
 Research Journal of Mathematical and Statistical Sciences

Vol. 7(2), 27-29, May (2019)

 International Science Community Association

Short Communication
An efficient method of generation of a random sample using random

numbers significantly less than the sample size
Rushali Gupta

1Department of Computer Science and Engineering, BIT Mesra, Ranchi
2Department of Mathematics, BIT Mesra, Ranchi

Available online at:
Received 8th December

Abstract

Given that the pseudo-random numbers generated by the computer have a cycle;

simulation studies. For drawing a random sample of size n from a population of size N (n<=N), the existing sampling

algorithms require n pseudo-random numbers. If N is large, accordingly n should also be large for better repre

the population. Since most simulation studies require at least 500 samples, we would need 500xn pseudo random numbers

which can lead to cycle break. We are therefore motivated to develop an efficient sampling algorithm which generates the

desired sample using random numbers significantly less than the sample size. Our algorithm has the facility that a single

pseudo-random number can generate the sample of size 60

course need more than one pseudo-random number if the sample size exceeds 60 for this population.

Keywords: Sample, population, pseudo-random numbers, algorithm, statistical computing.

Introduction

The generation of pseudo random numbers is a significant and

important task in scientific computing. It extends in a wide

range of applications in several domains like cryptography,

computer games, sampling theory, computer simulation, etc.

Random number generation is an important aspect in statistical

computing. An important application of random number lies in

simulation techniques, where multiple iterations are required to

generate random samples. In many cases, the basic process of

generating random numbers is deterministic. The techniques to

generate a sample of size n require n pseudo

Our work focuses on reducing this requirement of n pseudo

random numbers substantially. We will use only a few pseudo

random numbers to generate the desired random sample of size

n.

Literature review and motivation

Given that we have random samples from the standard uniform

distribution, the random samples from other distribution may be

obtained by transformations. Some of the techniques of random

number generation are congruential methods and feedback shift

register methods.

The congruential method was first proposed by Lehmer

introduced the idea of multiplicative-congruential. A useful

source of pseudorandom integers is a linear congruential

sequence. This can take many forms.Another idea that sparked

the concept was that of feedback shift registers, which was

Mathematical and Statistical Sciences __________________________

 Res. J. Mathematical and Statistical Sci

International Science Community Association

An efficient method of generation of a random sample using random

numbers significantly less than the sample size
Rushali Gupta

1
 and Soubhik Chakraborty

2*

Computer Science and Engineering, BIT Mesra, Ranchi-835215, India

Department of Mathematics, BIT Mesra, Ranchi-835215, India

soubhikc@yahoo.co.in

Available online at: www.iscamaths.com , www.isca.in , www.isca.me
December 2018, revised 12th April 2019, accepted 4th May 2019

random numbers generated by the computer have a cycle; it is wise not to lose random numbers in

simulation studies. For drawing a random sample of size n from a population of size N (n<=N), the existing sampling

random numbers. If N is large, accordingly n should also be large for better repre

the population. Since most simulation studies require at least 500 samples, we would need 500xn pseudo random numbers

which can lead to cycle break. We are therefore motivated to develop an efficient sampling algorithm which generates the

red sample using random numbers significantly less than the sample size. Our algorithm has the facility that a single

random number can generate the sample of size 60 for a population of size 100000 using a python code.

random number if the sample size exceeds 60 for this population.

random numbers, algorithm, statistical computing.

The generation of pseudo random numbers is a significant and

important task in scientific computing. It extends in a wide

range of applications in several domains like cryptography,

computer games, sampling theory, computer simulation, etc.

eneration is an important aspect in statistical

computing. An important application of random number lies in

simulation techniques, where multiple iterations are required to

generate random samples. In many cases, the basic process of

bers is deterministic. The techniques to

generate a sample of size n require n pseudo-random numbers.

