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Abstract  

Patients during the course of their medical treatment in a hospital 

hospital-acquired infections (HAI). Such infection has seriously become concerned in hospital management since many 

nosocomial infections have caused health care expenses increasing due to lengthened hospital stay and morbidity

study, we develop a mathematical model describing the

There are four type models developed; i.e., with cross infection only and self

without control. All models have a disease

condition for each model in which above the threshold t

below the threshold condition the infection i

Numerical experiments show how the dynamics of HCAI is changing as several model parameters below and above 

threshold condition for each model. 
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Introduction 

Health Care-Associated Infections, known as nosocomial 

infections, have become a serious problem on 

they relate to patient safety. During medical treatment in 

healthcare facilities, the patients in particular those with 

weakened immune systems can easily get infections. 

Nosocomial infections spread to the susceptible patient in the 

clinical setting by various means. They can 

outside environment, contaminated equipment, bed linens, air 

droplets, another infected patient or from staff that may be 

infected. However, in some cases, it is difficult to determie 

source of the infection. There are various types of

instance, associated bloodstream infections, associated urinary 

tract infections, surgical site infections, hospital

onset Clostridium difficile (C. difficile) infections, hospital

onset methicillin-resistant Staphylococcus aureus

infections, hospital-onset clostridium difficile infections and 

device-associated infections
13,19

.  

 

Nosocomial infections have spread in the world with the highest 

cases occur in the poor and developing countries. WHO 

reported that 8,7% from 55 hospitals in 14 countries in Europe, 

11,8% and 10% of cases in Middle Asian and in Southeast Asia 

and Pacific, respectively, still show the nosocomial infection

In the developed countries such as US, the survey reported 

it was estimated 722,000 HAIs in US acute care hospitals in 

2011. Additionally, about 75,000 patients with HCAIs died 

during their hospitalizations
4
. In 2015, the US Centers for 

Disease Control and Prevention estimates that HCAIs in 
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during the course of their medical treatment in a hospital often contract healthcare-associated infections (HCAI) 

. Such infection has seriously become concerned in hospital management since many 

health care expenses increasing due to lengthened hospital stay and morbidity

study, we develop a mathematical model describing the spread of HCAI and discuss the dynamic behaviour of its solution

There are four type models developed; i.e., with cross infection only and self-cross infection, both are studied under with and 

a disease-free equilbrium and a positive endemic equilibrium.

condition for each model in which above the threshold the presence of a HCAI is able to spread in the unit care

the infection is died out.The threshold condition is defined as the basic reproductive number. 

Numerical experiments show how the dynamics of HCAI is changing as several model parameters below and above 

Nosocomial Infection, HCAI, hospital, stability. 

, known as nosocomial 

become a serious problem on a community as 

to patient safety. During medical treatment in 

healthcare facilities, the patients in particular those with 

weakened immune systems can easily get infections. 

Nosocomial infections spread to the susceptible patient in the 

can originate from the 

outside environment, contaminated equipment, bed linens, air 

from staff that may be 

it is difficult to determie the 

ious types of HCAIs; for 

associated bloodstream infections, associated urinary 

tract infections, surgical site infections, hospital-

(C. difficile) infections, hospital-

Staphylococcus aureus (MRSA) 

onset clostridium difficile infections and 

Nosocomial infections have spread in the world with the highest 

cases occur in the poor and developing countries. WHO 

pitals in 14 countries in Europe, 

11,8% and 10% of cases in Middle Asian and in Southeast Asia 

and Pacific, respectively, still show the nosocomial infection
21

. 

In the developed countries such as US, the survey reported that 

n US acute care hospitals in 

75,000 patients with HCAIs died 

. In 2015, the US Centers for 

Disease Control and Prevention estimates that HCAIs in 

American hospitals account for approximately 1.7 milli

infections and 99,000 associated deaths each year and more than 

half of all HCAIs occur outside of the intensive care unit

Meanwhile, it is approximately 4,1 million patients in the EU to 

acquire a HCAI each year. The number of deaths occurring as a 

direct consequence of these infections is estimated to be at least 

37,000 and these infections are thought to contribute to an 

additional 110,000 deaths each year. Although the magnitude of 

HCAIs in many developing countries is not clearly understood, 

it has been estimated that it affects from 5% to 15% of 

hospitalized patients in regular wards

patients admitted to ICUs
19

.  

