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Abstract

The stochastic knapsack problem has continued to generate interest in many areas especially in the area of resource
allocation. Of the two forms of the stochastic knapsack problem, the static knapsack problem has been studied over the years
by considering the distribution of one of the parameters of a knapsack such as weight, capacity, profit, etc. however, optimal
solutions for parameters having contagious distributions have not been considered. This study therefore seeks to obtain
optimal solutions to a stochastic knapsack problem following a contagion capacity of Poisson and Gamma distribution. The
simplex method of Witchakul et al. (2007) was adopted in developing an algorithm as well as a Monte Carlo and Heuristics
algorithms. The result shows optimal solutions were gotten for up to 75,000 variables and the Heuristics algorithm
performed much better than the main algorithm and Monte Carlo algorithms respectively.

Keywords: Stochastic Knapsack Problem, Contagious distribution, Optimal Solutions, Knapsack problems, Optimal

Solutions.

Introduction

Stochastic knapsack problems is an aspect of the knapsack
problem which are often used to model real life situations
involving problems such as resource allocation, cargo loading,
assignment problems, investment planning, etc. where
allocation of scarce or limited resources is done to minimize risk
or costs and maximize profit or investment returns. The
stochastic knapsack problem is a non-deterministic knapsack
problem whereby the parameters of a knapsack problem are
known with uncertainty. These parameters such as weight,
profit, or capacity are therefore treated as random variables with
certain distributions.

Over the years, the stochastic knapsack problem has been
studied based on two concepts, the static stochastic knapsack
problem and the dynamic stochastic knapsack problem as shown
in the literature. Studies on the dynamic stochastic knapsack
problem includes Stewart', Mendelson et al.®, Kelywegt and
Papastavrou’, Dean et al.* and Levin and Vainer’. For the static
stochastic  knapsack  problem, Steinberg and  Parks®,
Sniedovich7, Cohn and Barnharts, Witchakulet al.g, Agrali and
Geunes'®, Merzifonlougluet al'' and Chen and Ross'’ all
studied the static stochastic knapsack problem in different areas
and concepts especially with respect to the distributions of the
parameters of the knapsack problem.

Steinberg and Parks®, Sniedovich’, Henig'" all considered the
situation whereby the profits and weights are uncertain.
Caraway et al."* examined the stochastic knapsack problem
when the profits are normally and independently distributed
random variables, Goel and Indyk15 considered the case of the
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weights following Poisson, exponential and Bernoulli
distributions respectively while Kosuch and Lisser'®'"” focused
on normally distributed weights. Witchakul er al.”'® proposed
methods of solving the stochastic knapsack problem when the
capacity follows a certain distribution. Merzifonlouglu et
al.'followed it up by considering normally distributed items
and random capacity while Chen and Ross'> considered an
exponentially distributed capacity.

Recently, the distributions of the parameters of a stochastic
knapsack problem has been examined using the multiplicative
and additive contagious distributions of Mood ef al.”’. Etuk et
al® and Akpan and Etuk®' presented a stochastic knapsack
problem where the capacity is a multiplicative and additive
contagious distribution of Poisson and exponential distribution
respectively, while Akpan ef al.” considered when the weight is
an additive contagion of Gamma and Exponential distributions.
These studies were basically focused on the graphical properties
of the mixture as well as its first and second moments.
However, optimal solutions have not been obtained for a
stochastic knapsack problem with contagious distributions.

This study therefore considers a stochastic knapsack problem
with the capacity following a multiplicative contagion of
Poisson and Gamma distributions. The study adopts the simplex
method approach of Witchakul er al.'® in solving the problem
and the optimal solutions obtained will be compared the that of
Witchakul et al.'®.

The rest of the paper is organized as follows. Section 2 deals
with the contagious distribution of Poisson and Gamma and the
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methodology using the simplex method approach. Section 3 will
show the results and discussions. Section 4 will then be the
conclusion of the study.

