

Muscular Dystrophy and Molecular Genetic Analysis

I.M. Makkubhai

Head Department of Physical Education and Sports, Nehru Arts, Science and Commerce College Hubballi Karnataka, India
drimakkubhaisir@gmail.com

Available online at: www.isca.in

Received 12th February 2025, revised 10th October 2025, accepted 13th November 2025

Abstract

Muscular dystrophy (MD) comprises a group of genetically inherited disorders characterized by progressive muscle weakness and degeneration. Understanding the underlying molecular genetic mechanisms associated with different forms of MD is essential for accurate diagnosis, prognosis, and the development of targeted therapeutic interventions. This research paper provides a comprehensive review of the current understanding of MD, focusing on the molecular genetic analysis techniques employed in its diagnosis and characterization. Various genetic testing methods, including next-generation sequencing (NGS), polymerase chain reaction (PCR), and multiplex ligation-dependent probe amplification (MLPA), are discussed in the context of identifying causative mutations and elucidating genotype-phenotype correlations. Advances in molecular genetic analysis have revolutionized the diagnosis and classification of MD, enabling the identification of specific gene mutations responsible for different subtypes of the disease. Through molecular genetic testing, clinicians can accurately diagnose MD, predict disease progression, and provide personalized treatment strategies tailored to individual patients' genetic profiles. Molecular genetic analysis plays a crucial role in the diagnosis, prognosis, and management of muscular dystrophy. By elucidating the underlying genetic abnormalities associated with MD, clinicians can provide timely and targeted interventions to improve patient outcomes and quality of life. Continued research efforts aimed at further understanding the molecular basis of MD hold promise for the development of novel therapeutic approaches and potential cures for this debilitating condition.

Keywords: Muscular dystrophy, Molecular genetics, Genetic analysis, Diagnosis, Next-generation sequencing, Polymerase chain reaction, Multiplex ligation-dependent probe amplification, Genotype-phenotype correlations, Therapeutic interventions, Disease progression.

Introduction

Muscular dystrophy (MD) encompasses a group of inherited disorders characterized by progressive muscle weakness and degeneration. These disorders are primarily caused by genetic mutations that affect the structure and function of muscle proteins. Muscular dystrophies are clinically and genetically heterogeneous, with varying ages of onset, patterns of muscle involvement, and rates of progression.

Understanding the molecular genetics underlying muscular dystrophy is crucial for accurate diagnosis, prognosis, and the development of targeted therapies. Over the past decades, significant progress has been made in elucidating the genetic basis of various forms of muscular dystrophy, aided by advancements in molecular genetics techniques.

This Ph.D. research aims to delve deeper into the molecular genetic mechanisms involved in muscular dystrophy, with a focus on:

Genetic Basis: Investigating the spectrum of genetic mutations associated with different types of muscular dystrophy, including Duchenne muscular dystrophy (DMD), Becker muscular

dystrophy (BMD), myotonic dystrophy (DM), facioscapulohumeral muscular dystrophy (FSHD), and others.

Molecular Pathogenesis: Exploring the molecular pathways and mechanisms through which genetic mutations lead to muscle degeneration and weakness. This involves studying the interactions between mutated muscle proteins, cellular signaling pathways, and muscle regeneration processes.

Diagnostic Approaches: Developing and optimizing molecular genetic diagnostic tools and assays for accurate and efficient detection of pathogenic mutations in muscular dystrophy patients. This includes next-generation sequencing (NGS), array comparative genomic hybridization (aCGH), and other molecular techniques.

Therapeutic Strategies: Investigating potential therapeutic interventions targeting the underlying molecular defects in muscular dystrophy. This includes gene therapy, exon skipping, pharmacological modulation of gene expression, and other innovative approaches aimed at restoring muscle function and halting disease progression.

By combining clinical insights with advanced molecular genetics methodologies, this research seeks to contribute to the

growing body of knowledge on muscular dystrophy, paving the way for improved diagnosis, management, and treatment of these debilitating disorders. Ultimately, the goal is to alleviate the burden of muscular dystrophy on affected individuals and their families, offering hope for a better quality of life and the prospect of eventual cures.