 

The most frequent infections are urinary tract infections, 

followed by respiratory tract infections, infections after surgery, 

bloodstream infections, and others (including diarrhoea due 

to Clostridium difficile)
11

. The major causes of HCAIs are due 

to resistant or multiresistant bacteria such as Meticillin

resistant Staphylococcus aureus  (MRSA), vancomycin

enterococci, multidrug-resistant Mycobacterium tuberculosis, 

etc. Resistant bacteria emerge under the selective pressure of 

antibiotics and become a healthcare problem whenever they are 

able to spread and cause infections
14

 

In worldwide, considerablee attention is focused on the 

prevention of the emergence and transmission of resistant 

bacteria. Approximately 20–30% of HCAIs are considered to be 

preventable by intensive hygiene and control pro

Steps can be taken to control and prevent HAIs in a variety of 
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. Such infection has seriously become concerned in hospital management since many 

health care expenses increasing due to lengthened hospital stay and morbidity. In this 

and discuss the dynamic behaviour of its solution. 

both are studied under with and 

endemic equilibrium.We derive a threshold 

to spread in the unit care, otherwise, if 

The threshold condition is defined as the basic reproductive number. 

Numerical experiments show how the dynamics of HCAI is changing as several model parameters below and above 
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 and more than half of 

The most frequent infections are urinary tract infections, 

by respiratory tract infections, infections after surgery, 

bloodstream infections, and others (including diarrhoea due 

. The major causes of HCAIs are due 

to resistant or multiresistant bacteria such as Meticillin-

(MRSA), vancomycin-resistent 

resistant Mycobacterium tuberculosis, 

etc. Resistant bacteria emerge under the selective pressure of 

antibiotics and become a healthcare problem whenever they are 
14
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e attention is focused on the 

prevention of the emergence and transmission of resistant 
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preventable by intensive hygiene and control programmes
21
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Steps can be taken to control and prevent HAIs in a variety of 
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settings; healthcare facilities, care teams, individual doctors and 

nurses. 

 

Mathematical models are increasingly being used in 

epidemiology to understand the dynamics of the disease spread 

in a community
3, 17

. This will give insight health worker to make 

infection control policy decisions. Few mathematical models 

have been introduced to study nosocomial infection, see for 

example
1-2, 6, 8-9, 13-15, 18

 and very few models on HCAI from low 

or middle-income countries have been published
10

. In this paper, 

we introduce and discuss several simple models of HCAI by 

considering self-cross infection and the presence of a control. 

 

Mathematical Model 

A population in a healthcare facility is simply divided into two 

sub population; patients and health workers. Futhermore, both 

sub population are divided into two groups of individuals; 

susceptible patients (��), infected patients (��), susceptible 

health workers (��) and infected health workers (��). 
 

Assumption: To develop a mathematical model describing the 

spread of HCAIs in a hospital, we set the following 

assumptions: i. The total number of patients in hospital is 

assumed to be fixed at 	� for all time course. ii. Patients 

entering a healtcare unit or hospital are assumed to be free from 

HCAI. iii. Both susceptible and infected patients will leave 

hospital at rate 
 and all are replaced with susceptible patients. 

iv. Susceptible patients will get infected from both infected 

patients and infected health workers at rate ��� and ���, 

respectively. v. The number of health workers is also assumed 

to be constant at 	� for all time course. vi. Health workers 

during working hours in a health care unit will get infected and 

then spread the infection to patients at rate ���. vii. There is no 

infection from an infected health worker to a susceptible health 

worker. viii. The infected workers might prevent the disease 

transmission to patients, e.g., washing hand, etc., at rate 
. ix. 