Methodology

In this section, the mixture of Poisson and Gamma distribution
is shown and then the simplex method approach of solving the
stochastic knapsack problem of Witchakul ez al."® is applied to
the stochastic knapsack problem with the capacity following a
contagious distribution. The materials employed in the course of
this analysis are MATLAB 15a software and a laptop, Intel(R)
Core(TM) i3 M350 Processor @ 2.27 GHz, 6.00 GB RAM, 297
GB hard drive.

Contagious distribution: The multiplicative form of a
contagious distribution or mixture is stated as let {f (x;8)}be a
family of density functions parameterized by @ . Let also the
totality of values the parameter @ can assume be denoted by ©®
. If O is an interval and g(@)is a pdf which is 0 for all

arguments not in ® , then I@f(x;@)g(@)d@ is a density

function called a mixture (Mood et al., 1973).

Here, f (x;&) follows a Poisson distribution with parameter
-9

0 givenbyf(x;e)z ¢ :9 for x =0,1,....,n
X

i 8(6)= 7567 1. 0)

follows a Gamma density function. Then,

!f(x;e)-g(e)dhz% rﬂ(r)

er 1 79/{d0 (1)

ﬂ+l)9d0

A rx—
— x'r( )_[0 1

Applying integration by parts,

A 1 r+x)7 et -{ario
) (A1) r(r+x)£ [(2+ el e dl(2-+1)6]

N l{;f'g;(f))(ﬂilj ' (/1:1)*

r+x-—1 VY 1
- X A+1 A+1
which is the density function of the new mixture with
parameters rand 1/(1 +1).

2

3)

j forx=0,1,..n (4
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Stochastic Knapsack Problem with mixed capacity
(SKPMC): The problem can be formulated as shown below.

r+x—1 r+x—1 1
—ng — v (5).
j{ Iﬂﬂ A #{ Iﬂﬂ At ’

n
Subject to Zwl.xl. +uj —
i=1

0< X, < f;andx =0,1,...,n

r+x—1[ A jr( 1 jx

z —— | |—— | =1, and
X_O( x j A+1) (A+1

o =TT rl (—’1 j(—l jx,r:1,2,3,...
* X A+1) (A1+1

where X, is the decision variable,i = 1,...,n,

i=1,..,n

u ;is the slack variable and u ; 2 0, j=1,...m,

1, is the upper bound of X,

v, is the surplus variable and v; 20, j =1,..m

W, is the coefficient weight of item iand w, 20,i =1,...,n,,
P, s the coefficient cost of item jand p, 20,i=1,...,n,,

¢ ;is the capacity of alternative jand ¢; 20, j=1,..m,

g is the cost per unit of havingu ; , g 20, and

his the cost per unit of having Vi, h=>0

Z,is the probability distribution mixture of having capacity
Cj»2, >0, j=1,.m,

We propose an algorithm for solving the problem using the
simplex approach of Witchakul et al. The underlying

assumptions following these algorithms are ¢ <c

j=1..,m

41 for

m—1l,andp, /w, < p H/wm,l—l,..., n—1.

Algorithm for SKPMC: Following Witchakul et al. (2007),
four optimality conditions exists for this problem and are proven
using the principles of simplex algorithm. Each of the
conditions are proved by writing basic variables in terms of non-
basic variables. Then the basic variables are substituted into the
objective function. Finally, when the cost of the non-basic
variables has been reduced and are greater than or equal to zero,

we obtain the optimal solution.
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For the first case, we obtain the optimal solution as shown
below.

x, =0,Vi ©)
=0,Vj %)
=c,.V ®)

Where p, /w; 2 gandx =0,1,...,n
Proof

u; =c; —Zwl.xi +v,,J= 1,....m )
i=1

We then proceed to substitute (9) in (5) above as follows.

