CIII. https://ulii.org/ak/ug/act/2010/1/eng@undefined@No$2010-02-12@undefined@undefined@No$Ministry of Water and Environment, Uganda (1994).@The National Environment Management Policy for Uganda, 1994.@© National Environment Action Plan Secretariat, Ministry of Natural Resources, pp 1 – 48. https://www/ the national environment management policy (1994 edition) | Open Library.@Yes$The Parliament of Uganda (1983).@The Uganda National Bureau of Standards Act, 1983 (Cap 327).@Blackhall Publishing Ltd, Lonsdale House, Avoca Avenue, Blackrock, Co Dublin, Ireland. https://www.ugandanational bureau of standards act. (ugandalaws.com)@No$Ministry of Health, Uganda (1935).@The Public Health Act, 1935 (Cap 281), 1- 44pp.@Free download from Laws. Africa Legislation Commons. FRBR URI: /akn/ug/act/ord/1935/13/eng@No$2000-12-31.@undefined@undefined@No$The Danish Ministry of the Environment (2015).@Perfluoroalkylated substances: PFOA, PFOS, and PFOSA: Evaluation of health hazards and proposal of a health-based quality criterion for drinking water, soil, and groundwater, Environmental project No. 1665, pp 90.@The Danish Environmental Protection Agency, Strandgade 29 1401 Copenhagen K, Denmark. ISBN: 978-87-93283-01-5.@No$United Nations Environment Protection (UNEP)/Stockholm Convention (2017).@Guidelines on BAT and BET relevant to POPs listed in Annex C Task Team discussion BATBET/toolkit expert group meeting, Vienna, January 2017.@@No$The National Environment Management Authority (NEMA) (2016).@National Implementation Plan II (NIP II) for the Stockholm Convention on Persistent Organic Pollutants (POPs) (2016- 2025).@ISBN: 978-9970-881-24-6. https://www/UNEP-POPS-NIP-Uganda-COP6.English. pdf (informea.org).@Yes$The China Environmental United Certification Centre, People’s Republic of China (2014).@Smart Procurement going green: best practices for green procurement@pp 19-21. © OECD 2014. https://www.oecd.org/governance/ procurement/toolbox/search/china-best-practices-green-public-procurement-gpp-environmental-standards.pdf .@No$The European Parliament and the Council (2008).@EUR-LEX - 02008L0105-20130913 - EN - EUR-LEX. (2013, September 13).@Retrieved from http://data.europa.eu/eli/dir/2008/105/2013-09-13@Yes$The European Parliament and The Council (2019).@Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants (recast) (Text with EEA relevance).@http://data.europa.eu/eli/reg/2019/1021/2023-08-28@Yes$Armstrong, M. R., Ferry, J., & Poovadan, A. (2016). Summary of the Prohibition of Certain Toxic Substances Regulations, 2012. Canadian Journal of Chemical Engineering, 94(11), 2086–2090. https://doi.org/10.1002/ cjce.22590@undefined@undefined@Yes$German Federal Environment Agency (GFEA) (2009).@Do without Per- and Poly-Fluorinated Chemicals and Prevent their Discharge into the Environment, pp 1-17.@German Federal Environment Agency, Press Office, Dessau. https\\www.umweltbundesamt.de@Yes <#LINE#>Investigation of potentials Water hyacinth (Ecchornia crassipes) grown at Lake Koka and Lake Abaya for bioethanol production<#LINE#>Genet @Hoyamo,Legesse @Adane,Zerihun @Demirew,Mihret @Dananto <#LINE#>13-24<#LINE#>2.ISCA-RJCS-2024-006.pdf<#LINE#>The Department of Biotechnology, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia@The Department of Chemistry, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia@The College of Agriculture, Hawassa University, Hawassa, Ethiopia@The Department of Water Resource Engineering and Management, Graduate School of Water resource and Irrigation Engineering, Hawassa University, Hawassa, Ethiopia<#LINE#>21/4/2024<#LINE#>10/6/2024<#LINE#>Scarcity, environmental pollution and increasing prices of fossil fuels are issues that forced human to search for alternative energy sources such as fuels from biomass (i.e., biofuels). Bioethanol is one of the biofuels that can be produced from lignocellulosic biomass. Water hyacinth (Ecchornia crassipes) is a lignocellulosic biomass that contains high cellulose and hemicellulose with low lignin that made it good candidate biomass for bioethanol production. However, the lignocellulosic composition of water hyacinth depends on the nutritional conditions habitats where the plant grows. This study was conducted to investigate water hyacinth grown in Lake Koka and Abaya, Ethiopia, for bioethanol production. The biomass collected from these sites (Lakes) were subjected to analysis of their mineral (N, K and P) compositions of water samples and lignocellulosic (cellulose, Hemicellulose and Lignin) compositions of Water hyacinth. The results revealed that the N, P and K levels to be 5.62, 0.81 and 0.64 mg/L, respectively, for Water sample from Lake Koka whereas the corresponding values were 3.68, 0.42 and 0.42 mg/L for water samples from Lake Abaya. The cellulose, Hemicellulose and Lignin values were 30.49, 41.30 and 4.51% for water hyacinth from Lake Koka whereas composition of for the biomass from Lake Abaya values were 25.02%, 39.93% and 8.42%, respectively, for cellulose, Hemicellulose and Lignin. The values for biomass from Lake Koka were slightly higher than that of biomass from Lake Abaya. The differences were attributed to differences in mineral composition of water samples of the lakes. The optimum condition for hydrolysis of lignocellulosic for bioethanol production from water hyacinth collected from Lake Koka were 1% sulphuric acid and 60 minutes whereas for water hyacinth from Lake Abaya the corresponding conditions were 1.5% sulphuric acid and 90 minutes. The ethanol yields were 37.22 and 31.22% for water hyacinth from Lake Koka and Lake Abaya, respectively. The bioethanol product was confirmed by boiling point and FTIR spectroscopic data. From this study it was concluded that higher ethanol product from biomass collected from Lake Koka could be attributed to higher cellulose and hemicellulose compositions and lower lignin as compared to the biomass collected from Lake Abaya. The biomass from Lake Koka is preferred for ethanol production not only because of higher ethanol yield but also it requires less concentrated acid (1% H2SO4) and shorter hydrolysis time (60 minutes). Thus, water hyacinth should be given a due attention as candidate biomass for bioethanol production as it is non-edible lignocellulosic biomass. However, continues efforts are recommended to develop optimum conditions that are cost effective for production of bioethanol from water hyacinth.<#LINE#>Stephen, F.L. (2005).@Fossil Fuels in the 21st Century.@J. Human Environ., 34(8), 621-627.@Yes$Koyama, K. (2017).@The role and future of fossil fuel.@IEEJ Energy Journal, Special Issue, 80-83.@Yes$Mahdavi, P. & Ross, M. (2017).@The Political Economy of Hydrocarbon Wealth and Fuel Prices.@@Yes$Lehmann, T. C. (2017).@The Geopolitics of Global Energy.@The Geopolitics of Global Energy: The New Cost of Plenty. Boulder, CO–London: Lynne Rienner Publishers.@Yes$Chum, H. L., & Overend, R. P. (2001).@Biomass and renewable fuels.@Fuel processing technology, 71(1-3), 187-195.@Yes$Sims, R. E. (2003).@Bioenergy options for a cleaner environment: in developed and developing countries.@Elsevier.@Yes$Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006).@Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.@Proceedings of the National Academy of sciences, 103(30), 11206-11210.@Yes$Pittman, J. K., Dean, A. P. & Osundeko, O. (2011).@The potential of sustainable algal biofuel production using wastewater resources.@Bioresource technology, 102(1), 17-25.@Yes$Vandna, P., Ravindra, S. and Pankaj G. (2016).@Algal Oil Potential as a Bio Fuel and Food Supplement.