Both susceptible and infected workers will leavea health care 

unit at rate � and then replaced with susceptible workers. 

 

Mechanism: The mechanism of HCAI spread is described as in 

the following scheme.  

 

 
 

Figure-1: The mechanism of HCAI spread. 

The system is govern by the following ODEs: ����� = ��� − ������� − ������� − ���  ����� = ������� + ������� − ���                         (1) ����� = ��� −  ������ + !�� − ���  ����� =  ������ − !�� − ���  

 

Since �� and �� are constant, then �� and �� can be calculated 

as �� = �� − �� and �� = �� − �� . Thus, the system (1) 

reduces into. 

 ����� = ���"�� − ��#�� + ���"�� − ��#�� − ���                       (2) ����� =  ��(�� − ��)�� − !�� − ��� 

 

Model without control: Case 1.1. Cross Infection (Patient to 

Health worker Infection). In this case, we assume that no control ϕ = 0, no patient to patient transmission β(( = 0 but only 

worker to patient transmission β)( > 0 and patient to worker 

transmission γ�� > 0. 
 

Case 1.2. Self-cross Infection (Patient to Patient and to Health 

workers): As in Case 1.1., we assume no control ! =0, however, there are worker to patient to worker as well as 

patient to patient transmission, i.e., ���, ��� ,  �� > 0. 

 

Model with Control: Case 2.1. Cross Infection (Patient to 

Health worker Infection): In this case a control is considered ! > 0. In addition, we assume there is no patient to patient 

transmission ��� = 0 but only patient to worker transmission, 

i.e., ��� > 0 and worker to patient transmission, i.e. ��� > 0 ,  �� > 0.  

 

Case 2.2. Self-cross Infection (Patient to Patient and to Health 

workers): As in Case 2.1., there is a control ! > 0. Moreover, 

there are patient to patient transmission β( > 0, worker to 

patient transmission β)( > 0   and patient to worker 

transmission γ�� > 0.  
 

Analysis 

We analyze the dynamics of HCAI spread for Model I (Modal 

without control) and Model II (Modal with control) with the 

case 1.1-2.1 in the constant population. 

 

Model I (without Control): Case 1.1. (Cross infection or 

patient-health workers) 

 

For ! = 0, ��� = 0 and ��� > 0 and γ�� > 0, the system (2) 

has two equilibrium points; namely, 

 

Sp Ip 

Sw Iw 

Leaving  

health facilities 

Leaving  

health facilities 

 

Patients without HCAI Patients with HCAI 

interaction 

recovered 

Being infected 
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,-∗"��∗, ��∗ # = ,-∗(0, 0),                              (3a) 

- a disease-free equilibrium (DFE) 

and ,/∗"��∗, ��∗ # = ,/∗ 012�3�24�425673�2(12�4286) , 12�3�24�4256712�(3�24�87) 9,            (3b) 

- an endemic equilibrium (EE). 

 

Theorem-1: Suppose :;- = 12�3�24�4267 .  

i. If R;- < 1, the equilibrium E-∗ (3) is locally asymptotically 

stable (l.a.s). ii. Otherwise, if R;- > 1, the equilibrium E-∗ becomes unstable and the equilibrium E/∗ (4) is l.a.s. 

 

Proof 

The Jacobian matrix of (2) is given by 

@ = A −�����∗ − � ���"�� − ��∗# ��(�� − ��∗ ) − ����∗ − � B                 (4) 

 

i. For DFE (3a), the Jacobian matrix (4) evaluated at this point 

reads @- = 0 −� ����� ���� −� 9                (5) 

 

Characteristic equation of (6) is given by  

 

Φ(C) = D; + D-C + C/ 
 

Where:  D; = �� − ��� ������ D- = � + � 
 

Based on the Routh-Hourwitz criteria, the polinom Φ(C) will 

have all negative real parts of its roots if D;, D- > 0. Since D- > 0, it is enough to check the condition D; > 0. For :;- <1, we get the following result 

 D; = �� − ��� ������ 

= �� 01 − ��� �������� 9 = ��(1 − :;-) > 0   
 

Thus, ,-∗ is l.a.s if :;- < 1. Otherwise, if :;- > 1 then ,-∗ is 

unstable. 