Statement of the problem: Muscular dystrophy (MD) is a group of genetically heterogeneous disorders characterized by progressive muscle degeneration and weakness. Despite significant advancements in understanding the genetic basis of MD, many challenges remain in comprehensively elucidating the molecular mechanisms underlying disease pathogenesis and developing effective therapeutic interventions. This Ph.D. research aims to address the following key aspects of the problem:

Genetic Complexity: Muscular dystrophies exhibit remarkable genetic heterogeneity, with mutations in numerous genes associated with distinct clinical phenotypes. The identification and characterization of these genetic variants pose significant challenges due to the large size and complexity of the human genome, as well as the presence of non-coding regulatory elements and structural variations. Consequently, there is a need for comprehensive genetic analysis approaches capable of detecting both common and rare mutations across the genome.

Molecular Pathogenesis: While the genetic basis of MD is well-established, the precise molecular mechanisms by which genetic mutations lead to muscle degeneration and weakness are not fully understood. There is a gap in knowledge regarding the downstream effects of mutated muscle proteins on cellular signaling pathways, muscle fiber integrity, and regeneration processes. Elucidating these molecular pathways is essential for developing targeted therapeutic strategies aimed at halting or reversing disease progression.

Diagnostic Challenges: Current diagnostic methods for MD often rely on clinical evaluation, muscle biopsy, and targeted genetic testing of known disease-associated genes. However, these approaches may fail to identify the underlying genetic cause in a significant proportion of patients, particularly those with atypical clinical presentations or novel disease genes. There is a need for more sensitive, accurate, and comprehensive diagnostic tools capable of detecting a broad spectrum of genetic mutations associated with MD, enabling timely and precise diagnosis for affected individuals.

Therapeutic Development: Despite extensive research efforts, there are limited treatment options available for most forms of MD, with supportive care and symptomatic management being the mainstay of therapy. Developing effective therapeutic interventions targeting the molecular defects underlying MD presents a major challenge, necessitating innovative approaches such as gene therapy, exon skipping, small molecule modulation, and gene editing technologies.

Furthermore, the translation of promising preclinical findings into clinically viable therapies requires rigorous preclinical testing and optimization, as well as addressing regulatory and logistical hurdles.

Addressing these challenges requires a multidisciplinary approach integrating clinical expertise, molecular genetics methodologies, computational biology, and translational research efforts. By systematically investigating the genetic, molecular, diagnostic, and therapeutic aspects of MD, this Ph.D. research seeks to advance our understanding of these complex disorders and contribute to the development of novel strategies for their diagnosis, management, and treatment.

Hypotheses: i. **Genetic Hypothesis:** The genetic etiology of muscular dystrophy encompasses a broad spectrum of mutations in various muscle-related genes, including those encoding structural proteins, enzymes involved in muscle metabolism, and regulatory elements controlling muscle gene expression. We hypothesize that comprehensive genetic analysis utilizing next-generation sequencing technologies will reveal novel disease-associated genes and variants contributing to the pathogenesis of muscular dystrophy, expanding our understanding of the genetic landscape underlying these disorders. ii. **Molecular Pathogenesis Hypothesis:** We postulate that the pathogenesis of muscular dystrophy involves complex molecular mechanisms, including disruption of muscle fiber integrity, dysregulation of cellular signaling pathways, and impaired muscle regeneration. We hypothesize that elucidating the molecular pathways affected by genetic mutations in muscular dystrophy will uncover key disease mechanisms and potential therapeutic targets, paving the way for the development of targeted interventions aimed at halting or reversing muscle degeneration. iii. **Diagnostic Hypothesis:** Current diagnostic approaches for muscular dystrophy may overlook rare or novel genetic variants, leading to diagnostic uncertainty and delayed intervention for affected individuals. We propose that comprehensive molecular genetic analysis utilizing high-throughput sequencing technologies, coupled with bioinformatic analysis and functional validation, will improve the sensitivity and accuracy of muscular dystrophy diagnosis. We hypothesize that integrating genomic and clinical data will facilitate the identification of disease-causing mutations and enable personalized diagnostic and therapeutic strategies for individuals with muscular dystrophy. iv. **Therapeutic Hypothesis:** Effective therapeutic interventions for muscular dystrophy remain elusive, highlighting the need for innovative approaches targeting the underlying genetic and molecular defects. We hypothesize that leveraging advancements in gene therapy, exon skipping, gene editing, and small molecule modulation will lead to the development of novel therapeutic strategies capable of restoring muscle function and ameliorating disease progression in muscular dystrophy patients. Furthermore, we propose that preclinical testing of candidate therapies in relevant animal models, combined with rigorous clinical trials in human subjects, will facilitate the

translation of promising therapeutic approaches into clinically effective treatments for muscular dystrophy.

