International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Aflatoxin in selected grain legumes from four states of North-Central Nigeria

Author Affiliations

  • 1Department of Plant Science and Biotechnology, Federal University of Lafia, P.M.B 146 Lafia, Nasarawa State, Nigeria
  • 2Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria
  • 3Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria
  • 4Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria

Res.J.chem.sci., Volume 13, Issue (3), Pages 1-8, October,18 (2023)

Abstract

According to the findings, the mean AfB1 concentrations in soyabeans were 1.48g/kg, 0.14g/kg, 0.95g/kg, and 0.29g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. In Niger, Kogi Plateau, and Nasarawa states, the mean levels of total aflatoxin in soyabeans were 6.63g/kg, 7.28g/kg, 12.28g/kg, and 5.65g/kg, respectively. The mean AfB1 cowpea concentrations were 0.52g/kg, 0.9g/kg, 0.88g/kg, and 0.77g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. In the states of Niger, Kogi, Plateau, and Nasarawa, the mean total aflatoxin levels in cowpea were 5.62g/kg, 3.67g/kg, 5.76 g/kg, and 4.77 g/kg, respectively. The mean concentrations of AfB1 in bambara nuts were 0.61g/kg, 1.15g/kg, 1.09g/kg, and 1.41g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. Mean Total Aflatoxin in bambara nuts was found to be 2.8g/kg, 6.06g/kg, 3.89g/kg, and 4.91g/kg in the respective states of Niger, Kogi, Plateau, and Nasarawa. While Total Aflatoxin exceeded the EU's permissible limit of 2.0g/kg in all grains across all States, the mean concentration of AfB1 did not.