 

ii. The Jacobian matrix (4) evaluated at ,/∗ (3b) reads 

 

@/ = E−��� FΘ5Λ
Ω

G − � ��� F�� − Θ5Λ
Γ

G
 �� F�� − Θ5Λ

Ω
G − �� FΘ5Λ

Γ
G − �H              (6) 

 

Where: 

Θ = ��� ������ , 
Λ = ��, 
Ω =  ��"����� + �#,      
Γ = ���( ���� + �) 

Characteristic equation (6) of matrix @/ is  

Φ(C) = D; + D-C + D/C/ 

 

Where: D; = ΩΓ(Θ − Λ), D- = (���Γ+  ��Ω)(Θ − Λ) +ΩΓ(� + �),  D/ = ΩΓ 

 

Based on the Routh-Hourwitz criteria, the polinom Φ(C) will 

have all negative real parts of its roots if D;, D-, D/ > 0. We can 

see that D/ > 0. Thus, we need to show that D;, D- > 0. For :;- > 1, we get 

 D; = ΩΓ(Θ − Λ) = ΩΓΛ 0Θ
Λ

− 19  = ΩΓΛ(:;- − 1) > 0 D- = "���Γ+  ��Ω#(Θ − Λ) + ΩΓ > "���Γ+  ��Ω#(Θ − Λ)  = "���Γ +  ��Ω#Λ(:;- − 1) > 0 

 

Thus, ,/∗ becomes l.a.s. if :;- > 1. This completes the proof of 

Theorem 1. 

 

Case 2.2. (Self-cross infection or patient-patient-worker 

infection) 

 

For ! = 0, ��� > 0, ��� > 0 and γ�� > 0, the system (2) has 

two equilibrium points; namely, 

 ,I∗"��∗, ��∗ # = ,-∗(0, 0),              (7a) 

- a disease-free equilibrium (DFE)  

 

and  

 ,J∗"��∗, ��∗ # =     0"12�3�24281��7#K�∗ 5673�2"651��K�∗ # , "12�3�24281��7#K�∗ 5673�212�K�∗ 9,             (7b) 

- an endemic equilibrium (EE) 

 

with  ��:;/ < ��∗ < ���� 

 

and ��∗ is the positive solution of the following equation D/"��∗#/ + D-��∗ + D; = 0 

 

Where:  D/ = ��� �� > 0, D- = − ��"� + ����� + �����# − ��� < 0,  D; = �"� +  ����# > 0 

 

Theorem 2: Suppose R;/ = R;- + LMMNMO  with R;- as defined in 

Theorem 1. i. If R;/ < 1, the equilibrium EI∗(0,0) of the system 
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(4) is l.a.s. ii. Otherwise, if R;/ > 1 the equilibrium EI∗ becomes 

unstable and the equilibrium EJ∗ is l.a.s. 

Proof  

The Jacobian matrix of (2) is given by 

@ = A���(�� − 2��∗) − �����∗ − � ���"�� − ��∗# ��(�� − ��∗ ) − ����∗ − � B          (8) 

 

i. For ,I∗(0,0), the characteristic equation of (8) is given by C/ + D-C + D; = 0 

 

with  D- = � + � − ����� D; = �� − ��� ������ − ������ 

 

For :;/ = :;- + 1��4�6 < 1, we have ��� ������ +������ < µ�. Then, we obtain D-, D; > 0 as follows 

D- = � + � − ����� = 1� "µ� + �/ − ������# 
> 1� "��� ������ + ������ + �/ − ������# 
= 1� "��� ������ + �/# > 0 D; = �� − ��� ������ − ������ = ��(1 − :;/) > 0 

 

Thus, based on the Routh-Hourwitz criteria, the polinom Φ(C) 

has all egative real parts of its roots. The proof of (i) is 

completed. 

