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Abstract

In this paper, we derive the closed form solutions of the fractional heat and wave like equations in terms of Mittag-Leffler
functions by the use of iterative Laplace transform method. In the process the time-fractional derivatives are considered in

Caputo sense for the said problem.
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Introduction

Fractional calculus has been attracting the attention of scientists
and engineers from long time ago, resulting in the development
of many applications'”. Various methods for the solution of
fractional differential equations are available in literature,
including fractional subequation method, fractional wavelet
method™®,  fractional Laplace Adomian decomposition
methodg’m, fractional operational matrix method”’lz, fractional
variational iteration method'>', fractional improved homotopy
perturbation method'>'®, fractional differential transform
method'” and fractional complex transform method'®.

The iterative method was introduced in 2006 by Daftardar-Gejji
and Jafari to solve numerically the nonlinear functional
equations'*?’. By now, the iterative method has been used to
solve many integer and fractional boundary value problem”" *,
Jafari et al. firstly solved the fractional partial differential
equations by the use of iterative Laplace transform method
(ILTM)®. More recently, Fractional Fokker-Planck equations
are solved by the ILTM**,

For the present problem, we considered the fractional heat and
wave-like equations with variable coefficients in the following

form:
2 2 2

« 0°u ’u d‘u
D, M=f(x,y,z)§+ g(x,y,z)y+h(x,y,z)?, (1)

and initial conditions:

u(x,y,z,0)=n(x,y,2), u,(x,y,2,0) = l(x,y,2), 2)

where & (0 < & £ 2) denotes the fractional derivative. In the

case, when 0<@<1, and 1< @<2; then equation. (1) leads to

a fractional heat-like and wave-like equations with variable
coefficients, respectively.
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Preliminaries and Notations

In this section, we give some basic definitions and properties of
fractional calculus and Laplace transform theory, which shall
be used in this paper:

Definition: The Caputo fractional derivative of function u(x,?)
is defined as®

(G-

Dfu(x,t) = -0 "u?(x,0)dv, g—1<a<gq, ge N,

3)

=J7D%(x,t).

q
here D? = d—
dr?

and J” stands for the Riemann-Liouville

fractional integral operator of order &> 0 defined as™

t

Jou(x,t)= J.(t—v)’H u(x,0)dv, v>0,(¢g-1<a<q),qe N 4

L
(@)

Definition: The Laplace transform of a function @(t), ¢ >0is
defined as

oo

LI§(1)] = D(s) = [ p(0)dr.

0

&)

Definition: Laplace transform of D*u(x,r) is given as”’

L[D,"’u(x,t)]:L[u(x,t)]—qz_:uk(x,O)s“‘k", g-l<a<gq, geN (6)

k=0

where u* (x,0) is the k-order derivative of u(x,?) at ¢ =0.

Definition: The Mittag-Leffler function which is a
generalization of exponential function is defined as **

B ()= 3 =t

__ 7
4=0 (0”1""1) @

(ae C, Re(a) > 0).
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a further generalization of (7) is given in the form *

E,,(z)= gr(#:ﬂ);(a,ﬁe C. R(a)>0.R(8)>0)- ®

Basic Idea of Iterative Laplace Transform Method

To illustrate the basic idea of this method, we consider a
general fractional nonlinear nonhomogeneous  partial
differential equation with the initial conditions of the form:

D u(x,t)+ Ru(x,0)+ Nu(x,t) = g(x,1), g-l<a<q, qeN (9)
u* (x,0) = h, (x), k=0,1,2.......... ,q—1 (10)

where Df‘u(x,t) is the Caputo fractional derivative of the

function u(x, t ), R is the linear differential operator, N
represents the general nonlinear differential operator and g(x, t)
is the source term. Applying the Laplace transform (denoted by

L throughout the present paper) in Equation (9), we get

L[D7 u(x,t)]+L[Ru(x,t) + Nu(x,t)] =L [g(x,1)]. (11D

Using Equation (6), we have

g-1
Llu(x,0)] = ia 3 s 0t (x,0) +%L [e(x,0] —%L [Ru(x, 1)+ Nu(x,nl. (12)
S S )

k=0

Taking inverse Laplace transform of Equation (12) implies

uxf)=L" {1& [is”“*uk (x.0)+LI[g(x, t)]ﬂ - [—laL[Ru(x, 1)+ N, t)]:|, (13)
N S

k=0

Now we apply the Iterative method,

u(x,t)= iui(x,t) (14)
i=0
Since R is a linear operator,
R[iui(x,l)jziR(ui(x,l) (15)
i=0 i=0

and the nonlinear operator N is decomposed as

N(iui (x, t)j = N(uy(x,1))+ i{N(iuk (x,0))— N(iuk (x, t))} (16)

i=1 k=0 k=0
Substituting (14), (15) and (16) in (13), we get
o 41
D u(xn=L" [1 (zs““"sz (0)+LI[g(x, z)]ﬂ -
i=0 S \k=0

