Chemical characterization of the coagulating solutions of the powders of the seeds of Arachis hypogaea L., Cucumeropsis mannii Naud. and Moringa oleifera Lam.
Author Affiliations
- 1Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo and Institute for Research in Exact and Natural Sciences, BP 2400, Brazzaville, Congo
- 2Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo
- 3Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo
- 4Multidisciplinary Research Team in Food and Nutrition, Faculty of Sci. and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo and Institute for Research in Exact and Natural Sciences, BP 2400, Brazzaville, Congo
- 5Dina – BioRes# - Chem www.dinabiores.com 10 rue Simone Henry 31200 Toulouse, France
- 6Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo
Res.J.chem.sci., Volume 11, Issue (3), Pages 14-23, October,18 (2021)
Abstract
The aim of this study is to characterize the proteins in the coagulating solutions of the powders of the seeds of Arachis hypogaea L., Cucumeropsis mannii Naud. and Moringa oleifera Lam. Analyzes were performed using high performance size exclusion liquid chromatography (SE-HPLC) on a Superdex column in the range of 10kDa to 500kDa and on a Shodex column in the range of 204Da to 35000Da. Electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate (SDS PAGE) was also performed. The results obtained showed that the coagulating solutions of C. mannii and M. oleifera mainly contain small proteins, of which 75.4% and 94.4% have molecular masses of less than 10kDa. The coagulating solution of A. hypogaea, on the other hand mainly contains large proteins, of which 25.4% have molecular masses between 100kDa and 300kDa, 16.8% between 300kDa and 500kDa and 16.8% have molecular masses greater than 500kDa.
References
- Degremont, S.A. (2005)., Memento Technique de l’eau., 10e édition, Tome 1, Lavoisier SAS, Paris, pp 185-206. ISBN: 978-27430-07171.
- Lugube, B. (2015)., Production d’eau potable., Dunod, Paris, pp 49-86. ISBN: 978-2100593200.
- Faust, S. D. & Aly, O. M. (2018)., Chemistry of Water Treatment., CRC Press, USA, pp 215-266. ISBN: 978-1315139265.
- Hendricks, D.W. (2006)., Water Treatment Unit Processes., CRC Press, USA, pp 277-364. ISBN: 978-0824706951.
- Choy, S. Y., Prasad, K. M. N., Wu, T. Y., & Ramanan, R. N. (2015)., A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification., International Journal of Environmental Science and Technology, 12(1), 367-390.
- Shukla, P. (2016)., Natural coagulants for water purification: an ecofriendly approach., World Journal of Pharmaceutical Research, 5(5), 1177-1185.
- Jayalakshmi, G., Saritha, V., & Dwarapureddi, B. K. (2017)., A review on native plant based coagulants for water purification., International Journal of Applied Environmental Sciences, 12(3), 469-487.
- Kristianto, H. (2017)., The potency of Indonesia native plants as natural coagulant: a mini review., Water Conservation Science and Engineering, 2(2), 51-60.
- Linangelo, S.B., Kamango, J. B., Mokili, J. K. E., Monama, T. O., Ulyel, J. A. P., & Kazada Z-A. M. (2018)., Problématique d’accès à l’eau potable en milieu rural en RDC: cas de la ville urbano-rurale de Bumba., International Journal of Innovation and Scientific Research, 37(2), 130-138.
- Ofouémé-Berton, Y. (2010)., L’approvisionnement en eau des populations rurales au Congo-Brazzaville. Les Cahiers d’Outre-Mer., Revue de géographie de Bordeaux, 63(249), 7-30.
- OMS (2012)., Rapport du programme commun OMS/UNICEF., https://www.who.int/water_sanitation_ health/monitoring. Consulté le 10 décembre 2020.
- OMS (2017)., 2,1 milliards de personnes n’ont pas d’eau potable., https: // www.who.int/fr/news/item. Consulté le 10 décembre 2020.
- Babu, R., &Chaudhuri, M. (2005). Home water treatment by direct filtration with natural coagulant. Journal of Water and Health, 3 (1), 27-30., undefined, undefined
- Marobhe, N. J. (2013)., Effectiveness of crude extract and purified protein from Vigna unguiculata seed in purification of charco dam water for drinking in Tanzania., International Journal of Environmental Sciences, 4(3), 259-273.