By testing these hypotheses through comprehensive genetic analysis, molecular investigations, diagnostic advancements, and therapeutic development efforts, this Ph.D. research aims to advance our understanding of muscular dystrophy and contribute to the development of personalized diagnostic and therapeutic approaches for individuals affected by these debilitating disorders.

Limitations: i. Sample Size and Diversity: The availability of patient samples, especially those with rare or novel forms of muscular dystrophy, may be limited. This can affect the generalizability of findings and the ability to detect rare genetic variants associated with the disease. Efforts to collaborate with multiple research centers and expand patient recruitment are necessary to mitigate this limitation. ii. Complexity of Molecular Mechanisms: Muscular dystrophy involves intricate molecular pathways and interactions, and our current understanding of these mechanisms may be incomplete. Unraveling the full complexity of disease pathogenesis requires interdisciplinary collaboration and advanced experimental techniques. Despite efforts to elucidate these pathways, some aspects may remain elusive due to technical limitations or biological variability. iii. Diagnostic Sensitivity and Specificity: While next-generation sequencing technologies have revolutionized genetic diagnosis, they are not without limitations. Factors such as sequencing depth, coverage, and bioinformatics analysis algorithms can influence the sensitivity and specificity of variant detection. Validation of identified variants through functional studies and clinical correlation is essential to confirm their pathogenicity and relevance to disease phenotype. iv. Therapeutic Challenges: Developing effective therapies for muscular dystrophy faces numerous challenges, including delivery to target tissues, immune response to therapeutic agents, and long-term safety and efficacy. Preclinical models may not fully recapitulate the complexity of human disease, and translation of promising therapies from bench to bedside requires extensive preclinical testing and clinical trials. Regulatory hurdles and resource constraints may further impede the development and accessibility of novel therapeutics. v. Ethical Considerations: Research involving human subjects, particularly those with rare diseases like muscular dystrophy, raises ethical considerations related to informed consent, privacy protection, and equitable access to benefits. Adherence to ethical guidelines and transparency in research conduct are essential to safeguard the rights and well-being of study participants and ensure the responsible conduct of research.

Despite these limitations, addressing them through collaborative research efforts, technological advancements, and rigorous scientific inquiry can enhance our understanding of muscular dystrophy and pave the way for improved diagnostic and therapeutic strategies. Continued innovation and

interdisciplinary collaboration are crucial for overcoming these limitations and advancing the field towards more effective treatments and better outcomes for individuals affected by muscular dystrophy.

Delimitations: i. Focus on Genetic Analysis: This study primarily focuses on molecular genetic analysis as it relates to muscular dystrophy. While other aspects such as environmental factors and epigenetic modifications may influence disease pathogenesis, they are not within the scope of this research. ii. Limited to Specific Muscular Dystrophy Types: Given the broad spectrum of muscular dystrophy subtypes, this study may focus on specific types such as Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), myotonic dystrophy (DM), or facioscapulohumeral muscular dystrophy (FSHD). The findings and conclusions may not be directly applicable to other rare or less characterized forms of muscular dystrophy. iii. Clinical Correlation: While genetic analysis is essential for understanding the molecular basis of muscular dystrophy, this study may not comprehensively address clinical correlations or disease progression in affected individuals. Clinical assessments, including muscle function tests, electromyography, and imaging studies, are important for a holistic understanding of the disease but are not the primary focus of this research. iv. Resource and Technical Limitations: The scope of this study may be constrained by available resources, including funding, laboratory facilities, and expertise. Technical limitations associated with sequencing technologies, bioinformatics tools, and experimental techniques may also influence the depth and breadth of genetic analysis conducted in this research. v. Human Subjects and Ethical Considerations: This study may involve the analysis of human genetic data obtained from patient samples or public databases. Ethical considerations, including informed consent, data privacy, and regulatory compliance, are paramount and may influence the availability and use of genetic data for research purposes. vi. Translational Applications: While this research aims to advance our understanding of muscular dystrophy at the molecular level, the translation of research findings into clinical practice and therapeutic interventions may be beyond the scope of this study. The development and validation of diagnostic assays or therapeutic strategies based on research findings may require additional translational research efforts and clinical trials.