L' |:s£ L{ iR( u(x, t)) +N(yy (x,1))+ i{N (IZ% (x,1))—N( (’iuk (x, l‘))}ﬂ,

i=l k=0

a7

We define the recurrence relations as

Uy (x,1) =L F, (isa”‘u" (x,0)+L[g(x, t)]ﬂ
S \k=0
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. 1 q !
1, (61 =-L Lat{k(uqm)) —{Mg%(xt))—l\f(;%(m))}ﬂ, g21

u (x,0)=-L" [laL [ R(uy(x.0))+ N(uo(x,t))ﬂ (18)
N

Therefore the ¢-term approximate solution of (9) - (10) in series
form is given by
u(x, 1) =y (6,0 + 1, (X, + 1, (4,1) +...... +u, (1), q=12,.....(19)

Applications

In this section, the fractional heat and wave-like equations with
variable coefficients are solved by ILTM.

Example: Consider the following one-dimensional fractional
heat-like equation:

1 ,0%u
D%u(x,t) =—x"—, O<a<l, 20
; u(x,1) 5¥ o (20)
subject to the initial condition
u(x,0) = x* 1)

Applying the Laplace transform in Equation (20) and making
use of (21) we get

L [u(x.0] =X—+Lx2L[a ”}
S

2577 T ax® @2)
Taking inverse Laplace transform of Equation (22) implies
4] 1 d’u
u(x,t)=x"+L" | —xX’L| — (23)
2s ox

Now, applying the Iterative method, Substituting (14) - (16)
into (23) and applying (18), we obtain the components of the
solution as follows:

uy(x,t) =u(x,0)= x*

(24)
411 ou
u, ()C, l) =L ! |:sz14 |:$20:|:|
, 17
Y T@+ @)
S 0* (u, +u,) L1 o’u
Uy (x,1) =L llzs“ sz{# -L 5o XL ax;
2( l2a ttz j ) la
=X + - X
rQa+1) T(a+1) T(a+1)
S (26)

TQa+1)

Therefore, the series form solution is given by
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u(x,t) =uy(x,t) +u, (x,1) + 1, (X, 1) + oo

a 2a
u(x,t)=x"| 1+ r_ 1! oo eeeeen =x"E,(t")
La+) TQa+l)
27)
where Ea(ta)is the Mittag-Leffler function, defined by

Equation(7)

Remark: Setting o=l Equation (20) reduced to one-
dimensional heat-like equation:

ou 1 ,0%u

el Pty

o 2 o’
with solution
u(x,t)=x’e (28)

Example: Consider the following Two-dimensional fractional
heat-like equation:

D%u(x t)—&+& O<a<l

t s y9 - axz ayz ) =L (29)
subject to the initial conditions
u(x,y,0)=sinxsin y, (30)

Applying the Laplace transform in Equation (29) and making
use of (30) we get

. . 2 2
L[u(x,y,l)]:—smx;my e L{a +a—u}

ox* oy’ G

Taking inverse Laplace transform of Equation (31) implies

o’u 82
u(x,t) =sinxsin y+L" L — 32
y |:sa ax2 ay2 ( )
Now, applying the Iterative method,
Substituting (14) - (16) into (32) and applying (18), we obtain
the components of the solution as follows:
uy(x,y,t) =u(x,y,0)=sinxsin y