] A
[ 0 o o [ )

ST o T
‘3§[r+j_llﬂilﬂﬂ+lj} ,Z.Ig {[Hj_%il} [/Hlj:}v ZIP’ S

Since, the minimized objective function, f is obtained when all
the reduced cost of the non-basic variables are greater than or
equal to zero, we proceed to find the non-basic reduced
variables greater than or equal to zero. For this first case, non-

(10)

basic variables are X;Vi and V iV J » hence for the minimum

value of f, the reduced costs of these two non-basic variables
must be greater than or equal to zero that implies,

r+x=1YV A N/ 1 Y

+h —_— _— >0 , 1 d
(¢ )( X j(ﬂﬂj [/1+1j vJ @
(P —gw)20.vi.
Since g,h = 0and ril ﬂj (1j >0, v,

x A\ A+
(g+h)ﬂr+x_ll’l]r(lﬂzo, Vj. To minimize f,
x €A+ A+

( D; — 8w, ) 20, vi, must be greater than or equal to zero, that

is, equivalent to p; / w; > 8, Vi. According to the assumption
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D Iw, Sp.Iw,,. fori=1,..

case isp, /w, 2

1 r X
value of fis gZKr-'_j j(ﬁj (ﬁj }Cj'

For the second case, we obtain the optimal solution as shown
below.

, n —1, the condition for this

g . Hence for the first case, the minimum

12)

X, =t,,Vi (13)

=> wit,—c; andt; =0, je 1, (14)
i=1

u; =Cj—ZWl-li andV; :O,je I, 5)

i=1
Where

Il={j=1:m:cjZZwit,},IQ={j=1:m:cj<2wit,},

i=1 i=1

. . i «and
r+x—1 A 1 r+x—1 A 1
Iw,<gY =] -hD -
Pulw, gﬁ,‘[ x ][AH] (l+l) IJE,Z[ X ][ﬂﬂ] (/Hl)

x=0,1,..,n

Proof
X, =t —r,Vi (16)
1, 20,Vi (17)
n n
uj:cj—Zwiti+Zwiri +v,,J€ (18)
i=1 i=l
n n
vj=—cj+2witi—2wiri +u;,jel, (19)

i=1 i=1

We then proceed to substitute (16), (17), (18) and (19) into (5)
as follows.

r=2n ”'“gg[ﬁj_lml} [MJ I ST j”'z([Hi ILHJ (Mj }
+h§[r+;v—1LiJ (MJI +ZW’ Zwr+u ]Jrgz((Hi ll/mj [,11 J}‘ (20)

:Z‘p ’t’+g§[r+j_llli1] [MJI Z,:W’}’hz( Hjc( 1 A+1 1+1 +ZW’
ool G e G
S (g e B PR 8

The non-basic variables for this case are v;, je I,.U;, je I,

and /; Vi. so in order to obtain the minimum value of f, the
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reduced costs of these non-basic variables must be greater than
or equal ZEero and that means,

o {[w ILHJ (MHZMEI“
(g+h[[r+x ILHJ (mj }0 j land

QIR oy €20 LR -y A 0

Since g,h > 0and — | | ——| |Z0vx
[( x J A+1) (A+1

it implies that condition land 2 have been satisfied. To
minimize f the reduced cost of

SRt (e o (EE IR (e B (EEl

Vi must be greater than or equal to zero that is equivalent to

GRS )

Vi.

Where g € {1,2,..., m}andk € {1,2,..., n}such that
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According to the assumption p; / W Dy / W,
i=123,.,n—1, the this case is

g o) e ()

Hence for this case, the minimum value of f is

Sy

R 8 e G P RN P

For the third case, we obtain the optimal solution as shown
below.

condition  for

e e N ) B G B PRy
s G L T

w;t; S ¢, , then k=n.

Proof
Supposing k and ¢ is specified

Zﬁ&+pﬂ{+2?x+g‘

i=k+1

n ((r+x=1Y A Y/ 1Y)
+ - +h
gj; ( X I/HJ [/HJ !

