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Abstract 

Longitudinal studies play a very important role in human life, plant science and social sciences. In such studies, data are 

collected from the respondents over a period of time or periodical intervals. Consequently, 

effective statistical methods/techniques are required for the analysis of such data. Other names given to such studies are th

analysis of repeated measurements and growth curves. The main focus of such data analysis is to s

by development, aging and other factors such as application of different treatments over a period of time. Such studies 

typically have unbalanced designs, missing data and time varying covariates and thus not tenable to standard sta

methods. This paper gives an overview of literature and important references which lead for further effective studies.
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Introduction 

Longitudinal studies are defined as the studies in which 

response of each individual is observed over a period of long 

time. These studies offer investigator an opportunity of 

controlled and uniform measurement of exposure history and 

other factors related to effective outcome. Such studies are 

particularly useful when one is interested in studying the 

changes over time due to development, aging and other factors 

such as application of different treatments which 

Studies of this type have broad application, especially in the life 

and social sciences. As examples, most clinical trials of new 

pharmaceutical drugs, different agronomic investigations and 

business surveys are characterized by repeated me

over time on the basic experimental units. 

 

The longitudinal studies give more efficient estimates, 

comparisons and predictions than the corresponding cross 

sectional studies with the same number of observations. 

Recently, methods have been developed to accommodate 

special complexities of these studies arising due to auto 

correlations, missing observations and time varying covariates. 

If the main purpose is to study the variability over units the 

longitudinal studies may not be very efficient

also time consuming while several ‘classical’ statistical methods 

exist and are very useful, application oriented of these methods 

regardless of underlying assumptions in common.

 

In addition, confusion between multivariate and univaria

repeated measures approaches, the distinction between growth 

curves and repeated measures models which are seldom clear 

even in the minds of professional statisticians. An attempt is 

made to distinguish them in the following way:
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Longitudinal studies play a very important role in human life, plant science and social sciences. In such studies, data are 

collected from the respondents over a period of time or periodical intervals. Consequently, observations are correlated and 

effective statistical methods/techniques are required for the analysis of such data. Other names given to such studies are th

analysis of repeated measurements and growth curves. The main focus of such data analysis is to s

by development, aging and other factors such as application of different treatments over a period of time. Such studies 

typically have unbalanced designs, missing data and time varying covariates and thus not tenable to standard sta

methods. This paper gives an overview of literature and important references which lead for further effective studies.

Longitudinal study, repeated measures, growth curve model. 

Longitudinal studies are defined as the studies in which 

response of each individual is observed over a period of long 

time. These studies offer investigator an opportunity of 

of exposure history and 

other factors related to effective outcome. Such studies are 

particularly useful when one is interested in studying the 

changes over time due to development, aging and other factors 

such as application of different treatments which affect changes. 

Studies of this type have broad application, especially in the life 

and social sciences. As examples, most clinical trials of new 

pharmaceutical drugs, different agronomic investigations and 

business surveys are characterized by repeated measurements 

The longitudinal studies give more efficient estimates, 

comparisons and predictions than the corresponding cross 

sectional studies with the same number of observations. 

developed to accommodate 

special complexities of these studies arising due to auto 

correlations, missing observations and time varying covariates. 

If the main purpose is to study the variability over units the 

longitudinal studies may not be very efficient. These studies are 

also time consuming while several ‘classical’ statistical methods 

exist and are very useful, application oriented of these methods 

regardless of underlying assumptions in common. 

In addition, confusion between multivariate and univariate 

repeated measures approaches, the distinction between growth 

curves and repeated measures models which are seldom clear 

even in the minds of professional statisticians. An attempt is 

made to distinguish them in the following way: 

Repeated measure studies: The basic goal of these studies is to 

detect differential treatment effects or factors or combination of 

factor levels at differential times. Here the investigator is 

interested in knowing whether the treatments differ as a whole 

over the entire period of time or not. Attention is focused on 

tests of significance between treatments, rather than on the 

relationship between the effects at times, when treatments were 

applied. 

 

Growth curve studies: Generally there is a relationship 

between treatment effects and time, but the fundamental 

relationship is often neither stated nor derived explicitly. This 

function may be approximated by a polynomial structure. In 

such studies, the coefficients in the polynomial representation 

usually have physical interpretation

with variance and covariance, must be estimated from the data 

on such studies. Test of significance, hypothesis testing, as well 

as predictions are of interest to investigator.