(33)
_ ’u, Ju
u,(x,y,t)=L |:s“ L{ axf) + ay20i|:|
td
ZSIHXSIHyF(a+l) (34)
O (u+u) F(y+ Fu, &
weny=Lo| L (i +u) Flug+u) || [ 1 |y T
& & o o
o ( (=2)%1*" 21 J o «
=sinxsiny - + 2sin xsin y ————
ra+1) TI'(a+1) I'a+1)
2a
=(=2)%si iny—— 35
(-2) SIHXSIHyF(2a+l) (35)
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Therefore, the series form solution is given by

u(x,y,t) =uy(x,y,t) +u, (X, y,8) +ty (X, y,1) +evrerrnn.
() (=)
Do+l TRa+1)

u(x,y, £y =sinxsiny| T4 4~ =sinxsiny{ £,(-2] (36)
Remark 2.Setting o=l Equation (29) reduced to Two-
dimensional heat-like equation:

du _d’u 82

A o E)y

with solution

u(x,y,t)=e> sinxsiny 37

Example 3.Consider the
fractional heat-like equation:

following  Three-dimensional
2 2

Dfu(x,y,z,t)=x"y'z +316(x l+yzﬂ+zz g u] O<a<l,  (38)
4

Subject to the initial condition

u(x,y,z,0)=0, 39

Applying the Laplace transform in Equation (38) and making
use of (39) we get

Lu(x, ,2,0) —L( )+f6 L(l j+f6L(;x ”j+§6 L(l j(40)

Taking inverse Laplace transform of Equation (40) implies
2 2
u(x,y, 50 =L" iL(x4y4z4)+iL( 1 ]+ L( 1 wj+iL(iu,)
Saf % 36 o ) % Sar z (41)

Now we apply the Iterative method,

Substituting (14) - (16) into (41) and applying (18), we obtain
the components of the solution as follows:

t

a

uy(x,y,2,6) = x*y*z*

C(a+1) (42)
1 o’u 1 ’u 1 ’u
=1 2L 0 2L 0 2L 0
457,50 [36#’ ! [ ox? j+ 365" [ oy’ ]Jr 365" [ oz’ H
t2a
= ¥ 4Z4 43)
Y ra+1)

(% y,z1)=L" {3(;& fL[az(g;m}ﬁ yzL(azlg)yzﬂ‘“j% ZZL[?(:;;)H

a3

2a 3a

t t £
Y £ otytet R
( Y Taa+ny T7F F(3a+1)J [ e F(2a+1)J

R B (44)
TGa+1)
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Therefore, the series form solution is given by
u(x,y,2,t) =1y (X, y,2,1) +1u, (X, ¥, 2,1) + 1ty (X, Y, 2, 1) e

1 £ £a

) =x'y's! + P F e =x'y's! “)-
ey =Xy {r(om) a+) TGa+D) } ' [E, () -1]

(45)

Remark: Setting @=1, Equation (38) reduced to Three-
dimensional heat-like equation:

ou w 44 1 ( ,0% , 0%u
—=x | X2+
ot Ve 36 ox? Y dy?

with solution
4 4 _4

yizt(e' = 1) (46)

u (x, y,z,t) =X
Example: Consider the following one-dimensional fractional
wave-like equation:

, 0%u

@ 1
D u(x,t)—ax FER I<a<2, (47
subject to the initial conditions
u(x,0)=x u,(x,0)=x’ (48)

Applying the Laplace transform in Equation (47) and making

use of (48) we get
x? L ’u
2s“ ox?

2
L[u(x,l)]=§+:—2+

(49)
Taking inverse Laplace transform of Equation (49) implies
1 o’u
u(x,)=x+xt+L"'| —L| — 50
2s% {ox’ ©0

Now, applying the Iterative method,
Substituting (14) - (16) into (50) and applying (18), we obtain
the components of the solution as follows:
uy(x,t) = x + x’t

a b 82’/‘0 1ot
u(x,0)=L" | —x'L| — ="
2s ox Ia+2) (52)

82 2
u, (x,1) - L 1 2L (”0 j’”l) Lt 1 2L d ”3(1
2s5” dx’ 2s5% dx’

20+1 a+l a+l 2a+1
Y (O S i =L (53)
rRa+2) T(a+2) C(a+2) IFQa+2)

(G

Therefore, the series form solution is given by

u(x,t) =uy(x,t) +u,(x, 1) + 1, (X, 1)+

ol

Na+2)

204
t

+H2a’+2) ........................ } x+x1E,, (%) (54)

u(x,f)=x+x° |:l+
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where Eaﬁ(ta)is generalization form of Mittag-Leffler
function, defined by Equation(8).

Remark 4.Setting @=2, Equation (47) reduced to one-
dimensional wave-like equation:

ou 1 ,0%u
o,

o 2 ox

with solution
u(x,t)=x+x>sinht (55)
Example 5.Consider the following Two-dimensional fractional
wave-like equation:

a _ 1 2 aZu 2 azl/l
D, u(x,y,l)—E(x e +y F , l<a<?2, (56)
Subject to the initial conditions
u(x,y’O)ZXA’u,(x3y30)=y4 (57)

Applying the Laplace transform in Equation (56) and making

use of (57) we get
xty! x* 90%u y? 0%u

L .| =—+—+ L + L|—| (58

[uCx. 0] s st 12s° (axzj 125« | 9y?