J=l X
r+x=1Y A Y[ 1Y
+h Z = W
( x ](/HJ (/HJ !
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x, =t,i=1..k-1 (23)
c,— > wi,
x, =—"— (24)
W,
x, =0i=k+1,....n (25)
Vv, =c,—C;andl; =0,j=1,...g—-1 (26)
u, ZOanqu =0 27)
u;=c;—c,mdV; =0, j=q+Lg+2..m s
k—1
A+ A+l /1+1j }“’
(29)
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Let,
X, =t,i=12,..k-1, (30)
X, (c —u, +v —ZWX—waJ/ (31)
i=k+1
kz(c —u, +v —ZWZ‘ —wa]/ (32)
i=k+1
k-1 n
V=D WX A WX+ D WX, U, —C (33)
i=1 i=k+1

ket
—ZWX +Wk((c —M +v —ZW)C ZWXJ/W/(J+ ZWX +u —C; (34)

i=1 i=k+l i=k+l

=c,—¢;+tu; —u, +v ,j=1,2,...,q—1 and

~—C +v. —ZWX —W.X, — ZW)C
i=k+1

k-1 k-1 n
¢+, - St [[c i, =St - Zw,x,j /Wk}

i=1 i=1 i=k+1

n
Zwl.xl.

i=k+1
=c;—c,+v,+tu,—v,,j =qg+1L,qg+2,..m.

Next, we substitute the basic variables above into (29). Thus
(29) becomes as follows.

)=kzlpiti+pk[(ct/_uq+vq_kzlwiti_nzmxiJ/ij
q-1 r+x_1 ﬂ r 1 X

+ Xt — ||| «;
z%p” gz( x J(ﬂﬂj (/1+1j j
S S (AN

= x N+ A+ Cq =€ 787U, Yy

r+x—1 y) r 1 x

+gqu::l[( X j(_/1+lj(_/1+lj j(cj—cq+vj+uq—vq)

r+x— r+x—1
h;,; [( X /1+1 /1+1 } g{ ﬂ Tﬂj ]
r+x—1
u,+h
( x J( A+ 1) A+1 1
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k- Al r4x-1Y AN 1Y
‘zh‘*“&? Eyﬁbkg*ﬁl( x I§+J[4+J}%‘%)

o2 (N ) oo

j=q+1

St St G S G
ol ) ) )
oofoensl () G £l )

Here, the non-basic variables are X;, i=k+1,k+2,....n

Viij=q+lLg+2,...m,U;, j=12,.,9g-1,U,andV,

. Hence the reduced costs of these non-basic variables must be
greater than or equal to zero in order to obtain the minimum

means P; —ple-/Wk >0,
s r+x=1Y 1Y ) s
" (g+h)[[ +x j[ﬁj (ﬁj Jzo
j%%quMWHﬂpq(lﬂm,
X A+1) \A+1

o2 ) ) ) e

and

[/ G 2T R

value of £ that

i=k+1Lk+2,..,

From assumption, P,/W p,+1/ 1,1 =12,..,n—1, then

Pi= DWW, 20i=k+1,k+2...n.
and r+x-1 (l]r[ljx >0 v
x A+1)\A+1) |
r+x=-1Y A \( 1 Y .
1 AN I ,j=12,.,q9-1,
J’(g+h)& x j[/ﬂlj[ﬂwlj }20
and (g + r+x_1[lj (lj >0,
X A+1) (A+1

j=q+1,g+2,..,

since g,h > 0

m have been satisfied.
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To minimize

s G A )

and

O (e & [ e e ()

must be greater than or equal to zero. Since 0< Xy <t k> itis

equivalent to i=1 <, - It is also equivalent to
Wy !

k=1 k n

D wit, Sc,and Y wit, Zc,. If Y Wi, <c,, then

i=l i=l i=l

k=n.

Therefore, k and ¢q are selected such that
SOA- e o (G e o [l
and

LY 0 = )

k-1

and ) wit; S ¢ andZWt >c, . I Zwt <c,, then
i=1 i=1 i=1

k=n.

