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Abstract 

Genetic Algorithm (GA) is a search technique that mimics the process of natural selection. It is routinely used to generate 

useful solutions to optimization problems. In a GA, we simulate the survival of the fittest among individuals over consecutive 

generation for solving problems. Choosing a representation in the design of the GA is the major problem. In this research, 

Travelling Salesmen Problem (TSP) is solved by a new representation of GA. An encoding mechanism is developed and 

selection, crossover and mutation operators are defined. We have presented a GA variant for solving the TSP that uses the 

novel cross over method. In the crossover that uses one of the parent’s position of the gene structure to mate with other 

parent’s chromosomes. Our GA representation is tested with 17, 26 and 42 cities and found that our algorithm performs 

accordingly and generates expected near optimal results within acceptable levels. Using Brute force search for 17 cities 

problem, TSP would have needed checking 2.092279 x 10
13

 possibilities, But GA within 1000 iterations gives the optimal 

solution. The actual answer for 17 cities TSP is 2085. We also ran GA for 26 cities and 42 cities TSP’s with average results 

of 1034 (actual 937) and 944 (actual 699) respectively for 5 runs. Population size, Number of generations are increased to 

500, 2000 and to 8 respectively, we got average of 994 and 837 for 26 cities and 42 cities TSP’s respectively. So we could 

see that tuning the GA parameters optimizes the result. 
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Introduction 

In this paper we introduce Genetic Algorithms (GA)
1
, its 

concepts and techniques used in modeling optimization 

problems. Also we will apply GA techniques to the Travelling 

Salesman Problem (TSP)
2
, discuss the methods used and finally 

we explain the results obtained. 

 

We define TSP as given a collection of cities and the cost of 

travel between each pair of them, the problem, is to find the 

cheapest way of visiting all of the cities and returning to your 

starting point. TSP is more complicated that it might appear. By 

using a Greedy approach; starting from city and keep going to 

the city nearest to it, you cannot get optimal solution. One way 

to find the optimal solution is use Brute force search
3-5

. There 

are other techniques which use heuristics to search, but here we 

limit our discussion to GA and Brute force search techniques. 

 

In Brute force search we search every possible solution possible 

to arrive at the optimal solution.  Assuming a 1GHz processor 

can process up to 1 x 10
9
 computations per second; using Brute 

force to a 17 city TSP you need to run the algorithm for 5.8 

hours, for 26 city TSP and 42 city TSP, need to run for 

491857243.9 and 1.06 x 10
33

 years respectively. In real world 

applications, we won’t have resources and time check all those 

possible solutions. We need another way, and GA is one of 

techniques that can be used to get at least to a near optimal 

solution without searching the entire solution space. 

 

GA is a technique inspired by biological processes such as 

selection, crossover and mutation
6,7

. GA follows the natural 

evolution in search of optimal solution of a problem. Here 

individuals or solutions are competing to survive
8
. Only the 

fittest individuals survive and reproduce (selection) others die 

off. The individuals are encoded into genes and chromosomes
9
. 

The selected parent’s genetic material are mixed (crossover) 

during reproduction. A gene can also randomly change, this is 

called mutation
10

. We used these concepts in formulating our 

algorithm.  

 

Methodology 

Algorithm: Obtain the initial population and the maximum 

number of generations max crossover gene. Set Generatation 

Counter as 1.  

Use kill percentparameter to kill the worse individuals from 

population.  

Generate the solutions for the next iterations: i. Keep (100-

kill_percent) * population of the solutions with best fitness as 

surviving individuals.  ii. Generate solutions via cross over. iii. 

Select (100-kill_percent) * population solution from the 

previous population randomly and mutate them 
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Update Generatation_Counter = Generatation_Counter + 1. If 

Generatation_Counter<= max_crossover_gene., go to step 1. 

Otherwise stop. 