Our work focuses on reducing this requirement of n pseudo-

random numbers substantially. We will use only a few pseudo

ed random sample of size

Given that we have random samples from the standard uniform

distribution, the random samples from other distribution may be

obtained by transformations. Some of the techniques of random

generation are congruential methods and feedback shift

The congruential method was first proposed by Lehmer
1
. He

congruential. A useful

source of pseudorandom integers is a linear congruential

ce. This can take many forms.Another idea that sparked

the concept was that of feedback shift registers, which was

suggested by Tausworthe
2
. It takes successive positional values

(mostly bits), as residues congruent to a linear combination.

Allard, Dobell and Hull
3

have given a mixed congruential

random number generators for decimal machines.

Pseudo-Random number generator (PRNG) is an algorithm that

is used to generate many random numbers. It starts from an

arbitrary state called “seed”, and generate numb

efficient and deterministic.

Monte-Carlo methods, a combination of probability theory and

sampling technique, are extensively used in simulation studies.

Their main application domains are optimization, numerical

integration and drawing variates from probability distribution.

Reservoir sampling is a family of randomized algorithms for

randomly choosing a sample of k items from a list S containing

n items, where n is either a very large or unknown number.

Given that the pseudo-random numbers

computer have a cycle (once the cycle breaks, the numbers

repeat themselves in the same sequence which can seriously

violate the simulation requirements); it is wise not to lose

random numbers in simulation studies. For drawing a random

sample of size n from a population of size N (n<=N), the

existing sampling algorithms require n pseudo

For a formal discussion on such sampling algorithms, see

Kennedy and Gentle
4
. Further literature on statistical computing

can be found in Kundu and Basu
5
 and Gentle

random numbers and computers is by Kneusel

________________________________ISSN 2320-6047

Mathematical and Statistical Sci.

 27

An efficient method of generation of a random sample using random

numbers significantly less than the sample size

835215, India

not to lose random numbers in

simulation studies. For drawing a random sample of size n from a population of size N (n<=N), the existing sampling

random numbers. If N is large, accordingly n should also be large for better representation of

the population. Since most simulation studies require at least 500 samples, we would need 500xn pseudo random numbers

which can lead to cycle break. We are therefore motivated to develop an efficient sampling algorithm which generates the

red sample using random numbers significantly less than the sample size. Our algorithm has the facility that a single

for a population of size 100000 using a python code. We would of

random number if the sample size exceeds 60 for this population.

. It takes successive positional values

(mostly bits), as residues congruent to a linear combination.

have given a mixed congruential

random number generators for decimal machines.

Random number generator (PRNG) is an algorithm that

is used to generate many random numbers. It starts from an

arbitrary state called “seed”, and generate numbers which are

Carlo methods, a combination of probability theory and

sampling technique, are extensively used in simulation studies.

Their main application domains are optimization, numerical

ates from probability distribution.

Reservoir sampling is a family of randomized algorithms for

randomly choosing a sample of k items from a list S containing

n items, where n is either a very large or unknown number.

random numbers generated by the

computer have a cycle (once the cycle breaks, the numbers

repeat themselves in the same sequence which can seriously

violate the simulation requirements); it is wise not to lose

random numbers in simulation studies. For drawing a random

ample of size n from a population of size N (n<=N), the

existing sampling algorithms require n pseudo-random numbers.

For a formal discussion on such sampling algorithms, see

. Further literature on statistical computing

and Gentle
6
. A recent book on

random numbers and computers is by Kneusel
7
. Other useful

Research Journal of Mathematical and Statistical Sciences __ISSN 2320-6047

Vol. 7(2), 27-29, May (2019) Res. J. Mathematical and Statistical Sci.

 International Science Community Association 28

books on statistical computing are by Givens
8
, Rizzo

9
, Martinez

and Martinez
10

, and Sawitzki
11

. The edited volume by

Dirschedl, and Ostermann
12

 gives a nice collection of papers on

the topic.

If N is large, accordingly n should also be large for better

representation of the population. Since most simulation studies

require at least 500 samples, we would need 500xn pseudo

random numbers which can lead to cycle break. We are

therefore motivated to develop an efficient sampling algorithm

which generates the desired sample using random numbers

significantly less than the sample size. Our algorithm has the

facility that a single pseudo-random number can generate the

sample of size 60 for a population of size 100000 using a python

code. We would of course need more than one pseudo-random

number if the sample size exceeds 60 for this population.

