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Abstract 

Given that the pseudo-random numbers generated by the computer have a cycle;

simulation studies. For drawing a random sample of size n from a population of size N (n<=N), the existing sampling 

algorithms require n pseudo-random numbers. If N is large, accordingly n should also be large for better repre

the population. Since most simulation studies require at least 500 samples, we would need 500xn pseudo random numbers 

which can lead to cycle break. We are therefore motivated to develop an efficient sampling algorithm which generates the 

desired sample using random numbers significantly less than the sample size. Our algorithm has the facility that a single 

pseudo-random number can generate the sample of size 60

course need more than one pseudo-random number if the sample size exceeds 60 for this population.
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Introduction 

The generation of pseudo random numbers is a significant and 

important task in scientific computing. It extends in a wide 

range of applications in several domains like cryptography, 

computer games, sampling theory, computer simulation, etc. 

Random number generation is an important aspect in statistical 

computing. An important application of random number lies in 

simulation techniques, where multiple iterations are required to 

generate random samples. In many cases, the basic process of 

generating random numbers is deterministic. The techniques to 

generate a sample of size n require n pseudo

Our work focuses on reducing this requirement of n pseudo

random numbers substantially. We will use only a few pseudo 

random numbers to generate the desired random sample of size 

n.  
 

Literature review and motivation 

Given that we have random samples from the standard uniform 

distribution, the random samples from other distribution may be 

obtained by transformations. Some of the techniques of random 

number generation are congruential methods and feedback shift 

register methods. 

 

The congruential method was first proposed by Lehmer

introduced the idea of multiplicative-congruential. A useful 

source of pseudorandom integers is a linear congruential 

sequence. This can take many forms.Another idea that sparked 

the concept was that of feedback shift registers, which was 
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random numbers generated by the computer have a cycle; it is wise not to lose random numbers in 

simulation studies. For drawing a random sample of size n from a population of size N (n<=N), the existing sampling 

random numbers. If N is large, accordingly n should also be large for better repre

the population. Since most simulation studies require at least 500 samples, we would need 500xn pseudo random numbers 

which can lead to cycle break. We are therefore motivated to develop an efficient sampling algorithm which generates the 

red sample using random numbers significantly less than the sample size. Our algorithm has the facility that a single 

random number can generate the sample of size 60 for a population of size 100000 using a python code.

random number if the sample size exceeds 60 for this population.

random numbers, algorithm, statistical computing. 

The generation of pseudo random numbers is a significant and 

important task in scientific computing. It extends in a wide 

range of applications in several domains like cryptography, 

computer games, sampling theory, computer simulation, etc. 

eneration is an important aspect in statistical 

computing. An important application of random number lies in 

simulation techniques, where multiple iterations are required to 

generate random samples. In many cases, the basic process of 

bers is deterministic. The techniques to 

generate a sample of size n require n pseudo-random numbers. 

Our work focuses on reducing this requirement of n pseudo-

random numbers substantially. We will use only a few pseudo 

ed random sample of size 

Given that we have random samples from the standard uniform 

distribution, the random samples from other distribution may be 

obtained by transformations. Some of the techniques of random 

generation are congruential methods and feedback shift 

The congruential method was first proposed by Lehmer
1
. He 

congruential. A useful 

source of pseudorandom integers is a linear congruential 

ce. This can take many forms.Another idea that sparked 

the concept was that of feedback shift registers, which was 

suggested by Tausworthe
2
. It takes successive positional values 

(mostly bits), as residues congruent to a linear combination.

Allard, Dobell and Hull
3 

have given a mixed congruential 

random number generators for decimal machines.
 

Pseudo-Random number generator (PRNG) is an algorithm that 

is used to generate many random numbers. It starts from an 

arbitrary state called “seed”, and generate numb

efficient and deterministic. 

 

Monte-Carlo methods, a combination of probability theory and 

sampling technique, are extensively used in simulation studies. 