 

Figure 1 shows 2 sample routes and its decimal representation 

(the number list) which is the chromosome of each route. Each 

chromosome includes a list of cities starting with gene 0 the 

origin city and cities visited thereafter. A chromosome 

represents a single solution to the TSP. The GA algorithm starts 

with choosing the best individuals with the select operator. 

 

 
Figure-1 

Paths from origin city 0 in green, and its chromosomes 

 

The select operator uses kill percentparameter to kill the worse 

individuals from population. From the surviving individuals, 

parents are selected randomly to breed. The breeding process 

involves applying crossover operator. The crossover is done in 

a novel way that uses one of the parent’s gene structure 

(position) information to affect the gene crossover in one of the 

parent’s chromosomes. First, the parent “A”, which will give 

the structure information, is selected randomly. Then we select 

the genes that will crossover, for this we randomly select a gene 

from the gene pool, gene pool being the cities in the search 

space. The number of genes selected will be an even random 

number between min crossover genes and max crossover genes 

parameter. In the next step the list of positions of the selected 

genes in Parent “A” is collected.  For each position value in the 

list; in Parent “B” (partner to Parent “A”), the gene in the same 

position will swap its gene with, the gene in the next position 

value.   

 

We use only one of the parent’s genes for crossover but 

traditional crossover method uses both parents’ genes. We 

could use this method because; by nature of the problem both 

chromosomes have the same genes and differ only in their 

positions. Using same chromosome, we avoid chromosomes 

becoming invalid since chromosome does not lose any of its 

genes, just rearranges itself and also it’s simplifies our 

implementation. Finally, we apply mutation on population 

using mutation percent parameter. During mutation, we 

randomly pick two positions in chromosome and swap genes in 

them. We ran the algorithm for defined number generations 

with defined population size and plotted each generation’s best 

(minimum distance), average, and worse distances.  

 

Results and Discussion 

In this section we discuss the results obtained from running the 

17 city problem. In figure 2 early in the generation, the steep 

drop indicates rapid rate of improvement of the solution 

because of crossover and mutation operations, but as the 

solution improves the rate decreases and finally flats out. Given 

a large number of iterations the best, average and worse should 

converge along the way. 

 

Table-1 

Number times GA executed 

No. Optimum Sol. Found Change (-2085) 

1 2119 34 

2 2153 68 

3 2090 5 

4 2090 5 

5 2090 5 

6 2088 3 

7 2090 5 

8 2119 34 

9 2120 35 

10 2090 5 

 

 
Figure-2 

Solution (Distance) vs Generation 

 

Using Brute force search for 17 cities TSP would have needed 

checking 2.092279 x 10
13

 possibilities, But GA within 1000 

iterations gives near the optimal solution. The table 2 presents 

number of times GA was run and its result. The actual answer 

for 17 cities TSP is 2085, we can see from table 1 that the 

optimal solution found each time, and difference from actual 

result is minimal. 

 

Each GA run produces near optimal solution. In a real world 

application, to get quick answers at an acceptable level, we can 

define a threshold that would satisfy the particular domain. We 

also ran GA for 26 and 42 TSP’s with average results of 1034 
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(actual 937) and 944 (actual 699) respectively for 5 runs. When 

we increased the population size to 500, number generations to 

2000 and max crossover gene parameter to 8, we got average of 

994 and 837 for 26 cities and 42 cities TSP’s respectively. So 

we could see that tuning the GA parameters optimizes the 

result. 

 

Conclusion 

In this paper we have given a very effective procedure for TSP 

by using the genetic algorithms. We have presented a GA 

variant for solving the TSP that uses the novel cross over 

method. In the crossover that uses one of the parent’s gene 

structure (position) information to affect the gene crossover in 

one of the parent’s chromosomes. The optimal solutions for 

several TSPs obtained using this technique are generally 

competitive with the best known solutions. These results 

suggest that choice of representation plays an important role in 

the GA's ability to satisfactorily solve the TSP. For the method 

presented the maximum deviation of the optimal solutions from 

the best known solutions is less than 2%. 
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