 

A distinction between repeated measurement and grow

models is the analogues to the perceived difference between 

analysis of variance (ANOVA) and regression models. 

However, ANOVA may be viewed as a case of regression, and 

the repeated measurements model is a particular case of growth 

curve model. 

 

Repeated measurement data analysis

Under a very simplified version of the model let y

measurement of the i
th

 individual then we may write the model 

as 

 

yij   = µ ij + αij + eij   
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The basic goal of these studies is to 

detect differential treatment effects or factors or combination of 

factor levels at differential times. Here the investigator is 

interested in knowing whether the treatments differ as a whole 

of time or not. Attention is focused on 

tests of significance between treatments, rather than on the 

relationship between the effects at times, when treatments were 

Generally there is a relationship 

and time, but the fundamental 

relationship is often neither stated nor derived explicitly. This 

function may be approximated by a polynomial structure. In 

such studies, the coefficients in the polynomial representation 

usually have physical interpretations. These parameters, along 

with variance and covariance, must be estimated from the data 

on such studies. Test of significance, hypothesis testing, as well 

as predictions are of interest to investigator. 

A distinction between repeated measurement and growth curve 

models is the analogues to the perceived difference between 

analysis of variance (ANOVA) and regression models. 

However, ANOVA may be viewed as a case of regression, and 

the repeated measurements model is a particular case of growth 

Repeated measurement data analysis 

Under a very simplified version of the model let yij be the j
th
 

individual then we may write the model 
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where, µ ij is the j
th

 measurement on the i
th

 individual, αij is the 

effect of the i
th

 individual at the j
th
 occasion and varies 

independently over the population and eij is an independent 

error. If all individuals are on equal footing, then one can drop 

subscript ‘í’ and take µ ij as µ j. But, otherwise, when they are on 

different treatment groups, then the subscript ‘i’ indicate the 

special treatment factor affecting the observation of that 

individual. The vector µ i = (µ i1, µ i2, …, µ ip)’ corresponds to the 

‘p’ measurements on the i
th

 individual, and will be referred to as 

the µ - profile of that individual. One may take the following 

assumptions:  
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and αij , eij are normally distributed. This gives  
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This indicate that while observations from different individuals 

are independent, but there is correlation among the observations 

within each individual, and can be stated as 
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which ranges from zero to one, and is known as intra-class 

correlation. The above model is known as mixed model. 

 

For example, suppose that there are ‘g’ groups of animals each 

on different treatments, and there are nj  (i = 1, 2, …) animals in 

the i
th

 group such that  
.

1

nn
g

i

i =∑
=

  Suppose weekly record on 

growth over certain weeks for each animal are available and it is 

of interest to compare the ‘t’ treatments for the growth over ‘p’ 

weeks. 

 

Split plot analysis: Under the compound symmetry model in 

(1), groups may be considered as main plot treatments, weeks 

within treatment may represent sub plot treatments and analysis 

of data proceeds on the line of split plot design. 

 

F-statistic is valid if compound symmetry in (1) hold. According 

to Mauchly
1
 there exists test for testing the assumption of 

compound symmetry. For a general description see mixed 

models by Scheffe
2
. Some recent results on the test of 

compound symmetry are established by Grieve
3
. 

 

Table-1: Split plot analysis of variance. 

Source Degrees of freedom 

Groups g – 1 

Within groups n – g 

Weeks p - 1 

Weeks X groups ( p-1)(g – 1) 

Weeks X Within groups (p – 1)((n – g) 

Total np - 1 

 

Multivariate Models without special co-variance structure: 

When the assumption of compound symmetry in (1) does not 

hold, then one may have to consider a general covariance matrix 

Ʃ of the order ‘p’. 

 

)()( jjYV ′=∑= σ
 

 

and the testing hypothesis about the components of mean ‘µp’ 

becomes the usual multivariate analysis of variance 

(MANOVA) problem. Here the main problem is to test the 

equality of mean vectors ‘µ’. 

 

gH µµµ === ...: 210  
 

for different treatment groups. Another problem is to test for 

certain linear combination of µ over treatment groups. For 

example, one may be interested whether growth rate over ‘p’ 

weeks is same over all the groups or not. Such hypothesis can 

be tested by usual MANOVA techniques. For more details see 

Rao
4
. 

 

Growth curve model 

Suppose that there are ‘g’ different groups (treatments) and a 

single growth variable ‘y’ is measured at ‘p’ time points t1 , t2 , 

… tp on nj  specimens chosen from the j
th 

group (j = 1, 2, … g). 