Their main application domains are optimization, numerical 

integration and drawing variates from probability distribution.

 

Reservoir sampling is a family of randomized algorithms for 

randomly choosing a sample of k items from a list S containing 

n items, where n is either a very large or unknown number.
 

Given that the pseudo-random numbers

computer have a cycle (once the cycle breaks, the numbers 

repeat themselves in the same sequence which can seriously 

violate the simulation requirements); it is wise not to lose 

random numbers in simulation studies. For drawing a random 

sample of size n from a population of size N (n<=N), the 

existing sampling algorithms require n pseudo

For a formal discussion on such sampling algorithms, see 

Kennedy and Gentle
4
. Further literature on statistical computing 

can be found in Kundu and Basu
5
 and Gentle

random numbers and computers is by Kneusel
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7
. Other useful 
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books on statistical computing are by Givens
8
, Rizzo

9
, Martinez 

and Martinez
10

, and Sawitzki
11

. The edited volume by 

Dirschedl, and Ostermann
12

 gives a nice collection of papers on 

the topic. 

If N is large, accordingly n should also be large for better 

representation of the population. Since most simulation studies 

require at least 500 samples, we would need 500xn pseudo 

random numbers which can lead to cycle break. We are 

therefore motivated to develop an efficient sampling algorithm 

which generates the desired sample using random numbers 

significantly less than the sample size. Our algorithm has the 

facility that a single pseudo-random number can generate the 

sample of size 60 for a population of size 100000 using a python 

code. We would of course need more than one pseudo-random 

number if the sample size exceeds 60 for this population.  

 

Our contribution: We have designed an algorithm which is 

capable of generating up to 300 digits in a random sequence 

irrespective of any parameter. The algorithm has been 

implemented in Python language. We have used Rand () 

function to generate random digits after the decimal point. The 

complete methodology is explained in the following steps: i. 

Input: Population size N and sample size n, ii. Output: A 

random sample of size n. 

 

Algorithm efficient sampling technique: i. Using R and () 

function, generate a continuous uniform variate (a)  in the range 

of (0,1). ii. Decide the no. of digits (group length) to be taken 

into consideration which will depend upon the population size 

N. For example, if N=100, group length = 2. iii. Since we 

require a random sample size of n, we will require n sets of 

decimal digits in the uniform variate, each set representing one 

sampling unit (see the example 1). For N =100, each set will be 

a doublet. iv. We will get each sampling unit by extracting the 

digits up to group length to the immediate left side of the 

decimal point in a by repeatedly multiplying a with 

10^group_length. v. We will store the sampling units in a list. 

vi. To check for repetition, we can scan through the list and if 

the sampling unit has already been stored, in the list, it will not 

be stored again. 

 

Example-1: Suppose the population size is 100 and the sample 

size is 30. That is, we agree to sample about one third of the 

population. Now we generate a uniform variate with 60 digits 

after the decimal place. The reason is that we are considering 

sets of two digits each sequentially to represent the sampling 

units. That is, the digits 00 to 99 will represent the 100 

population units. Every doublet after the decimal will give us 

the corresponding sampling unit. For example, if our uniform 

variate takes the value say 0.713026640801….. then the 

sampling units are 71, 30, 26, 64,08, 01 etc. In the algorithm 

Efficient Sampling Technique, this will be achieved by 

repeatedly multiplying the uniform variate by 100 and taking 

two digits sequentially to the immediate left of the decimal as 

our sampling unit. These sampling units are to be kept in a list 

ensuring that there is no repetition in the list items. Since we 

have generated the uniform variate upto 60 places after the 

decimal, and each pair (doublet) gives one sampling unit, we 

obtain the desired random sample of size 30. For higher 

population size, we may require a triplet or, in general, an m-

tuple (x1, x2, ….xm) of the digits 0, 1, 2…9 (this m is the 

group_length) after the decimal expansion to represent the 

sampling unit and there has to be n such m-tuples to generate 

the desired random sample of size n. The value of m in the m-

tuple will depend on the population size. In our example, m=2 

will suffice as we took the population size to be 100. If the 

population size is 1000, the digits 000 to 999 will represent the 

1000 population units and so we fix m=3. Now if the sample 

size is say 300, we would need to generate 300x3=900 digits 

after the decimal place. However, as our python code generates 

upto 300 digits, so we would require generation of 3 uniform 

variates using this code. Even then, as 3 <<300, we are done! 