By delimiting the scope and objectives of this study, the research can maintain focus and clarity while acknowledging the broader context and potential limitations inherent in the study of muscular dystrophy and molecular genetic analysis.

Review of literature: Muscular dystrophy (MD) is a group of genetic disorders characterized by progressive muscle degeneration and weakness. The literature on MD encompasses a wide range of studies spanning genetic discoveries, molecular pathogenesis, diagnostic advancements, and therapeutic strategies¹. Here, we provide an overview of key findings and trends in the literature related to MD and molecular genetic analysis:

Genetic Landscape of Muscular Dystrophy: Numerous studies have identified causative mutations in genes associated with different types of MD. For example, Duchenne muscular dystrophy (DMD)² and Becker muscular dystrophy (BMD)³ are primarily caused by mutations in the DMD gene, while myotonic dystrophy (DM) is associated with expanded trinucleotide repeats in the DMPK or CNBP genes. Other forms of MD, such as facioscapulohumeral muscular dystrophy (FSHD) and limb-girdle muscular dystrophy (LGMD), are linked to mutations in a variety of genes, including DUX4, SMCHD1, and various components of the dystrophin-glycoprotein complex.

Molecular Pathogenesis of Muscular Dystrophy: Research has elucidated key molecular pathways involved in the pathogenesis of MD. Dysregulation of calcium homeostasis, inflammation, oxidative stress, and impaired muscle regeneration have been implicated in disease progression. Additionally, aberrant signaling pathways, such as the mTOR pathway, have been identified as potential targets for therapeutic intervention.

Diagnostic Advances: Advances in molecular genetics technologies, such as next-generation sequencing (NGS) and array comparative genomic hybridization (aCGH), have revolutionized the diagnostic approach to MD. These techniques enable comprehensive analysis of the entire genome or targeted gene panels, allowing for the detection of pathogenic mutations with high sensitivity and specificity. Furthermore, bioinformatic tools and algorithms have been developed to aid in variant interpretation and prioritize candidate mutations for further validation.

Therapeutic Strategies: While there are currently no curative treatments for MD, research efforts have focused on developing novel therapeutic strategies to alleviate symptoms and slow disease progression. Gene therapy approaches, such as exon skipping and gene editing using CRISPR-Cas9, hold promise for restoring dystrophin expression in DMD patients. Small molecule modulators targeting specific molecular pathways have also shown potential for ameliorating muscle pathology in preclinical models.

Translational Challenges: Despite promising preclinical results, translating therapeutic strategies from bench to bedside presents significant challenges. Issues such as delivery methods, immune responses to gene therapy vectors, and long-term safety and efficacy remain to be addressed in clinical trials. Additionally, regulatory considerations and the high cost of therapeutic development pose barriers to widespread implementation of novel treatments.

Overall, the literature on MD and molecular genetic analysis underscores the complex interplay between genetic factors, molecular pathways, and clinical manifestations of the disease. Continued research efforts aimed at unraveling the underlying

mechanisms and developing targeted therapies hold the potential to improve outcomes for individuals affected by MD.

Methodology

Study Design: This Ph.D. research will employ a multidisciplinary approach combining laboratory-based molecular genetics, bioinformatics analysis, and clinical correlation studies. The study design will be primarily observational and analytical, aiming to elucidate the genetic and molecular mechanisms underlying muscular dystrophy.

Sample Collection: Patient samples, including blood, muscle biopsy specimens, and DNA, will be collected from individuals diagnosed with various forms of muscular dystrophy. Samples will also be obtained from healthy controls for comparative analysis. Ethical approval and informed consent will be obtained from all participants.

Genetic Analysis: Genomic DNA extracted from patient samples will undergo comprehensive genetic analysis using next-generation sequencing (NGS) technologies. Whole exome sequencing (WES) or targeted gene panel sequencing will be performed to identify pathogenic variants in known muscular dystrophy-associated genes. Bioinformatic analysis will be conducted to prioritize candidate variants for further validation.

Variant Validation: Candidate variants identified through genetic analysis will be validated using polymerase chain reaction (PCR) amplification followed by Sanger sequencing. Functional assays, such as protein expression analysis, immunohistochemistry, or in vitro cell-based assays, will be employed to assess the pathogenicity and functional consequences of identified variants.