We specify a polynomial of degree (q – 1) for y on time interval 

‘t’. Thus, for the j
th

 group. 
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Let )...,,( 110
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−= jqjjj ξξξξ  denote the vector of the 

regression coefficients ( or the growth curve coefficients) for the 

j
th

 group. The observations 
pttt yyy ...,,

21
being on the same 

specimen are correlated, and we shall denote their variance-
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covariance matrix by Ʃ. We assume that Ʃ is same for all ‘g’ 

groups. Let Yj denote the p x nj matrix of the observations for 

the j
th

 group and let. 
 

Yp x N = (Y1 , Y2 , …Yg) with N = n1 + n2 + …+ ng be the total 

number of units then 
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Some times, it is convenient to take matrix B to be 
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where pl(t) are orthogonal polynomials of degree l. At this point 

some historical comments may be appropriate. Wishart
5
 is 

credited for using such growth curve models for the first time. 

The analysis begins by replacing large number of observations 

on each individual by a few coefficients of orthogonal 

polynomial. The mean of growth rate and its change are 

compared by univariate analysis of variance. Box
6
 suggested the 

use of analysis of variance to the first differences of successive 

observations when the assumption of uniform co-variance 

matrix is valid. On the growth curve analysis, the object is to 

make inference about ξ and to test the adequacy of the degree of 

polynomial (q-1); estimate ξ and obtain variance co-variance 

matrix of ξ ; to test linear hypothesis about ξ,   

 

i.e., H0: L ξ M = 0 

H0:  ξ 1 = ξ 2 =… = ξ k 

 

Or to test sub hypothesis about ξ l and to make confidence 

intervals. Potthof and Roy
7
 obtained the maximum likelihood 

estimator of ξ as  
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Khatri
8
 obtained the maximum likelihood estimator when Ʃ is 

not known and is given by, 

 

 

and estimate of the variance of  ξ
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For all testing problems MANOVA can be applied. When there 

is only one group (g = 1) then,  

)()( 111 YSBBSB

YYnYYS

−−− ′′=

′−′=

ξ
 

 

Hypothesis of the type Ʃ ξ = 0 can be tested by using 

Hotelling’s T
2
 statistic, which yields F-test. For details see 

Potthoff and Roy
7
, Khatri

8
 and Geisser

9
. 

 

Multidimensional growth curve model: In this, several 

response variables are simultaneously measured at different 

time points. For example, in practice both systolic and diastolic 

blood pressures or height and weight are included in medical 

study. Potthoff and Roy’s model for one growth variable was 

generalized by Reinsel
10

. 

 

Time moving covariate model: Patel
11

 introduced a growth 

curve model useful in repeated measurement designs where the 

covariate changes with respect to time. This arises in long term 

clinical trials where environment factors viz., air pollution, diet, 

exercise and smoking influence the diseases. Quantitative 

information on such influencing factors over the periods, 

between successive clinical visits, is utilized in the model. In 

clinical trials we often find two types of covariates, the first 

being between patient covariate, which remains unchanged 

during the trial such as initial weight, age, etc., while the second 

type of covariate called within patient covariate, varies to the 

successive next visit for the same patient. For such covariates 

even the baseline obtained before the start of each treatment 

period changes with time. Patel’s time moving covariate model 

is 
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Here A is a design matrix including between covariates, Γj is a p 

x p diagonal matrix with diagonal elements as Vi1, Vi2 

,… , Vip (I = 1, 2, …, r); Xr is a p x N matrix of the values of i
th

 

within patient covariates.  

 

Here as in analysis of variance, we have the hypothesis, 

 

H0:  L ξ M = 0 against H1: L ξ M ≠ 0 

 

Structure covariance matrices: It is already viewed with some 

simple structures of the variance co-variance matrix Ʃ, as intra-

class correlation structure. Some structures are: Ʃ σ
2
 G, where G 

is a given matrix. 
 

Intra class correlation structure can be expressed as 
 

Ʃ = σ
2
 (1-p)I + ρ II’ 

 

Serial correlation structure is given by 
 

Ʃ = σ
2
 C, where [ ] ),...,2,1,(, pjiC

ji
==

−ρ
 

 

Khatri
12

 has derived tests for testing such structures of Ʃ. 
 