@Res. J. Chemical Sci., 6, 6-10.@Yes$Samarina, V., Skufina, T., lexander Samarin, Ð., & Ushakov, D. (2018).@Alternative energy sources: Opportunities, experience and prospects of the Russian regions in the context of global trends.@International Journal of Energy Economics and Policy, 8(2), 140-147.@Yes$Konovalov, V., Pogharnitskaya, O., Rostovshchikova, A., & Matveenko, I. (2015).@Potential of renewable and alternative energy sources.@In IOP Conference Series: Earth and Environmental Science, 27(1), 012068. IOP Publishing.@Yes$Tse, T. J., Wiens, D. J., & Reaney, M. J. (2021).@Production of bioethanol-A review of factors affecting ethanol yield.@Fermentation, 7(4), 268.@Yes$Ifeanyichukwu, E. (2023).@Bioethanol production: An Overview.@University of Port Harcourt, http://dx.doi.org/ 10. 5772/intechopen.94895 (Accessed on April 22, 2023).@Yes$Domínguez-Bocanegra, A. R., Torres-Muñoz, J. A., & López, R. A. (2015).@Production of bioethanol from agro-industrial wastes.@Fuel, 149, 85-89.@Yes$Research and Markets Report (2022).@Global Ethanol Market - Forecasts from 2022 to 2027.@August 2022. https://www.researchandmarkets.com/reports/5649142/ global-ethanol-market-forecasts-from-2022-to-2027. (Accessed on 26 Nov, 2023).@No$Saliu, B. K. (2012).@Production of ethanol from some cellulosic waste biomass hydrolyzed using fungal cellulases (Doctoral dissertation, University of Ilorin).@@Yes$Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., ... & Šantek, B. (2018).@Bioethanol production from renewable raw materials and its separation and purification: a review.@Food technology and biotechnology, 56(3), 289-311.@Yes$Duarte, P. F., Chaves, M. A., Borges, C. D., & Mendonça, C. R. B. (2016).@Avocado: characteristics, health benefits and uses.@Ciência rural, 46(4), 747-754.@Yes$Badger, P. C. (2002).@Ethanol from cellulose: a general review.@Trends in new crops and new uses, 14, 17-21.@Yes$Hamelinck, C. N., Van Hooijdonk, G., & Faaij, A. P. (2005).@Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term.@Biomass and bioenergy, 28(4), 384-410.@Yes$Woldesenbet, A. G., Woldeyes, B., & Chandravanshi, B. S. (2016).@Bio-ethanol production from wet coffee processing waste in Ethiopia.@SpringerPlus, 5, 1-7.@Yes$Tiruye, G. A., Besha, A. T., Mekonnen, Y. S., Benti, N. E., Gebreslase, G. A., & Tufa, R. A. (2021).@Opportunities and challenges of renewable energy production in Ethiopia.@Sustainability, 13(18), 10381.@Yes$Zenebe Gebreegziabher, Z. G., Alemu Mekonnen, A. M., Tadele Ferede, T. F., & Gunnar Köhlin, G. K. (2014).@Profitability of biofuels production: the case of Ethiopia.@@Yes$Tadele Ferede, T. F., Zenebe Gebreegziabher, Z. G., Alemu Mekonnen, A. M., Fantu Guta, F. G., & Levin, J. (2015).@Biofuel investments and implications for the environment in Ethiopia: an economy-wide analysis.@@Yes$Yalew, A. W. (2022).@The Ethiopian energy sector and its implications for the SDGs and modeling.@Renewable and Sustainable Energy Transition, 2, 100018.@Yes$Muscat, A., De Olde, E. M., de Boer, I. J., & Ripoll-Bosch, R. (2020).@The battle for biomass: a systematic review of food-feed-fuel competition.@Global Food Security, 25, 100330.@Yes$Masifwa, W. F., Twongo, T., & Denny, P. (2001).@The impact of water hyacinth, Eichhornia crassipes (Mart) Solms on the abundance and diversity of aquatic macroinvertebrates along the shores of northern Lake Victoria, Uganda.@Hydrobiologia, 452, 79-88.@Yes$Brendonck, L., Joachim, M., Wouter, R., Nzwirashe, D., Tamuka, N., Maxwell, B., Veerle, C., Crispen, P., Kelle, M., Brian, G., Maarten, S., Nooike, A., Eddy, H., Frans, O. and Brian, M. (2003).@The Impact of Water Hyacinth (Eichhornia Crassipes) In A Eutrophic Subtropical Impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Archiv für Hydrobiologie., 158(3), 389-405.