Therefore, for the third case, the minimum value of f is

k-1 k-1
ZWI.I,. +c, ((cq —ZWitij/wa+
i=1 i=1

=

J=

For the fourth case, we obtain the optimal solution as shown
below.

x =t,i=L...k (37)
x, =0i=k+1,....n (38)
v,=c¢ —c;andt; =0,j=1,...g (39)
u;=c; —c*andvj =0,j=qg+Lg+2,...mn (40)

Where g e {1,2,,_,, m}andk e {1,2,,_,, n}such that
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e G o2 T )
k S
i=1

k
Dowit; >, wit; <c,, andc
i=1 i=1

Proof
Suppose k and g have been specified

oo g LA ol A G

+ 1 r X
a3 (ﬂj (lj b, (41)
et X A+1) \(A+1
Let
X, =t,i=12,..k, (42)
k n
V=D WX D WX, U, — @3)
i=1 i=k+1
k n
= Zwiti + ZWixi tu;—c;,j=12,..q,and (44)
i=1 i=k+1
j=Ci v, —wa —wa

i=k+1

=C; +V; —Zwt _sz xX,j=q+l,g+2,..m

i=k+1

The basic variables above will subsequently be substituted into
equation (41). Thus equation (41) becomes as follows.

g gt

(A ) [

+g§((r+flLiJ (Ml) ZW' i ;”'}h,qﬁﬁﬁi 1LH 1+1 } “
Zp ]/ (H;_IIAH) (MJI e j+g,;{(r+i_ll+1]r(ﬂ+l)1 Zm]

(e P [P T (G P P

n
—cj+uj+2wl.t,.]

i=k+1
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The non-basic variables here are X;,i =k + Lk +2,....,n, Vj ,

j=q+1,q+2,q+3,...m.U; j=1273 ., g.Therefore

to obtain the minimum value of f, the reduced costs of these
non-basic variables must be greater than or equal to zero that
means

(g+h)&’”‘1j[ﬂjr[1)*']20,1' =123, q
X A+1) \A+1
(g+h r+x—1 (Lj (Lj >0,

x A+1) \A+1

j=q+1,g+2,q+3,..,m,and
o f(r+x=1 2 \( 1Y) no((r+x=1Y 4 Y/ 1 )
[’Z[( ) () ]ZH T ) ]]20

Jd=k+1Lk+2,k+3,....n.

r+x=1YV 2 N7 1Y\ >0
Si h > 0 ,and S —_— 2
nees: 0.an X A+1) (A+1 v

r+x=1Y 2 Y/ 1 Y\
ilg+h — || — [20,
/ (g ( X j[/ﬂlj (/1+1j

j=123...q

r+x=1Y 2 Y/ 1Y
h Z 1l—1 |=0
and(g+ ) ( X j(/lﬂj (/1+1j '

j=q+lL,g+2,qg+3,...m

have been satisfied. To minimize f,

4 ((r+x—1 2N 1)
+h E = |- ow.
Py oW ( X j(ﬂﬂ) (/1+1j W

j=1
i r+x=1 A Y[ 1 Y

i X A+1) \A+1

must be greater than or equal to Zero,

i=k+1,k+2,k+3,..., n,thatis equivalent to
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i=k+1Lk+2,k+3,...n.
p,‘/Wi < Pi+1/Wi+1, i=1,2,3,...,n—1, the condition here is

- o 0| > e )

k
* *
Since €, <C <C,, andC = Z w;t, ,itis equivalent to
i=1

According to the assumption

Therefore, k and g will be selected such that

j +h" rex-1y A J(l]x Y (r1Y A J(l]x 50
Pl ™l ) ) 24« ) a1 )]

Finally, the minimum value of fhere is
L (r+x—1Y AY( 1Y & ) m((rx-1Y AY( 1Y 3 47)
27 hz([ TG I?Wﬂ %j@{[ TG Izj

Results and discussion

From the Table-1, 2 and 3 in the appendix section, the
computing time for the SKPMC algorithm was able to run for
up to 75,000 random variables more than the algorithm of
Witchakul et al.'® The SKPMC algorithm of Table-1 was more
efficient than that of the Monte Carlo algorithm of Table-2.
However, the Heuristics algorithm of Table-3 was more
efficient than the SKPMC and Monte Carlo algorithms.