Molecular Pathogenesis Studies: Molecular studies will be conducted to elucidate the downstream effects of pathogenic mutations on muscle biology and disease pathogenesis. This may include investigating protein-protein interactions, cellular signaling pathways, and gene expression profiles in patient-derived cells or animal models of muscular dystrophy.

Diagnostic Algorithm Development: Based on the genetic findings, a diagnostic algorithm will be developed to aid in the accurate and efficient diagnosis of muscular dystrophy. This algorithm will incorporate clinical features, genetic test results, and bioinformatic tools to guide diagnostic decision-making and facilitate personalized patient management.

Therapeutic Target Identification: Identified genetic and molecular targets will be evaluated as potential therapeutic targets for muscular dystrophy. Small molecule modulators, gene therapy vectors, or other therapeutic interventions will be tested in preclinical models to assess their efficacy in ameliorating muscle pathology and improving functional outcomes.

Data Analysis and Interpretation: Statistical analysis will be performed to correlate genetic findings with clinical phenotypes and disease severity. Bioinformatic tools and databases will be utilized for variant annotation, pathway analysis, and comparative genomics. Results will be interpreted in the context of existing literature and integrated into the broader understanding of muscular dystrophy pathogenesis and management.

Ethical Considerations: Ethical guidelines and regulations pertaining to human subjects research will be strictly adhered to throughout the study. Data privacy and confidentiality will be ensured, and informed consent will be obtained from all participants. Any potential conflicts of interest will be disclosed, and research conduct will prioritize the welfare and rights of study participants.

By employing this comprehensive methodology, this Ph.D. research aims to advance our understanding of muscular dystrophy at the genetic and molecular levels, contribute to diagnostic algorithm development, and identify potential therapeutic targets for improved patient management and treatment outcomes.

Results and Discussion

Comprehensive Genetic Landscape: The genetic analysis is expected to reveal a comprehensive landscape of genetic mutations associated with various types of muscular dystrophy. This includes known mutations in established disease-causing genes as well as novel variants in genes not previously implicated in muscular dystrophy. The identification of these genetic variants will expand our understanding of the genetic heterogeneity of muscular dystrophy and provide insights into disease mechanisms.

Molecular Pathogenesis Insights: Molecular studies investigating the functional consequences of identified genetic mutations are expected to shed light on the underlying pathogenic mechanisms of muscular dystrophy. This may include elucidating disrupted protein-protein interactions, dysregulated signaling pathways, and altered gene expression profiles in patient-derived cells or animal models. The findings will contribute to our understanding of disease pathogenesis and facilitate the identification of potential therapeutic targets.

Diagnostic Algorithm Development: Based on the genetic findings, a diagnostic algorithm will be developed to guide the accurate and efficient diagnosis of muscular dystrophy. The algorithm will incorporate clinical features, genetic test results, and bioinformatic tools to aid clinicians in identifying causative mutations and determining appropriate patient management strategies. This will improve diagnostic accuracy and streamline the diagnostic process for individuals with muscular dystrophy.

Therapeutic Target Identification: The identification of genetic and molecular targets implicated in muscular dystrophy pathogenesis will inform the development of targeted therapeutic interventions. Potential therapeutic targets may include proteins involved in muscle regeneration, cellular signaling pathways, or molecular chaperones that mitigate protein misfolding. Preclinical studies will evaluate the efficacy of candidate therapeutics in ameliorating muscle pathology and improving functional outcomes in animal models.

Clinical Correlation and Validation: Correlation of genetic findings with clinical phenotypes and disease severity will provide valuable insights into genotype-phenotype correlations in muscular dystrophy. Validation of identified genetic variants through functional assays and clinical validation studies will confirm their pathogenicity and relevance to disease phenotype. This will enhance the clinical utility of genetic testing and improve patient management strategies.

Translational Implications: The expected outcomes of this research have significant translational implications for the diagnosis, management, and treatment of muscular dystrophy. The development of a diagnostic algorithm and identification of therapeutic targets will directly impact clinical practice by facilitating timely and accurate diagnosis and guiding personalized treatment approaches. Furthermore, insights gained from molecular studies may pave the way for the development of novel therapeutic interventions aimed at halting or reversing disease progression in muscular dystrophy patients.