 

ii. For ,J∗"��∗ , ��∗ # in (7b), the characteristic equation of (8) is 

given by C/ + D-C + D; = 0 
 

with  D- = " �� + 2���#��∗ + �����∗ + � − ����� D; = "��� ���� − ����#"�� − ��∗# + ���"2 ����∗ + �#��∗ + ��"� − �����#��∗ + ���" ���� + �#��∗ + �� 
 

Next, we show that D-, D; > 0. Let �� = ��∗ + ��∗. We have � −�����∗ > 0 for positive endemic equilibrium ,J∗. Then, we 

obtain  D- = " �� + 2���#��∗ + �����∗ + � − ���"��∗ + ��∗# = " �� + ���#��∗ + �����∗ + � − �����∗ > 0 D; = "��� ��� − ����#��∗ + ��"2 ����∗ + �#��∗ + �� F� − ���"��∗ + ��∗#G ��∗ + ���" ���� + �#��∗ + �� = ��� ������∗ + �"� − �����∗# + ���" ����∗ + �#��∗ + ��"� − �����∗#��∗ + ���" ���� + �#��∗ > 0 
 

Therefore, based on the Routh-Hourwitz criteria, the polinom 

Φ(C) will have all egative real parts of its roots. This completes 

Theorem 2. 
 

Case 2.1 (cross or patient-worker infection with control) 

For ! > 0, ��� = 0, ��� > 0  and γ�� > 0, the system (2) has 

two equilibrium points; namely, ,Q∗"��∗, ��∗ # = ,Q∗(0, 0),                             (9a) 

- a disease-free equilibrium (DFE)  

 

and ,R∗"��∗, ��∗ # = ,R∗ 0 ∆3�2(12�4286) , ∆12�(3�24�878S)9,             (9b) 

- an endemic equilibrium (EE). 

 

Where: ∆ = ��� ������ − �(� + !)  

 

Theorem-3: Let :;I = 12�3�24�426(78S) .  

i. If R;- < 1, the DFE (9a) is l.a.s. ii. Otherwise, if R;- > 1, the 

equilibrium EQ∗ becomes unstable and the EE in (9b) is l.a.s. 

 

Proof  

The Jacobian matrix of (2) becomes 

@ = A −�����∗ − � ���"�� − ��∗# ��(�� − ��∗ ) − ����∗ − � − !B                          (10) 

 

i. For DFE(9a), the Jacobian matrix (10) reads 

@- = 0 −� ����� ���� −� + !9                                          (11) 

 

Characteristic equation of (10) is given by  

Φ(C) = D; + D-C + C/ 
 

Where: D- = � + � + ! D; = �(� + !) − ��� ������ 

 

Based on the Routh-Hourwitz criteria, the polinom Φ(C) will 

have all negative real parts of its roots if D;, D- > 0. We can see D- = � + � + ! > 0. For :;I < 1, we obtain  D; = �(� + !) − ��� ������ = 1 − :;I�(� + !) > 0 

 

Thus, ,Q∗ is l.a.s. Otherwise, if :;I > 1 then D; < 0 and ,Q∗ 

becomes unstable. 

 

ii. The Jacobian matrix (10) of ,R∗ reads 

 

@/ = E−��� FΘ5Λ
Ω

G − � ��� F�� − Θ5Λ
Γ

G
 �� F�� − Θ5Λ

Ω
G − �� FΘ5Λ

Γ
G − � − !H            (12) 

 

Where: 

Θ = ��� ������ , 
Λ = �(� + !), 
Ω =  ��"����� + �#,      
Γ = ���( ���� + � + !) 
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Characteristic equation of matrix @/is  

Φ(C) = D; + D-C + D/C/ 

Where: D/ = ΩΓ D- =  ��ΓΛ(R;I − 1) + ���ΩΛ(R;I − 1) +ΩΓ(� + � + !) D; = ΩΓΛ(R;I − 1), 
 

Based on the Routh-Hourwitz criteria, the polinom Φ(C) will 

have all negative real parts of its roots if D;, D-, D/ > 0. We can 

see that D/ > 0. If :;I − 1 > 0 then it results in D;, D- > 0. 
Thus, ,R∗ becomes l.a.s. if :;I > 1. This completes the proof of 

Theorem 3. 