Conclusion

This study has shown that optimal solutions can be obtained for
stochastic knapsack problem with a contagious distributional
capacity. An algorithm for a stochastic knapsack problem (SKP)
with a contagious distributional capacity was developed using
the simplex methods of Witchakul et al.'® also, a Monte Carlo
algorithm and a Heuristic method was developed and ran using
a MATLAB software. The results show that the while optimal
solutions can be obtained for as large as 75,000 random
variables, the optimal solutions from the Heuristics methods
was the most efficient of the three methods while the Monte
Carlo methods was the least efficient of them all.
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Table-1: Computing time (sec) of the SKPMC algorithm

M

n 100 250 500 750 1,000 | 2,500 | 5,000 | 7,500 | 10,000 | 25,000 | 50,000 75,000

100 | 0.6206 | 0.0276 | 0.0601 | 0.0972 | 0.1289 | 0.3884 | 0.8304 | 1.7248 | 2.2288 | 8.7315 | 29.0916 | 62.3889

250 | 0.0133 | 0.0526 | 0.0565 | 0.0868 | 0.1887 | 0.3319 | 0.7990 | 1.3764 | 1.8550 | 9.4073 | 9.4242 | 62.1279

500 | 0.0295 | 0.0442 | 0.0651 | 0.0908 | 0.1442 | 0.3757 | 0.9834 | 1.4382 | 2.2922 | 10.3593 | 30.8231 | 66.9216

750 | 0.0180 | 0.0340 | 0.0826 | 0.1714 | 0.1686 | 0.4177 | 0.8654 | 1.4844 | 1.8795 | 9.4538 | 30.9397 | 15.0443

1,000 | 0.0201 | 0.0625 | 0.0885 | 0.1241 | 0.1841 | 0.6872 | 1.2544 | 1.7528 | 2.2927 | 9.3567 | 32.2625 | 68.8349

2,500 | 0.0253 | 0.0438 | 0.0948 | 0.1431 | 0.1663 | 0.4923 | 0.9354 | 1.7291 | 2.5449 | 9.9266 | 32.3288 | 67.5332

5,000 | 0.0251 | 0.0356 | 0.0957 | 0.1432 | 0.2186 | 0.5862 | 1.2635 | 1.3921 | 3.0309 | 4.6391 | 35.3935 | 72.6592

7,500 | 0.0288 | 0.0709 | 0.1633 | 0.2685 | 0.3240 | 0.7422 | 0.9288 | 1.3937 | 3.5669 | 12.4323 | 38.5549 | 73.8670

10,000 | 0.0339 | 0.0813 | 0.0964 | 0.2026 | 0.2836 | 0.8016 | 1.7404 | 2.8600 | 1.8547 | 14.2160 | 41.4695 | 82.4798

25,000 | 0.0354 | 0.0831 | 0.3644 | 0.4266 | 0.2606 | 1.7391 | 3.3058 | 5.3630 | 7.0014 | 25.0308 | 58.7919 | 16.1122

50,000 | 0.1266 | 0.3167 | 0.4252 | 0.6952 | 1.1446 | 2.7250 | 0.9530 | 9.9642 | 12.5514 | 37.4237 | 83.3753 | 151.5088

70,000 | 0.0277 | 0.1599 | 0.6032 | 0.9504 | 1.3643 | 3.8470 | 8.5608 | 1.4969 | 17.1314 | 49.1095 | 118.4811 | 193.7150

Table 2 Computing time (sec) for the Monte Carlo Simulation of SKPMC algorithm.

m

N 100 250 500 750 1,000 2,500 5,000 7,500 10,000 25,000 50,000 | 75,000

100 0.4675 | 0.4731 0.4705 0.5322 0.4631 0.4646 0.4878 0.4983 0.4592 0.4681 0.5070 | 0.5675

250 0.4553 | 0.4506 | 0.4455 0.4431 0.4712 0.4553 0.4799 0.4691 0.4706 0.5067 0.5656 | 0.6158

500 0.5458 | 0.5572 | 0.5604 0.5624 0.5708 0.5664 0.5601 0.5687 0.5844 0.6057 0.6566 | 0.7235