Our contribution: We have designed an algorithm which is

capable of generating up to 300 digits in a random sequence

irrespective of any parameter. The algorithm has been

implemented in Python language. We have used Rand ()

function to generate random digits after the decimal point. The

complete methodology is explained in the following steps: i.

Input: Population size N and sample size n, ii. Output: A

random sample of size n.

Algorithm efficient sampling technique: i. Using R and ()

function, generate a continuous uniform variate (a) in the range

of (0,1). ii. Decide the no. of digits (group length) to be taken

into consideration which will depend upon the population size

N. For example, if N=100, group length = 2. iii. Since we

require a random sample size of n, we will require n sets of

decimal digits in the uniform variate, each set representing one

sampling unit (see the example 1). For N =100, each set will be

a doublet. iv. We will get each sampling unit by extracting the

digits up to group length to the immediate left side of the

decimal point in a by repeatedly multiplying a with

10^group_length. v. We will store the sampling units in a list.

vi. To check for repetition, we can scan through the list and if

the sampling unit has already been stored, in the list, it will not

be stored again.

Example-1: Suppose the population size is 100 and the sample

size is 30. That is, we agree to sample about one third of the

population. Now we generate a uniform variate with 60 digits

after the decimal place. The reason is that we are considering

sets of two digits each sequentially to represent the sampling

units. That is, the digits 00 to 99 will represent the 100

population units. Every doublet after the decimal will give us

the corresponding sampling unit. For example, if our uniform

variate takes the value say 0.713026640801….. then the

sampling units are 71, 30, 26, 64,08, 01 etc. In the algorithm

Efficient Sampling Technique, this will be achieved by

repeatedly multiplying the uniform variate by 100 and taking

two digits sequentially to the immediate left of the decimal as

our sampling unit. These sampling units are to be kept in a list

ensuring that there is no repetition in the list items. Since we

have generated the uniform variate upto 60 places after the

decimal, and each pair (doublet) gives one sampling unit, we

obtain the desired random sample of size 30. For higher

population size, we may require a triplet or, in general, an m-

tuple (x1, x2, ….xm) of the digits 0, 1, 2…9 (this m is the

group_length) after the decimal expansion to represent the

sampling unit and there has to be n such m-tuples to generate

the desired random sample of size n. The value of m in the m-

tuple will depend on the population size. In our example, m=2

will suffice as we took the population size to be 100. If the

population size is 1000, the digits 000 to 999 will represent the

1000 population units and so we fix m=3. Now if the sample

size is say 300, we would need to generate 300x3=900 digits

after the decimal place. However, as our python code generates

upto 300 digits, so we would require generation of 3 uniform

variates using this code. Even then, as 3 <<300, we are done!

Python Code

frombuiltinsimportint, str

fromnumpy.polynomial.tests.test_classesimport random

fromtest.test_pdbimportdo_nothing

fromdecimal import *

importsys

#N is population size and n is sample size(Input data)

N=100000

n=600

print("population size ",N)

print("sample size ",n)

#find no of digits in N

group_length=len(str(abs(N)))-1

print("group length ",group_length)

#generation of a random number

r=random()

#creation of a list to store multiple random numbers

l=list()

a=r

print("Generated Random number ",a)

x=n

while(x>0):

 x=x-1

#shifting "group_length" digits to the left of the decimal point

 a=a*(10**group_length)

try:

if(a>0):

#extracting each number with "group_length" digits

num=int(a)%(10**group_length)

#print(num)

ifnumnotin l:

#adding the extracted number to the list

l.append(num)

else:

do_nothing

else:

break

Research Journal of Mathematical and Statistical Sciences __ISSN 2320-6047

Vol. 7(2), 27-29, May (2019) Res. J. Mathematical and Statistical Sci.