Taking inverse Laplace transform of Equation (58) implies
2 2 2 2
u(x,y,t)=x*+y‘r+L" ol L 8_1: + Y L 8_1: (59)
125 dx 125 dy

Now, applying the Iterative method,
Substituting (14) - (16) into (59) and applying (18), we obtain
the components of the solution as follows:
uy(x,y,t)= x*t + y4t

(60)

Xz azu y2 azu

u(x,y,t =L L 014 L 0

o Lzsa ' ) 125" {9y
T S 61)

I(a+1) [(ax+2)
2 2 2 2
u,(x,y,t)=L" * L J (M(’:—ul) +2 L J (“o;"“])
12s% ox 12s% dy

(62)

L x L ’u, . y? L ’u,

125* | o’ 125 | 9y?

:x4 lﬁt N lm . . tml N ZZMI _x4 lﬁt . Y4 tml
(@t Jearn) @2 1ea+d) @) @2/
P 4 1

X +y ,
I'Ca+1) I'Ca+2)

2a+l

(63)

Therefore, the series form solution is given by
u(x,y,t) =uy(x,y,t) +u (X, y,t) +ty (X, y,1) +evrerrnnn.
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uxyn=x1

=x'E, (1) + y'tE,, (t°). (64)

Remark 5 Setting & =2, Equation (56) reduced to Two-
dimensional wave-like equation:

ou 1( ,9%u , 0%u
—=—|x’=—+y ,
Jar 12 ox? ay’

with solution
u(x,y,t)=x"cosht+ y*sinht.

(65)

Example 6.Consider the following Three-dimensional
fractional wave-like equation:

du
Diu(x, y,2,0)=X +y* +7 += [xz&f+ §+zz azzj, 1<a<2, (66)

subject to the initial conditions

u(x,y,2,00=0, u,(x,y,2,0)=x" + y* = 2*. (67)

Applying the Laplace transform in Equation (66) and making
use of (67) we get

Uuxy,zt) =[x2 +§ _Zz}{xz +§+sz4§, gj;}?}; g;’}&

Taking inverse Laplace transform of Equation (68) implies

L()C,y,zt)zt(xz+)}—zz)+L|: L+ +2 )+ ey 8:8] 2); @2}5 afﬂ (69)

] (68)

Now, applying the Iterative method,
Substituting (14) - (16) into (69) and applying (18), we obtain
the components of the solution as follows:

u,(x,y,2,t) =1,‘(x2 +y° —z2)+L_l [%L()f +y'+7 )}

a

(222 2, 2, 2 70
t(x +y -z )+(x +y°+z )—F(a+1) (70)
ol ox du, vy (' . (du
. L L 0 L — |+=—L|—2
(%, 7,2,1) = {2 * (ax ]+2s“ [ay2 j+2s“ o7’
a+l 2a
_ 71
(x +y2 -z )F(a AEY ( +y2+z )F(2 gy 71)

O (uy+14) Fluw+u)) 2 (0w +u)
wsusan g [T T S e

) ) 243)

= (x2 +y% - 2) B +y*+z (72)

F(2a+2)+(x )F(3 a+1)
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Therefore, the series form solution is given by
u(x,y,z,t) =uy(x,y,2,t) +u,(x,y,2,t) + 1, (X, y,2,8) +covevennn

1

s ! > * ! ™
L(xy,zt)—()?+y—z][tm+m+ 44444444 } +()?+y+z?][r(a+l)4m+m+ ......... }

=1(x*+y’ =) E,, (1) + (x> +y* + ) E,)-1].  (73)

Remark 6.Setting &= 2, Equation (66) reduced to Three-
—u=x2+y2+z2+l x’
ot 2

dimensional wave-like equation:
L aqu
0z* )
with solution

’u , 0%u
ox? " dy?
u(x,y,z1) =(x2 +y2)e’ +7%e” +(x2 +y° —zz).

(74)

Conclusion

The solutions of the fractional heat and wave like equations in
terms of Mittag-Leffler functions by the use of iterative Laplace
transform method were derived. The solutions are obtained in
series form that rapidly converges in a closed exact formula
with simply computable terms. The calculations are simple and
straightforward. The method was tested on six examples on
different situations.
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