References

  1. Ozay, G., Seyhan, F., Pembeci, C., Saklar, S., Yilmax, A. (2008)., Factors influencing fungal and aflatoxin levels in Turkish hazelnuts (Corylus avellane L.) during growth, harvest, drying and storage: A 3-year study., Taylor & Francis, 25(2), 209–218.
  2. Munthali, W., Charlie, H., Kachulu, L., & Seetha, D. (2016)., How to reduce Aflatoxin contamination in groundnuts and maize a guide for extension workers., http://oar.icrisat.org/id/eprint/9892
  3. Kachapulula, P. W., Bandyopadhyay, R., & Cotty, P. J. (2019)., Aflatoxin contamination of non-cultivated fruits in Zambia., Frontiers in Microbiology, 10(8).
  4. Jallow, A., Xie, H., Tang, X., Qi, Z., & Li, P. (2021)., World wide aflatoxin contamination of agricultural products and foods: From occurrence to control., Comprehensive Reviews in Food Science and Food Safety, 20(3), 2332–2381. https://doi.org/10.1111/1541-4337. 12734
  5. Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020)., Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%., Critical Reviews in Food Science and Nutrition, 60(16), 2773–2789.
  6. Hamid, A. S., Tesfamariam, S. G., Zhang, Y., & Zhang, Z. G. (2013)., Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention (Review)., Oncology Letters, 5(4), 1087–1092.
  7. Singh, P., Callicott, K. A., Orbach, M. J., & Cotty, P. J. (2020)., Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa., Frontiers in microbiology, 11, 1236.
  8. Ching’anda, C., Atehnkeng, J., Bandyopadhyay, R., Callicott, K. A., Orbach, M. J., Mehl, H. L., & Cotty, P. J. (2021)., Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization., Frontiers in Fungal Biology,
  9. Cui, X., Muhammad, I., Li, R., Jin, H., Guo, Z., Yang, Y., Hamid, S., Li, J., Cheng, P., & Zhang, X. (2017)., Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance Rates., Frontiers in Pharmacology, 8(SEP). https://doi.org/10.3389/FPHAR. 2017.00650/FULL
  10. Qiu, F., Shi, H., Wang, S., Ma, L., & Wang, M. (2019)., Safety evaluation of Semen Sojae Preparatum based on simultaneous LC–ESI–MS/MS quantification of aflatoxin B1, B2, G1, G2 and M1., Biomedical Chromatography, 33(8). https://doi.org/10.1002/BMC.4541
  11. Catanante, G., Rhouati, A., Hayat, A., & Marty, J. L. (2016)., An Overview of Recent Electrochemical Immunosensing Strategies for Mycotoxins Detection., Electroanalysis, 28(8), 1750–1763. https://doi.org/10.1002/ ELAN.201600181
  12. Olagunju, O. (2019)., Incidence of mycotoxigenic fungi during processing and storage of bambara groundnut (Vigna subterranea) composite flour., Doctoral dissertation, Durban University of Technology, Durban, South Africa. http://eprints.abuad.edu.ng/616/
  13. Baranyi, N., Kocsubé, S., Vágvölgyi, C., Varga, J. (2013)., Current trends in aflatoxin research., Acta Biol. Szeged. 57, 95–107. 33.
  14. Arapcheska, M., Jovanovska, V., Jankuloski, Z., Musliu, Z., Uzunov, R. (2015)., Impact of aflatoxins on animal and human health., Int. J. Innov. Sci. Eng. Technol., 156–161. 34.
  15. Reid, C., X. Sparks, D., L, Williams, W., P. Brown, A., E. (2016)., Single corn kernel aflatoxin B1 extraction and analysis method.,
  16. Guo, P., Yang, W., Hu, H., Wang, Y., & Li, P. (2019)., Rapid detection of aflatoxin B 1 by dummy template molecularly imprinted polymer capped CdTe quantum dots., Analytical and Bioanalytical Chemistry. https://doi. org/10.1007/S00216-019-01708-2
  17. Piletska, E., Karim, K., Coker, R. (2008)., Development of the custom polymeric materials specific for aflatoxin B1 and ochratoxin A for application with the Toxi Quant T1 sensor tool., Elsevier, 1217(16), 2543–2547. https://doi.org/10.1016/j.chroma.2009.11.091
  18. Dhanasekaran, D., Shanmugapriya, S., Thajuddin, N., Panneerselvam, A. (2011). Aflatoxins and aflatoxicosis in human and animals. Aflatoxins-Biochemistry and Molecular Biology. InTech., undefined, undefined
  19. Yu, J., Fedorova, N., D. Montalbano, B., G. Bhatnagar, D., Cleveland, T., E. Bennett, J., W. Nierman, W., C. (2011)., Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-seq., FEMS Microbiol. Lett. 322, 145– 149.
  20. Abdel-Hadi, A., Schmidt-Heydt, M., Parra, R., Geisen, R., Magan, N., A. (2011)., Systems 2011 approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus., J. R. Soc. Interface.
  21. Donner, M., Lichtemberg, P.S., Doster, M., Picot, A., Cotty, P., J. Puckett, R., D. Michailides, T., J. (2015)., Community structure of Aspergillus flavus and A. parasiticus in major almond-producing areas of California, United States., Plant Dis., 99, 1161–1169.
  22. Udomkun, P., Wiredu, A., N. Nagle, M., Bandyopadhyay, R., Müller, J., & Vanlauwe, B. (2017)., Mycotoxins in sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook., Food Control, 7(2), 110–122.
  23. Warensjö Lemming, E., Montano Montes, A., Schmidt, J., Cramer, B., Humpf, H. U., Moraeus, L., & Olsen, M. (2020)., Mycotoxins in blood and urine of Swedish adolescents-possible associations to food intake and other background characteristics., Mycotoxin Research, 36(2), 193–206. https://doi.org/10.1007/S12550-019-00381-9
  24. Nyamete, F. A. (2013)., Potential of lactic acid fermentation in reducing aflatoxin b1 and fumonisin b1 in tanzanian maize-based complementary gruel., https://search.proquest.com/openview/d6b6d88ececa04d8ccec5ba11d6733b8/1?pq-origsite=gscholar&cbl=18750
  25. Binder, E., M, Tan, L., M, Chin, L., J, Handl, J., Richard, J (2007)., Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients., Animal Feed Science & Technology, 137(3-4), 265-282.
  26. Tumukunde, E., Ma, G., Li, D., & Yuan, J. (2020)., Current research and prevention of aflatoxins in China., Ingentaconnect. Com, 13(2), 121–138. https://doi.org/10. 3920/WMJ2019.2503
  27. Lee, J., Her, J-Y and Lee, K.-G, (2015)., Reduction of aflatoxins (B1, B2, G1, and G2) in soybean-based model systems., Food Chemistry, 189, 45-51.
  28. Cora, I., B. Angre, D., and Ronald, E., M. (2005)., Separation of aflatoxins by HPLC application., Agilent Technology publication 5989-3634EN www.agilent.com /chem, Assessed on 16th August, 2006.
  29. Crisan, E., V. (1973)., Effects of aflatoxin on germination and growth of lettuce., Appl. Microbio, l(25), 342-345.
  30. Ahammed, S., K, Gopal, K, Munikrishnaiah, M, Subramanyam, D (2008)., Effect of aflatoxin on shoot and root growth of soybean seedlings., Legume Res., 31, 152-154.
  31. Janardhan, A, Subramanyam, D, Praveen Kumar A, Reddi Pradeep M, Narasimha G (2011)., Aflatoxin impacts on germinating seeds., Annu. Biol. Res., 2, 180-188.
  32. Mohajeri, M., Behnam, Rezaee, M. and Sahebkar, A (2017)., Protective effects of curcumin against aflatoxicosis: A comprehensive review., Wiley Online Library, 233(4), 3552–3577. https://doi.org/10.1002/jcp. 26212.
  33. Digrak, M., Hakki, A., Ahmet, I., Selim, S. (1999)., Antibacterial and anti-fungal effects of various commercial plant extracts., Intern J Pharmacognosy, 37, 216–2206.
  34. Plahar, W., A. Annan, N., T. Nti, C., A. (2001)., Cultivar and processing effect on the pasting characteristics, tannin content and protein quality and digestibility of cowpea (Vigna unguiculata). Food Research Institute (CSIR) Accra, Ghana., J Food Technol Afr., 6, 50–55.
  35. Vincenzo, L., Roberto, T., Nunzia, C., Angela, C., Di, D. V., Vito, L. (2005)., Seed coat tannins and bruchid resistance in stored cowpea seeds., J Sci Food Agri, 85, 839–846.