@undefined@Yes$Malik, A. (2007).@Environmental challenge vis a vis opportunity: the case of water hyacinth.@Environment international, 33(1), 122-138.@Yes$Anuja Sharma, A. S., Aggarwal, N. K., Anita Saini, A. S., & Anita Yadav, A. Y. (2016).@Beyond biocontrol: water hyacinth-opportunities and challenges.@@Yes$Ebro, A., Berhe, K., Getahun, Y., Adane, Z., Alemayehu, N., Fayisa, Y., & Tegegne, A. (2017).@Water hyacinth (Eichhornia crassipes (Mart.): Land use/land cover changes and community-based management in east Shoa zone, Ethiopia.@International Journal of Environmental and Agriculture Research, 3(5), 01-11.@Yes$Osmond, R., and A. Petroeschhevsky (2013).@Water hyacinth Control Modules Control options for water hyacinth (Eichhornia crassipes) in Australia.@Australia: New South Wales Department of Primary Industries. Retrieved from https://www. dpi. nsw. gov. au/__data/assets/pdf_file/0005/505706/waterhyacinth-control-modules-full-accessible. pdf (2013). (Accessed on 24 April, 2023).@Yes$Tewabe, D. (2015).@Preliminary survey of water hyacinth in Lake Tana, Ethiopia.@Global Journal of Allergy, 1(1), 013-018.@Yes$Abera, M. W. (2018).@Impact of water hyacinth, Eichhornia crassipes (Martius)(Pontederiaceae) in Lake Tana Ethiopia: a review.@J Aquac Res Dev, 9, 520.@Yes$Harley, K. L. S., Julien, M. H., & Wright, A. D. (1996).@Water hyacinth: a tropical worldwide problem and methods for its control.@2nd International. Weed Control Congress. Copehenhagen, Denmark.@Yes$Legesse, A., Kefale, F. and Tegene, T (2022).@Exploring The Potential of Water Hyacinth Ash As Source of Alkaline For Soap Production: As A Means to Control Environmental Pollution by The Invasive Weed.@Comprehensive Res. Reviews Chem. Pharmacy., 1, 012-024.@No$Adane, L., Gelaye, T., & Tesfaye, T. (2021).@Exploring of the potential of Parthenium weed ash as substitute for commercial alkali for preparation of laundry soap: as a means to control invasion of Parthenium.@Frontiers in Sustainability, 2, 607125.@Yes$Gunja, V. G., Priyanka, J., Kant, S. C., Dixit, A., & Jain, R. (2016).@Production of bioethanol from water hyacinth by isolated thermotolerant bacteria.@International Journal of Current Science and Technology, 4, 219-223.@Yes$Wang, Z., Zheng, F., & Xue, S. (2019).@The economic feasibility of the valorization of water hyacinth for bioethanol production.@Sustainability, 11(3), 905.@Yes$Madian, H. R., Sidkey, N. M., Abo Elsoud, M. M., Hamouda, H. I., & Elazzazy, A. M. (2019).@Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26.@Arabian Journal for Science and Engineering, 44, 33-41.@Yes$Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., & Fujita, M. (2008).@Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.).@Bioresource technology, 99(7), 2495-2500.@Yes$Jongmeesuk, A., Sanguanchaipaiwong, V., & Ochaikul, D. (2014).@Pretreatment and enzymatic hydrolysis from water hyacinth (Eichhornia crassipes).@Current Applied Science and Technology, 14(2), 79-86.@Yes$DalCorso, G., Manara, A., Piasentin, S., & Furini, A. (2014).@Nutrient metal elements in plants.@Metallomics, 6(10), 1770-1788.@Yes$American Public Health Association (1926).@Standard methods for the examination of water and wastewater.@Vol. 6. American Public Health Association.@Yes$Alemayehu, A.W., Megerssa. E., Teferi, T. and Tamiru C. (2022).@Socioeconomic Profile of Fishermen and Current Status of Fish Production in Lake Koka, Ethiopia.@The Global J. Fisheries. Aquaculture., 10, 01-11.@No$Ayele, T., Ayana, M., Tanto, T., & Asefa, D. (2014).@Evaluating the status of micronutrients under irrigated and rainfed agricultural soils in Abaya Chamo Lake Basin, South-west Ethiopia.@Journal of Scientific Research and Reviews, 3(1), 18-27.@Yes$Reales-Alfaro, J. G., Trujillo-Daza, L. T., Arzuaga-Lindado, G., Castaño-Peláez, H. I., & Polo-Córdoba, Á. D. (2013).