 

Python Code 

frombuiltinsimportint, str 

fromnumpy.polynomial.tests.test_classesimport random 

fromtest.test_pdbimportdo_nothing 

fromdecimal import * 

importsys 

 

#N is population size and n is sample size(Input data) 

N=100000 

n=600 

print("population size ",N) 

print("sample size ",n) 

#find no of digits in N 

group_length=len(str(abs(N)))-1 

print("group length ",group_length) 

#generation of a random number 

r=random() 

#creation of a list to store multiple random numbers 

l=list() 

a=r 

print("Generated Random number ",a) 

x=n 

 

while(x>0): 

    x=x-1 

#shifting "group_length" digits to the left of the decimal point 

    a=a*(10**group_length) 

try: 

if(a>0): 

#extracting each number with "group_length" digits 

num=int(a)%(10**group_length) 

#print(num) 

ifnumnotin l: 

#adding the extracted number to the list 

l.append(num) 

else: 

do_nothing 

else: 

break 
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except: 

#print (sys.exc_info()[0]) 

do_nothing() 

 

print("list of random numbers generated") 

print(l) 

print('size of list') 

print(l.__len__()) 

 

Experimental results 

Table-1 gives the output. 

 

Table-1: Experimental results. 

Population size 100000 

Sample size 600 

Group Length 5 

Generated random 

number 
0.028083975896380…….. 

List of 5 tuples 

generated 

[02808, 39758, 96380, 77952, 99008, 

85440, 83264, 20992, 89408, 57536, 

98496, 25184, 17984, 8864, 02560, 

56320, 51776, 13216, 74656, 03520, 

30976, 61088, 05088, 39232, 62656, 

92960, 39616, 89024, 6656, 57984, 

13760, 37952, 56448, 60192, 9856, 

41472, 56480, 50560, 17344, 34048, 

82464, 97728, 52576, 77216, 81120, 

20480, 50944, 12480, 16128, 84448, 

05440, 23488, 80896, 44448, 19872, 

42720, 39360, 02880, 76064, 55136, 

01024] 

Size of the list 61 

 

We are able to get around 300 digits after decimal place. So 

depending upon the population size N (here 100000), we can 

generate about 300/5 = 60 sampling units (actually 61) using 

only one uniform variate. This means, as our random sample has 

size 600, so we would require 10 uniform variates with decimal 

expansion upto 300 digits in each, each such variate yielding 

about 60 (actually 61) sampling units. As 10 << 600, we claim 

having developed an efficient method of generation of a random 

sample using random numbers significantly less than the sample 

size. 

 

One advantage of using this method is that the chance of a 

number occurring in a periodic manner will be very less. 

 

Discussion, limitation and scope for further improvement: In 

the general case if our sample size n is less than or equal to a x 

60 where a is some positive integer, we would need a uniform 

U{0, 1} variates with the present python code to generate the 

desired sample. As  a << a x 60, we claim to have developed an 

efficient method of generation of a random sample using 

random numbers significantly less than the sample size. 

 

Further enhancement can be made on how to extract more 

values in decimal precision, so that we can achieve the target of 

generating larger samples using even fewer random numbers. 

For this purpose, we are exploring other softwares such as 

Mathematical. 

 

Conclusion 

We have developed an efficient method of generation of a 

random sample using random numbers significantly less than 

the sample size. Our python code successfully generates a 

sample of size n from a large population of size N using only a 

few (n/60) pseudo-random numbers. 
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