 

Case 2.2 (Self-cross or patient-patient-workers infection) 

 

In this case,!, ���, ��� > 0.The system (2) has two equilibrium 

points; namely,  

 ,T∗"��∗, ��∗ # = ,T∗(0, 0),              (13a) 

- a disease-free equilibrium (DFE) 

and ,U∗"��∗, ��∗ # = 0 Ψ3�2"651��K�∗ # , Ψ3�212�K�∗9, (13b) 

- an endemic equilibrium (EE) 

 

with 

Ψ = "��� ���� + ���(� + !)#��∗ − �(� + !). 

 

In addition, ��∗ satisfies ��:;J < ��∗ < ��� 

 

where: ��∗ is the positive solution of the following equation D/"��∗#/ + D-��∗ + D; = 0 

 

with D/ = ��� �� > 0, D- = − F� �� + ��� ���� + ��� ���� + ���(� + !)G < 0, D; = �"� + ! +  ����# > 0 

 

Theorem-4: Let:;J = :;I + 1��4�6 .  

i. If :;J < 1, the DFEET∗ is l.a.s. ii. Otherwise, if :;J > 1, the 

DFEET∗ becomes unstable and the EEEU∗ is l.a.s. 

 

Proof  

The Jacobian matrix of (2) is given by 

@ = A−�����∗ + ���"�� − ��∗# − ��∗ ��� − � ���"�� − ��∗# ��(�� − ��∗ ) − ����∗ − � − !B  (14) 

 

i. The Jacobian matrix (14) evaluated at (13a) reads 

@- = 0����� − � ����� ���� −� − !9               (15) 

 

Characteristic equation of (8) is given by  

Φ(C) = D; + D-C + C/ 
where D- = � + � + ! − ����� D; = (� + !)(� − �����) − ��� ������ 

 

Based on the Routh-Hourwitz criteria, the polinom Φ(C) will 

have all negative real parts of its roots ifD;, D- > 0. 
 

For :;J < 1, we obtain the following inequality 

0 < ������ + � + ! < ������ < :;I + ������ = :;J < 1 

 

Thus, D- = � + � + ! − ����� 
= (� + � + !) 01 − ������ + � + !9 > 0 

D; = (� + !)"� − �����# − ��� ������  
      = �(� + !) 01 − ������ − ��� �������(� + !) 9 = �(� + !)(1 − :;J) > 0 
 

Therefore, E-∗ is l.a.s. Otherwise, if :;I > 1 then D; < 0 and ,-∗ 

become sunstable. 

 

ii. The Jacobian matrix (14) evaluated at EU∗  (13b) is obtained  

@ = A���(�� − 2��∗) − �����∗ − � ���"�� − ��∗# ��(�� − ��∗ ) − ����∗ − ! − �B       (16) 

 

The characteristic equation is given by C/ + D-C + D; = 0 
 

with    D- = " �� + 2��#��∗ + �����∗ + � + ! + � − ����� D; = − ��������� +  ���������∗ +  ���������∗  +2 �������∗/ +  �����∗ + 2�����∗(! + �) +( ����∗ + � + !)"� − �����# 
 

we have D- = " �� + 2��#��∗ + �����∗ + � + ! + � − ����� = " �� + ��#��∗ + �����∗ + � + ! + � − �����∗ > 0 D; =  ���������∗ −  ���������∗ + 2 �������∗/ +  �����∗ +2�����∗(! + �) + ( ����∗ + � + !)"� − �����# > 0 

 

Therefore, based on the Routh-Hourwitz criteria, the polinom 

Φ(C) will have all egative real parts of its roots. This completes 

the theorem. 
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Numerical Simulation 

In this section, we discuss the numerical simulation of the 

reduced model (2), by using Runge-Kutta order four scheme. 