@Acid hydrolysis of water hyacinth to obtain fermentable sugars.@CT&F-Ciencia, Tecnología y Futuro, 5(2), 101-111.@Yes$Deka, D., Das, S. P., Ravindran, R., Jawed, M., & Goyal, A. (2018).@Water hyacinth as a potential source of biofuel for sustainable development.@Urban Ecology, Water Quality and Climate Change, 351-363.@Yes$National Renewable Energy Laboratory (NREL).@Biomass feedstock composition and property database.@USA 2005.@No$Ayeni, A. O., Adeeyo, O. A., Oresegun, O. M., & Oladimeji, T. E. (2015).@Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass.@American Journal of engineering research, 4(4), 14-19.@Yes$Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011).@Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation.@J Sci Ind Res, 70(2), 156-161.@Yes$Bani, O. (2015).@Process selection on bioethanol production from water hyacinth (Eichhornia crassipes).@@Yes$Masami, G. O., Usui, I., & Urano, N. (2008).@Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres.@African journal of microbiology research, 2(5), 110-113.@Yes$Silva P. A. D., Souza G., DE C., Paim A. P. S. & Lavorante A. F. (2018).@Spectrophotometric determination of reducing sugar in wines employing in-line dialysis and a multicommuted flow analysis approach.@Journal of the Chilean Chemical Society, 63(2), 3994-4000.@Yes$Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T., & Akaracharanya, A. (2008).@Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae.@Annals of microbiology, 58, 219-225.@Yes$Statistical Analysis System (SAS) Institute (2009).@SAS/STAT user’s guide.@Proprietary software version 9.00. SAS Institute, Inc., Cary, NC 2009.@No$Dersseh, M. G., Tilahun, S. A., Worqlul, A. W., Moges, M. A., Abebe, W. B., Mhiret, D. A., & Melesse, A. M. (2020).@Spatial and temporal dynamics of water hyacinth and its linkage with lake-level fluctuation: Lake Tana, a sub-humid region of the Ethiopian highlands.@Water, 12(5), 1435.@Yes$Setyaningsih, L., Satria, E., Khoironi, H., Dwisari, M., Setyowati, G., Rachmawati, N., ... & Anggraeni, J. (2019, December).@Cellulose extracted from water hyacinth and the application in hydrogel.@In IOP Conference Series: Materials Science and Engineering (Vol. 673, No. 1, p. 012017). IOP Publishing.@Yes$Bolenz, S., Omran, H., & Gierschner, K. (1990).@Treatments of water hyacinth tissue to obtain useful products.@Biological Wastes, 33(4), 263-274.@Yes$Timung, R., Naik Deshavath, N., Goud, V. V. & Dasu, V. V. (2016).@Effect of subsequent dilute acid and enzymatic hydrolysis on reducing sugar production from sugarcane bagasse and spent citronella biomass.@Journal of Energy, (1), 8506214.@Yes$Rezania, S., Din, M. F. M., Taib, S. M., Sohaili, J., Chelliapan, S., Kamyab, H., & Saha, B. B. (2017).@Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives.@International Journal of hydrogen energy, 42(33), 20955-20969.@Yes$Betelihem M. (2016).@Bioethanol Production from Water Hyacinth by Chemical Hydrolysis (Preliminary Study).@M.Sc. Thesis, Addis Ababa University, Ethiopia.@No$Burton, J., Van Oosterhout, E., Ensbey, R. and Julien, M. (2010).@Water hyacinth (Eichhornia crassipes): Weed of National Significance.@Department of Primary Industries New South Wales, Australia.@No$Adamovics, A., Platace, R., & Ivanovs, S. (2016).@Influence of nitrogen fertilizers on chemical composition of energy grass.@Engineering for Rural Development, Jelgava, 25(27.05).@Yes$Walker, G. M. (2010).@Bioethanol: Science and technology of fuel alcohol.@Bookboon.@Yes$Roni, K. A., Hastarina, M., & Herawati, N. (2019).@Effect of time and concentration of sulfuric acid on yield bioethanol produced in making Bioethanol from peat soil.@Journal of Physics: Conference Series, 1167, 1, 012056. IOP Publishing.