- Kabore, A., Zongo, I., Sawadogo, J., Savadogo, B., Doumounia, A., Kima, S.A., & Nombré, I.N. (2020)., Efficacité du traitement de l’eau des puits avec les tourteaux de Moringa oleifera par coagulation et filtration sur sable dans les ménages ruraux au Burkina Faso., Environmental and Water Sciences, Public Heath & Territorial Intelligence, 4 (1), 307-314.
- PNUD (2019)., Eau propre et assainissement., https: //www.undp.org. Consulté le 10 décembre 2020.
- Kabore, A., Savadago, B., Rosillon, F., Straore, A., & Dianou, D. (2013)., Optimisation de l’efficacité des graines de Moringa oleifera dans le traitement des eaux de Consommation en Afrique sub-saharienne: cas des eaux du Burkina Faso., Revue des sciences de l’eau/Journal of Water Science, 26(3), 209-220.
- Gámez, L. L. S., Luna-del Risco, M., & Cano, R. E. S. (2015)., Comparative study between M. oleifera and aluminum sulfate for water treatment: case study Colombia., Environmental monitoring and assessment, 187(10), 1-9.
- Lugo-Arias, J., Burgos-Vergara, J., Lugo-Arias, E., Gould, A., & Ovallos-Gazabon, D. (2020)., Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta, Heliyon, 6(1), e03062.
- Bichi, M. H. (2013)., A review of the applications of Moringa oleifera seeds extract in water treatment., Civil and Environmental Research, 3(8), 1-10.
- Sulaiman, M., Zhigila, D. A., Mohammed, K., Umar, D. M., Aliyu, B., &Manan, F. A. (2019)., Moringa oleifera seed as potential application in water treatment: a review., Journal of Advanced Research in Material Sciences, 56 (1), 11-21.
- Cardot, C. L. A. U. D. E. (2010)., Les traitements de l’eau pour l’ingénieur. Procédés physico-Chimiques et biologiques., Ellipes Editions Marketing SA Paris. pp 20-26. ISBN: 978-2729861872.
- Hermeline, N., Duclérine, N. R., Hubert, M., Arnold, E. N., Murphy, B. T. G., Nestor, L. A., ... & Jean-Maurille, O. (2020)., Etudes comparatives de la composition chimique et de l’activité coagulante des graines de Cucumeropsis mannii Naud., Arachis hypogaea L. et Moringa oleifera Lam. dans la clarification des eaux de surface., Journal of Applied Biosciences, 145, 14974-14984.
- Rejsek F. (2002)., Analyse des eaux., CRDP Aquitaine, pp 69-70. ISBN: 2-86617-420-8.
- Rodier, J., Legube, B., & Merlet, N. (2016)., L’analyse de l’eau., 10eédition, Dunod, Paris, pp 105-112. ISBN: 978-2100754120.
- Cardot, C.& Gilles, A. (2013)., Analyse des eaux., Ellipses Edition, Paris, pp 19-28.ISBN: 978-2729883478.
- Mbogo, S.A. (2008)., A novel technology to improve drinking water quality using natural treatment methods in rural Tanzania., Journal of Environmental Health, 70(7), 46-50.
- Prasad, S. V. M., Ramamohan, H., & Srinivasa Rao, B. (2017)., Assessment of coagulation potential of three different natural coagulants in water treatment., International Journal of Research and Scientific Innovation, 4(12), 7-9.
- Bodlund, I., Pavankumar, A. R., Chelliah, R., Kasi, S., Sankaran, K., & Rajarao, G. K. (2014)., Coagulant proteins identified in Mustard: a potential water treatment agent., International Journal of Environmental Science and Technology, 11(4), 873-880.
- Arunkumar, P., Sadish Kumar, V., Saran, S., Bindun, H., & Devipriya, S. P. (2019)., Isolation of active coagulant protein from the seeds of Strychnos potatorum–a potential water treatment agent., Environmental technology, 40(12), 1624-1632.