750 0.6777 | 0.6865 | 0.6759 0.6744 0.7530 0.7678 0.8308 0.7819 0.7995 0.7776 0.7686 | 0.8055

1,000 | 0.7704 | 0.7520 | 0.7663 0.7579 0.7725 0.7809 0.7968 0.7837 0.7482 0.8122 0.8782 | 0.9048

2,500 1.4807 1.4525 1.4760 1.4673 1.6435 1.6913 1.6364 1.4425 1.4245 1.4721 1.5277 | 1.5745

5,000 | 2.6853 | 2.6777 | 2.6605 2.7342 3.1677 2.7074 2.6314 2.6698 2.6409 2.6685 2.6714 | 2.7942

7,500 | 4.4204 | 4.4977 | 4.3750 4.5865 3.9872 3.8075 3.7959 3.8115 3.7924 4.3863 3.8918 | 3.9309

10,000 | 5.0404 | 5.0426 | 5.5664 5.0092 5.0285 5.0183 5.5920 5.0294 5.0216 5.0391 5.5541 | 5.9678

25,000 | 9.4139 | 8.8606 | 9.6715 8.7369 9.9461 10.5469 | 8.8625 9.1812 9.8600 9.6090 | 10.1020 | 9.6268

50,000 | 20.6698 | 21.1642 | 21.5789 | 20.0100 | 20.8267 | 21.9285 | 19.9986 | 18.9871 | 20.2151 | 20.4711 | 20.0589 | 20.1342

75,000 | 30.3224 | 31.4505 | 30.7404 | 29.9412 | 30.9995 | 31.1786 | 30.5339 | 29.3536 | 32.6074 | 31.6547 | 29.5590 | 32.3347
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Table-3: Computing time (sec) for the Heuristics of SKPMC algorithm.

M
n 100 250 500 750 1,000 2,500 5,000 7,500 10,000 25,000 50,000 75,000
100 0.0839 0.0925 0.0983 | 0.0277 | 0.0380 0.0678 0.0531 | 0.0109 | 0.0261 0.0209 0.0117 0.0765
250 0.0368 0.0235 0.0476 | 0.0251 0.0495 0.0238 0.1164 | 0.2088 | 0.0243 0.0224 0.0254 0.0281
500 0.0633 0.0514 0.0466 | 0.1117 | 0.1131 0.4245 0.4087 | 0.1479 | 0.0749 0.0435 0.2590 0.0530
750 0.0765 0.0949 1.8685 | 0.0759 | 0.4833 0.1132 0.4560 | 0.0665 | 0.0635 0.0641 0.0634 0.0649
1,000 | 0.3380 0.9272 0.5273 | 0.0842 | 0.0841 0.1669 0.1684 | 0.0857 | 0.7599 0.0862 0.0852 0.0898
2,500 | 0.8289 1.2449 2.7060 | 2.4827 | 0.2091 9.3876 4.2491 | 0.7772 | 0.3934 3.0318 0.2733 0.7600
5,000 1.2368 0.4134 0.4201 24797 | 0.4234 3.6805 5.7685 | 0.4659 | 15.6462 0.8734 10.8135 | 0.4168
7,500 | 17.1142 | 0.6347 2.4925 | 0.6206 | 21.3803 1.8792 15.9319 | 1.2385 | 0.6164 0.6165 0.6195 0.6295
10,000 | 3.2820 0.8278 8.1871 | 12.4181 | 0.8313 1.6508 12.7358 | 0.8247 0.8199 2.0209 0.8762 2.0269
25,000 | 5.0578 4.0503 2.6932 | 2.3432 | 2.3130 2.3269 2.3202 | 2.5172 | 49.9651 2.0662 2.6333 2.0554
50,000 | 90.6313 | 131.1575 | 38.9214 | 68.5549 | 88.9574 | 4.2267 5.0157 | 4.4059 | 4.4023 192.7762 8.1887 6.8908
75,000 | 10.1798 | 10.9619 | 13.5523 | 12.6031 | 11.2745 | 510.5032 | 5.9721 | 5.9880 | 324.8384 | 600.2312 | 158.4232 | 7.1152
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