@Yes$Zhang, L., Li, J. H., Li, S. Z., & Liu, Z. L. (2011).@Challenges of cellulosic ethanol production from xylose-extracted corncob residues.@BioResources, 6(4).@Yes$Zelelew, D., Gebrehiwot, H., & Fikre, W. (2018).@Feasibility of Bioethanol production potential and optimization from selected lignocellulosic waste biomass.@International Journal of Environmental Science and Natural Resources, 9(2), 89-95.@Yes$Teirumnieka, E., Poisa, L., Adamovics, A., & Platace, R. (2011).@Evaluation of the Factors that Affect the Lignin Content in the Reed Canarygrass (Phalaris arundinacea L.) in Latvia.@@Yes <#LINE#>DFT Assisted Design, Generation and Spectroscopic Characterization of Hybrid Dicyclopentadienyltitanium (IV) Formulations<#LINE#>Ankur M. @Kumar,Suchitra @Budania,Asha @Jain <#LINE#>25-32<#LINE#>3.ISCA-RJCS-2024-010.pdf<#LINE#>Department of Chemistry, University of Rajasthan, Jaipur-302004, India@Department of Chemistry, University of Rajasthan, Jaipur-302004, India@Department of Chemistry, University of Rajasthan, Jaipur-302004, India<#LINE#>8/7/2024<#LINE#>14/9/2024<#LINE#>New hybrid dicyclopentadienyltitanium(IV) complexes having the formulas Cp2TiL1L’ and Cp2TiL2L’were generated by the reactions of titanocene(IV) dichloride with sterically hindered pyrazolones [LH, where R= -CH2CH3(L1H), p-ClC6H4-(L2H)] and phenoxyacetic acid (L’H, C6H5OCH2-COOH) in the presence of triethylamine in a 1:1:1:2 molar ratio in refluxing dry THF. The structural characteristics of newly synthesized hybrid titanocene(IV)complexes were determined using analytical methods, mass spectrometry, and spectroscopic (IR, 1H and 13C NMR) techniques. On the basis of obtained evidences a hexa coordinated geometry around the titanium centre has been suggested for newly generated hybrid dicyclopentadienyltitanium(IV) complexes. DFT calculations were performed to study the electronic properties and optimized geometries of the newly prepared hybrid dicyclopentadienyltitanium(IV) formulations.<#LINE#>Schmidt, A., Heinrich, B., Kirscher, G., Chaumont, A., Henry, M., Kyritsakas, N., ... & Mobian, P. (2020).@Dipyrrolyldiketonato Titanium (IV) Complexes from Monomeric to Multinuclear Architectures: Synthesis, Stability, and Liquid-Crystal Properties.@Inorganic Chemistry, 59(17), 12802-12816.@Yes$Macyk, W., Szaciłowski, K., Stochel, G., Buchalska, M., Kuncewicz, J., & Łabuz, P. (2010).@Titanium (IV) complexes as direct TiO2 photosensitizers.@Coordination Chemistry Reviews, 254(21-22), 2687-2701.@Yes$Banerjee, P., Pandey, O. P., & Sengupta, S. K. (2008).@Microwave assisted synthesis, spectroscopic and antibacterial studies of titanocene chelates of Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1, 2, 4-triazoles.@Transition metal chemistry, 33, 1047-1052.@Yes$Sharma, K., Saxena, S., Jain, A. (2021).@Certain New Dicyclopentadienyl Titanium Complexes Derived from Sterically Impeded Heterocyclic Beta-Diketones and Beta-Diketones: Generation, Spectroscopic Characterization and Structure- Antimicrobial Activity Relationship.@Res. J. Chem. Sci., 11(3), 6-13.@Yes$Sharma, S., Kumar, P., Jain, A., & Saxena, S. (2018).@Synergy Between DFT Calculations and Experimental Studies on the Optimized Structures and the Antibacterial Potential of Some Novel Tetra‐and Penta Coordinated Organic‐Inorganic Hybrid Complexes of Titanium (IV).@Applied Organometallic Chemistry, 32(6), e4321.@Yes$Rodríguez, I., Fernández-Vega, L., Maser-Figueroa, A. N., Sang, B., González-Pagán, P., & Tinoco, A. D. (2022).@Exploring titanium (IV) complexes as potential antimicrobial compounds.@Antibiotics, 11(2), 158.@Yes$Kaushal, R., Thakur, A., Bhatia, A., Arora, S., & Nehra, K. (2020).@Synthesis, characterization, DNA-binding and biological studies of novel titanium (IV) complexes.@Journal of Chemical Sciences, 132, 1-17.