Overall, the expected outcomes of this research hold promise for advancing our understanding of muscular dystrophy at the genetic and molecular levels and translating these insights into tangible clinical benefits for affected individuals. By integrating genetic analysis, molecular studies, and clinical correlation, this research aims to contribute to the ongoing efforts to improve the lives of individuals living with muscular dystrophy.

Conclusion

The study of muscular dystrophy through molecular genetic analysis offers valuable insights into the underlying genetic and molecular mechanisms driving disease pathogenesis. Through comprehensive genetic analysis, molecular studies, and clinical correlation, this Ph.D. research aims to advance our understanding of muscular dystrophy and its implications for diagnosis, management, and treatment.

The expected outcomes of this research include the identification of novel genetic mutations associated with muscular dystrophy, insights into disease pathogenesis, the development of a diagnostic algorithm, and the identification of therapeutic targets. These findings have significant translational implications for clinical practice, including improved diagnostic accuracy, personalized treatment approaches, and the development of novel therapeutic interventions.

Recommendations: Based on the anticipated outcomes of this research, the following recommendations are proposed:

- i. Clinical Implementation: The diagnostic algorithm developed as part of this research should be disseminated to healthcare providers and integrated into clinical practice guidelines for the diagnosis and management of muscular dystrophy. Continued education and training programs for healthcare professionals should be conducted to ensure effective implementation.
- ii. Therapeutic Development: The identification of therapeutic targets through molecular studies should be pursued further in preclinical and clinical settings. Collaborative efforts between researchers, clinicians, and pharmaceutical companies are recommended to accelerate the development and testing of novel therapeutic interventions for muscular dystrophy.
- iii. Patient Advocacy and Support: Patients and families affected by muscular dystrophy should be informed of research findings and provided with access to support services, including genetic counseling, rehabilitation programs, and patient advocacy organizations. Community engagement initiatives can help raise awareness and promote understanding of muscular dystrophy within the broader population.
- iv. Further Research: Continued research efforts are needed to elucidate the complex genetic and molecular mechanisms underlying muscular dystrophy. Longitudinal studies tracking disease progression and treatment outcomes in patient cohorts will provide valuable data for refining diagnostic and therapeutic strategies.
- v. Ethical Considerations: Ethical considerations related to genetic testing, data privacy, and access to treatment should be carefully addressed in accordance with ethical guidelines and regulations. Policies ensuring equitable access to genetic testing and therapeutic interventions should be advocated for to promote social justice and healthcare equity.

By implementing these recommendations, this research can contribute to improved outcomes for individuals affected by muscular dystrophy and pave the way for advancements in the diagnosis, management, and treatment of this debilitating disease.

References

1. Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., ... & Weber, D. R. (2018). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. *The Lancet Neurology*, 17(3), 251-267.
2. Mendell, J. R., & Lloyd- Puryear, M. (2013). Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. *Muscle & nerve*, 48(1), 21-26.
3. Bushby, K. M. D., Thambyayah, M., & Gardner-Medwin, D. (1991). Prevalence and incidence of Becker muscular dystrophy. *The Lancet*, 337(8748), 1022-1024.
4. Emery, A. E. (1983). Elements of medical genetics.
5. Hoffman, E. P., Brown, R. H., & Kunkel, L. M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. *Cell*, 51(6), 919-928.
6. Voet, D., Voet, J. G., & Pratt, C. W. (2016). *Fundamentals of biochemistry: life at the molecular level*. John Wiley & Sons.
7. Flanigan, K. M. (2012). The muscular dystrophies. In *Seminars in Neurology* (Vol. 32, No. 03, pp. 255-263). Thieme Medical Publishers.
8. Savarese, M., Di Frusco, G., Torella, A., Fiorillo, C., Magri, F., Fanin, M., ... & Nigro, V. (2016). The genetic basis of undiagnosed muscular dystrophies and myopathies: results from 504 patients. *Neurology*, 87(1), 71-76.
9. Disorders/Muscular-Dystrophy-Information-Page Kehne, J. H., Klein, B. D., Raeissi, S., & Sharma, S. (2017). The national institute of neurological disorders and stroke (NINDS) epilepsy therapy screening program (ETSP). *Neurochemical research*, 42(7), 1894-1903.