 International Science Community Association 29

except:

#print (sys.exc_info()[0])

do_nothing()

print("list of random numbers generated")

print(l)

print('size of list')

print(l.__len__())

Experimental results

Table-1 gives the output.

Table-1: Experimental results.

Population size 100000

Sample size 600

Group Length 5

Generated random

number
0.028083975896380……..

List of 5 tuples

generated

[02808, 39758, 96380, 77952, 99008,

85440, 83264, 20992, 89408, 57536,

98496, 25184, 17984, 8864, 02560,

56320, 51776, 13216, 74656, 03520,

30976, 61088, 05088, 39232, 62656,

92960, 39616, 89024, 6656, 57984,

13760, 37952, 56448, 60192, 9856,

41472, 56480, 50560, 17344, 34048,

82464, 97728, 52576, 77216, 81120,

20480, 50944, 12480, 16128, 84448,

05440, 23488, 80896, 44448, 19872,

42720, 39360, 02880, 76064, 55136,

01024]

Size of the list 61

We are able to get around 300 digits after decimal place. So

depending upon the population size N (here 100000), we can

generate about 300/5 = 60 sampling units (actually 61) using

only one uniform variate. This means, as our random sample has

size 600, so we would require 10 uniform variates with decimal

expansion upto 300 digits in each, each such variate yielding

about 60 (actually 61) sampling units. As 10 << 600, we claim

having developed an efficient method of generation of a random

sample using random numbers significantly less than the sample

size.

One advantage of using this method is that the chance of a

number occurring in a periodic manner will be very less.

Discussion, limitation and scope for further improvement: In

the general case if our sample size n is less than or equal to a x

60 where a is some positive integer, we would need a uniform

U{0, 1} variates with the present python code to generate the

desired sample. As a << a x 60, we claim to have developed an

efficient method of generation of a random sample using

random numbers significantly less than the sample size.

Further enhancement can be made on how to extract more

values in decimal precision, so that we can achieve the target of

generating larger samples using even fewer random numbers.

For this purpose, we are exploring other softwares such as

Mathematical.

Conclusion

We have developed an efficient method of generation of a

random sample using random numbers significantly less than

the sample size. Our python code successfully generates a

sample of size n from a large population of size N using only a

few (n/60) pseudo-random numbers.

References

1. Lehmer D.H. (1951). Mathematical methods in large-scale

computing units. Annu. Comput. Lab. Harvard Univ., 26,

141-146.

2. Tausworthe R.C. (1965). Random Numbers Generated by

Linear Recurrence Modulo Two. Math.Comp., 19, 201-209.

3. Allard J.L., Dobell A.R. and Hull T.E. (1963). Mixed

congruential random number generators for decimal

machines. Journal of the ACM (JACM), 10(2), 131-141.

4. Kennedy Jr. W.J. and Gentle J.E. (1980). Statistical

Computing. Marcel Dekker Inc, 33.

5. Kundu D. and Basu A. (2004). Statistical Computing:

Existing Methods and Recent Development. Alpha Science

International Ltd.

6. Gentle J.E. (2009). Computational Statistics. Springer.

7. Kneusel R. (2018). Random numbers and computers.

Springer Publishing Company, Incorporated.

8. Givens G.H. (2005). Computational Statistics. Wiley

Interscience.

9. Rizzo M.L. (2007). Statistical Computing with R. Chapman

and Hall.

10. Martinez W.L. and Martinez A.R. (2015). Computational

Statistics Handbook with MATLAB. Chapman and Hall.

11. Sawitzki G. (2009). Computational Statistics: an

introduction to R. Chapman and Hall.

12. Dirschedl P. and Ostermann R. (1994). Computational

Statistics, Papers Collected on the Occasion of the 25th

Conference on Statistical Computing at Schloß

Reisensburg. Springer.

Research Journal of Mathematical and Statistical Sciences __ISSN 2320-6047

Vol. 7(2), 27-29, May (2019) Res. J. Mathematical and Statistical Sci.

 International Science Community Association 30