@Yes$Uddin, M. N., Khandaker, S., Amin, M. S., Shumi, W., Rahman, M. A., & Rahman, S. M. (2018).@Synthesis, characterization, molecular modeling, antioxidant and microbial properties of some Titanium (IV) complexes of schiff bases.3 Journal of Molecular Structure, 1166, 79-90.@undefined@Yes$Kumar, N., Kaushal, R., Chaudhary, A., Arora, S., & Awasthi, P. (2014).@Synthesis, structural elucidation, and in vitro antiproliferative activities of mixed-ligand titanium complexes.@Medicinal Chemistry Research, 23, 3897-3906.@Yes$Zhao, T., Wang, P., Zhang, X., Liu, N., Zhao, W., Zhang, Y., ... & Huhn, T. (2023).@Anti-tumoral titanium (IV) complexes stabilized with phenolato ligands and structure-activity relationship.@Current Topics in Medicinal Chemistry, 23(19), 1835-1849.@Yes$Manne, R., Miller, M., Duthie, A., da Silva, M. F. C. G., Tshuva, E. Y., & Baul, T. S. B. (2019).@Cytotoxic homoleptic Ti (IV) compounds of ONO-type ligands: synthesis, structures and anti-cancer activity.@Dalton Transactions, 48(1), 304-314.@Yes$Thanigachalam, S., & Pathak, M. (2024).@Bioactive O^ N^ O^ Schiff base appended homoleptic titanium (iv) complexes: DFT, BSA/CT-DNA interactions, molecular docking and antitumor activity against HeLa and A549 cell lines.@RSC advances, 14(19), 13062-13082.@Yes$Guk, D. A., Gibadullina, K. R., Burlutskiy, R. O., Pavlov, K. G., Moiseeva, A. A., Tafeenko, V. A., ... & Beloglazkina, E. K. (2023).@New Titanocene (IV) Dicarboxylates with Potential Cytotoxicity: Synthesis, Structure, Stability and Electrochemistry.@International Journal of Molecular Sciences, 24(4), 3340.@Yes$Manßen, M., & Schafer, L. L. (2020).@Titanium catalysis for the synthesis of fine chemicals–development and trends.@Chemical Society Reviews, 49(19), 6947-6994.@Yes$Sun, Z., Unruean, P., Aoki, H., Kitiyanan, B., & Nomura, K. (2020).@Phenoxide-modified half-Titanocenes supported on star-shaped ROMP polymers as catalyst precursors for ethylene copolymerization@. Organometallics, 39(16), 2998-3009.@Yes$Tang, X. Y., Liu, J. Y., & Li, Y. S. (2013).@Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-) Polymerization.@Catalysts, 3(1), 261-275.@Yes$Zhao, R., Liu, T., Wang, L., & Ma, H. (2014).@High temperature ethylene polymerization catalyzed by titanium (iv) complexes with tetradentate aminophenolate ligands in cis-O, N, N chelating mode.3 Dalton Transactions, 43(33), 12663-12677.@undefined@Yes$Thanigachalam, S., & Pathak, M. (2023).@Development of nano titania/polyvinylidene fluoride composite from new titanium (IV) derivative and its investigation on antibacterial, BSA interaction and cytotoxicity.@Materials Today Communications, 35, 105774.@Yes$Kaluđerović, G. N., Pérez-Quintanilla, D., Sierra, I., Prashar, S., del Hierro, I., Žižak, Ž., ... & Gómez-Ruiz, S. (2010).@Study of the influence of the metal complex on the cytotoxic activity of titanocene-functionalized mesoporous materials.@Journal of Materials Chemistry, 20(4), 806-814.@Yes$Tacke, M., Allen, L. T., Cuffe, L., Gallagher, W. M., Lou, Y., Mendoza, O., ... & Sweeney, N. (2004).@Novel titanocene anti-cancer drugs derived from fulvenes and titanium dichloride.@Journal of Organometallic Chemistry, 689(13), 2242-2249.@Yes$Causey, P. W., Baird, M. C., & Cole, S. P. (2004).@Synthesis, characterization, and assessment of cytotoxic properties of a series of titanocene dichloride derivatives.@Organometallics, 23(19), 4486-4494.@Yes$Ceballos-Torres, J., Gómez-Ruiz, S., Kaluđerović, G. N., Fajardo, M., Paschke, R., & Prashar, S. (2012).@Naphthyl-substituted titanocene dichloride complexes: Synthesis, characterization and in vitro studies.@Journal of Organometallic Chemistry, 700, 188-193.@Yes$Verma, S., Joshi, A., Jain, A., & Saxena, S. (2004).