The parameters and their values are presented in the following 

table.  

 

Table-1: Parameter values used in the numerical simulation of 

the model, total population and initial values. 

Notation Parameter description Value Ref 

��� Transmission �� → �� 0.0 - 0.1 *) 

��� Transmission �� → �� 0.0 - 0.1 *) 

 �� Transmission �� → �� 0.001 *) 

� Removal rate of ��&�� 0.02 *) 

� Removal rate of ��&��  0.05 *) 

! Control rate of �� 0 - 0.1 *) 

�� Total number of patients 300 *) 

�� Total number of workers 50 *) 

*) assumed. 

 

Figure 1 represents the population dynamics of Model1 for case 

1.1. In the simulation, there are initially ten infected patients but 

no infected workers. The number of susceptible patients and 

workers is set to be �� = 300 and �� = 50, respectively. 

Model parameters are fixed for natural death of susceptible and 

infective at � = 0.02; � = 0.05, respectively, no self infection (��� = 0), infection rate of susceptible worker from infected 

patients  �� = 0.001 and let the infection rate from infected 

workers to susceptible patients be varied ��� = 4\ − 5; 7\ −5; 8\ − 5. 

 
Figure-2: Simulation for several rates of cross infection;  ��� = 4\ − 5 (:;- < 1) and ��� = 5\ − 5; 7\ − 5; 8\ −5 (:;- > 1). 

 
Figure-3: Simulation for several rates of cross infection at fixed  ��� = 4\ − 5 and varying ���. 

 

As seen in Figure 2, when the parameters result in :;- below 

one (:;- < 1 for ��� = 4\ − 5 ), the number of infectives both 

patients and workers tend to disease free equilibrium. 

Meanwhile, if :;- is above one (:;- > 1 for �� = 5\ −5; 7\ − 5; 8\ − 5), the dynamics of model 1 case 1.1 approach 

endemic equilibrium. 

 

When we consider the self infection rate ��� > 0 the dynamics 

of model 1 case 1.2 becomes depending on the parameter ��� as 

well.  

 

As shown in Figure-3, the dynamics of the infectives is 

determined by the basic reproductive number :;/. If :;/ < 1 

the number of both infectives (patients and health workers) is 

died out. Otherwise, the number approaches the endemic state 

as :;/ is above one.  

 

Figure-4 represents the population dynamics of case 2.1. The 

dynamics of model 2 case 2.1 is mostly determined by the 

reproductive number :;I. 

 
Figure-4: Dynamic behavior of model 2.1 as the reproduction 

number :;I below and above one when no self infection but the 

control rate is varied from ! = 0.2 to ! = 0.3. 
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In the numerical experiment, one can see that :04 becomes a 

threshold for the model 2 case 2.2. :04 is the basic reproductive 

number. As depicted in Figure 5, if this number is below one the 

dynamics approaches disease free equilibrium (DFE) and if it is 

above one the dynamics goes to the positive endemic state (EE). 

 

 
Figure-5: Simulation for two different control rates; ! =0.001 (:;J > 1) dashed line and ! = 0.1 (:;J < 1) bold line. 

 

Conclusion 

We have developed several models describing the dynamics of 

HCAI by considering self and cross infection both with and 

without control. We also derive the thresholds that determine 

the behaviors of the dynamics for each model. If the threshold is 

below one, the disease dies out and as the threshold is above one 

it approaches to endemic phase. In the numerical simulation, the 

dynamics of the number of infectives becomes significant as 

several model parameters are increased to be above threshold. In 

future, it is interesting to consider units in a healthcare facility 

so that we can evaluate the source of infection based on units. 

One can also consider the length of stay in health facility for 

those infected patient.  
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