Random Coefficient Regression (Two stage model): Here, the 

model can be considered in two stages which will imply a 

particular type of structure of Ʃ. 

 

In the first stage for the i
th

 individual,  

 

Yi = X βi + ei 

 

where, βi are themselves random and over the population in the 

second stage. 

 

E ( βi ) = β ,  V( βi ) = F;   and Cov( βi , βj ) = 0 for i≠ j  

 

And thus we have a ‘random coefficient regression’ (RCR) 

model. This model implies a structure of Ʃ as Ʃ = XFX’ + σ
2
 I. 

 

Rao
4
 obtained estimates of βi, β and also test of hypothesis 

regarding the above structure of Ʃ. Rao
13 

has considered 

empirical Bayes (EB) estimator for RCR model for estimation 

of βi’s where F, β and σ
2
 are to be estimated from the estimates 

available. 

 

Rao
14 

also suggested a effective general variance co-variance 

structure. 
 

Ʃ = XFX’+ Z∆Z’ + σ
2
I 

 

Where Z is any p x (p-q) matrix of rank (p-q) such that X’Z = 0 

and F and ∆ are any arbitrary positive definite matrices. Under 

this structure the unweighted least square estimator is the best 

linear unbiased estimator. Swamy
15

 considered a more general 

version of RCR model by allowing ’X’ to be different for each 

unit ’i’ but the dimension of ‘Xi ’ are same for each ‘í’. 

Choice of model: All the above specified models defined a 

structure among means and dispersion matrix. The structure 

among means can be taken to be same, but the models differ 

considerably in the structure of dispersion matrix Ʃ.  Pottoff and 

Roy
7
 do not put any structure on Ʃ, but estimates can be very 

inefficient when number of time points is large as the number of 

parameters increase considerably. RCR models impose a 

particular structure on the error component. Rao
4
 has given a 

method for testing this structure against unstructured dispersion 

matrix Ʃ. 

 

Once a family of models is chosen, the maximum likelihood 

method can be used to estimate the parameters. In some case 

interactive techniques have to be used for this purpose. It has 

been shown that the estimates of mean parameters are not very 

sensitive to the refinement of estimating techniques. Therefore, 

it may not be very worthwhile to use very efficient and time 

consuming techniques for the estimation of mean parameters. 

 

Prediction: Estimation and testing are of course, important 

aspect of the analysis, but sometimes main interest of the 

investigation is in prediction. It would be proper to make the 

distinction between estimation and prediction. Estimation is a 

procedure of determining the value of fixed parameters whereas 

prediction is concerned with the value of a random event itself. 

Some work on prediction in linear models is also reported in the 

literature. Consider the model 

 

Y = X β + e 

 

Where ‘Y’ is a p component random vector with X β and 

variance σ
2
 V11. The purpose is to predict Y, as a linear function 

of ‘Y’, where Y* is *** exY +′= β
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Let yly ′=*

)
 be a linear predictor of *y . It can be shown that 

the best linear unbiased predictor of  *y  is 
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If β and V are not known then it is natural to put the estimated 

values of these parameters. Rao
4,14

, Geisser
9
, Copas

16
, Reinsel

17-

20
, Rao and Bourdreau

21 
have done work on predictions. 

Suppose that N units are observed at ‘p’ time points and 

observations are represented by ‘p’ component vectors Yi (I = 1, 

2, …, N). Two types of prediction problems has been 

considered in literature. For (N+1)
th
 unit, vector YN+1 is 

observed at p1 (< p) time points and one wishes to predict the 

remaining p2 (= p – p1) values. This is called a case of 
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conditional prediction. Another type of problem is of predicting 

the values of measurement at (p+h)
th

 time point for these units. 

This is called the problem of predicting the future observations. 

Geisser
9
, Rao

13
 and Fern

22
 have established the conditional 

prediction. 

 

Growth curves with incomplete data: Growth curve 

experiments, repeated measurement designs and longitudinal 

studies are constructed so that data are taken repeatedly on the 

same experimental units. This process often results in an 

incomplete or unbalanced data. Most statistical methods that are 

appropriate for the analysis of data from such experiments will 

have the existence of full records (usually multivariate normal). 

 

Conclusion 

The present paper gives an overview of statistical tools 

necessary for longitudinal data analysis. The models based on 

repeated measures, split plot analysis, multivariate models 

without special co-variance structure, multidimensional growth 

curve models are reviewed. The choice of the model and the 

prediction under such models are suggested. 
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