@New mixed ligand complexes of dicyclopentadienyl titanium (IV) derived from sterically congested heterocyclic β-diketones and N-protected amino acids.@Journal of Chemical Research, 2004(11), 768-772.@Yes$Semproni, S. P., Milsmann, C., & Chirik, P. J. (2012).@Side-on dinitrogen complexes of titanocenes with disubstituted cyclopentadienyl ligands: synthesis, structure, and spectroscopic characterization.@Organometallics, 31(9), 3672-3682.@Yes$Tamafo Fouegue, A. D., Nono, J. H., Nkungli, N. K., & Ghogomu, J. N. (2021).@A theoretical study of the structural and electronic properties of some titanocenes using DFT, TD-DFT, and QTAIM.@Structural Chemistry, 32, 353-366.@Yes$Gurung, R. K., McMillen, C. D., Jarrett, W. L., & Holder, A. A. (2020).@Synthesis, characterization, NMR spectroscopic, and X-ray crystallographic studies of new titanium (IV) Schiff base salen complexes: formation of intriguing titanium (IV) species.@Inorganica Chimica Acta, 505, 119496.@Yes$Gómez-Ruiz, S., Gallego, B., Žižak, Ž., Hey-Hawkins, E., Juranić, Z. D., & Kaluđerović, G. N. (2010).@Titanium (IV) carboxylate complexes: Synthesis, structural characterization and cytotoxic activity.@Polyhedron, 29(1), 354-360.@Yes$Kumar, A. M., Budania, S., & Jain, A. (2024).@Novel organic–inorganic hybrid dimethyltin (IV) complexes of heterocyclic carboxylic acid and N-phthaloyl amino acids: Design, synthesis, spectroscopic characterization, DFT calculations and their anti-oxidant potential.@Synthetic Communications, 54(5), 390-405.@Yes$Budania, S., Saxena, S., & Jain, A. (2024).@Design and DFT assisted characterization of certain biopotent dimethyltin (IV) complexes: Reactivity specification and new perspectives.@Journal of the Indian Chemical Society, 101198.@Yes$Budania, S., Saxena, S., & Jain, A. (2022).@Assessment of DFT based optimized molecular structure-antioxidant efficacy relationship of trimethylgermanium (IV) complexes.@Journal of the Indian Chemical Society, 99(5), 100419.@Yes$Sharma, K., Soni, K., Saxena, S., & Jain, A. (2023).@Biopotential insights and structural chemistry of some zirconocene incorporated heterocyclic β-diketones and flexible N-protected α/β-amino acids.@Indian Journal of Chemistry (IJC), 62(4), 331-338.@Yes$Abbas, S. M., Ali, S., Hussain, S. T., & Shahzadi, S. (2013).@Structural diversity in organotin (IV) dithiocarboxylates and carboxylates.@Journal of Coordination Chemistry, 66(13), 2217-2234.@Yes$Ahmad, I., Waseem, A., Tariq, M., MacBeth, C., Bacsa, J., Venkataraman, D., ... & Tabassum, S. (2020).@Organotin (IV) derivatives of amide-based carboxylates: Synthesis, spectroscopic characterization, single crystal studies and antimicrobial, antioxidant, cytotoxic, anti-leishmanial, hemolytic, noncancerous, anticancer activities.@Inorganica Chimica Acta, 505, 119433.@Yes$Jensen, B. S. (1959).@The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5.@Acta chem. scand, 13(8), 1668-1670.@Yes$Gupta, R. K., Jain, A., & Saxena, S. (2010).@Certain New Organic-Inorganic Hybrid Complexes of Monobutyltin (Iv) of ß-Diketones/Fluorinated ß-Diketone and Sterically Congested Heterocyclic ß-Diketones: Preparation, Structural Chemistry and Structural Elucidation Based upon Spectroscopic [Ir and Nmr (1Η, 13C and 119Sn)] Studies.@Main Group Metal Chemistry, 33(4-5), 167-182.@Yes$Hussain, M., Zaman, M., Hanif, M., Ali, S., & Danish, M. (2008).@Synthesis and structural characterization of organotin (IV) complexes formed with [O, O] donor atoms of carboxylic acids.@Journal of the Serbian Chemical Society, 73(2), 179-187.@Yes$Budania, S., Saxena, S., Jain, A. (2022).@Structural Insights into Some Sterically Demanding Heterocyclic β-Diketones: Optimized Molecular Structure, Optimized Energy, Stability and Mulliken Charge Distribution Based on DFT Analysis.@IOP Conf. Ser. Mater. Sci. Eng., 1248(1), 012106.@Yes