
 Research Journal of Mathematical and Statistical Sciences ________________________________ISSN 2320–6047

 Vol. 3(2), 1-3, February (2015) Res. J. Mathematical and Statistical Sci.

 International Science Congress Association 1

A Representation with Novel Crossover Technique of the Genetic Algorithm

for the Travelling Salesmen Problem
J. Heymendran

1
, U. Priyatharsan

2
 and P. Hemija Sarawana

2

1University of Colombo School of Computing, Colombo, SRILANKA
2Department of Physical Science, Vavuniya Campus of the University of Jaffna, SRILANKA

Available online at: www.isca.in, www.isca.me
Received 8th December 2014, revised 18th January 2015, accepted 9th February 2015

Abstract

Genetic Algorithm (GA) is a search technique that mimics the process of natural selection. It is routinely used to generate

useful solutions to optimization problems. In a GA, we simulate the survival of the fittest among individuals over consecutive

generation for solving problems. Choosing a representation in the design of the GA is the major problem. In this research,

Travelling Salesmen Problem (TSP) is solved by a new representation of GA. An encoding mechanism is developed and

selection, crossover and mutation operators are defined. We have presented a GA variant for solving the TSP that uses the

novel cross over method. In the crossover that uses one of the parent’s position of the gene structure to mate with other

parent’s chromosomes. Our GA representation is tested with 17, 26 and 42 cities and found that our algorithm performs

accordingly and generates expected near optimal results within acceptable levels. Using Brute force search for 17 cities

problem, TSP would have needed checking 2.092279 x 10
13

 possibilities, But GA within 1000 iterations gives the optimal

solution. The actual answer for 17 cities TSP is 2085. We also ran GA for 26 cities and 42 cities TSP’s with average results

of 1034 (actual 937) and 944 (actual 699) respectively for 5 runs. Population size, Number of generations are increased to

500, 2000 and to 8 respectively, we got average of 994 and 837 for 26 cities and 42 cities TSP’s respectively. So we could

see that tuning the GA parameters optimizes the result.

Keywords: Genetic algorithm, Travelling Salesmen problem, optimization.

Introduction

In this paper we introduce Genetic Algorithms (GA)
1
, its

concepts and techniques used in modeling optimization

problems. Also we will apply GA techniques to the Travelling

Salesman Problem (TSP)
2
, discuss the methods used and finally

we explain the results obtained.

We define TSP as given a collection of cities and the cost of

travel between each pair of them, the problem, is to find the

cheapest way of visiting all of the cities and returning to your

starting point. TSP is more complicated that it might appear. By

using a Greedy approach; starting from city and keep going to

the city nearest to it, you cannot get optimal solution. One way

to find the optimal solution is use Brute force search
3-5

. There

are other techniques which use heuristics to search, but here we

limit our discussion to GA and Brute force search techniques.

In Brute force search we search every possible solution possible

to arrive at the optimal solution. Assuming a 1GHz processor

can process up to 1 x 10
9
 computations per second; using Brute

force to a 17 city TSP you need to run the algorithm for 5.8

hours, for 26 city TSP and 42 city TSP, need to run for

491857243.9 and 1.06 x 10
33

 years respectively. In real world

applications, we won’t have resources and time check all those

possible solutions. We need another way, and GA is one of

techniques that can be used to get at least to a near optimal

solution without searching the entire solution space.

GA is a technique inspired by biological processes such as

selection, crossover and mutation
6,7

. GA follows the natural

evolution in search of optimal solution of a problem. Here

individuals or solutions are competing to survive
8
. Only the

fittest individuals survive and reproduce (selection) others die

off. The individuals are encoded into genes and chromosomes
9
.

The selected parent’s genetic material are mixed (crossover)

during reproduction. A gene can also randomly change, this is

called mutation
10

. We used these concepts in formulating our

algorithm.

Methodology

Algorithm: Obtain the initial population and the maximum

number of generations max crossover gene. Set Generatation

Counter as 1.

Use kill percentparameter to kill the worse individuals from

population.

Generate the solutions for the next iterations: i. Keep (100-

kill_percent) * population of the solutions with best fitness as

surviving individuals. ii. Generate solutions via cross over. iii.

Select (100-kill_percent) * population solution from the

previous population randomly and mutate them

Research Journal of Mathematical and Statistical Sciences ___ISSN 2320–6047

Vol. 3(2), 1-3, February (2015) Res. J. Mathematical and Statistical Sci.

 International Science Congress Association 2

Update Generatation_Counter = Generatation_Counter + 1. If

Generatation_Counter<= max_crossover_gene., go to step 1.

Otherwise stop.

Figure 1 shows 2 sample routes and its decimal representation

(the number list) which is the chromosome of each route. Each

chromosome includes a list of cities starting with gene 0 the

origin city and cities visited thereafter. A chromosome

represents a single solution to the TSP. The GA algorithm starts

with choosing the best individuals with the select operator.

Figure-1

Paths from origin city 0 in green, and its chromosomes

The select operator uses kill percentparameter to kill the worse

individuals from population. From the surviving individuals,

parents are selected randomly to breed. The breeding process

involves applying crossover operator. The crossover is done in

a novel way that uses one of the parent’s gene structure

(position) information to affect the gene crossover in one of the

parent’s chromosomes. First, the parent “A”, which will give

the structure information, is selected randomly. Then we select

the genes that will crossover, for this we randomly select a gene

from the gene pool, gene pool being the cities in the search

space. The number of genes selected will be an even random

number between min crossover genes and max crossover genes

parameter. In the next step the list of positions of the selected

genes in Parent “A” is collected. For each position value in the

list; in Parent “B” (partner to Parent “A”), the gene in the same

position will swap its gene with, the gene in the next position

value.

We use only one of the parent’s genes for crossover but

traditional crossover method uses both parents’ genes. We

could use this method because; by nature of the problem both

chromosomes have the same genes and differ only in their

positions. Using same chromosome, we avoid chromosomes

becoming invalid since chromosome does not lose any of its

genes, just rearranges itself and also it’s simplifies our

implementation. Finally, we apply mutation on population

using mutation percent parameter. During mutation, we

randomly pick two positions in chromosome and swap genes in

them. We ran the algorithm for defined number generations

with defined population size and plotted each generation’s best

(minimum distance), average, and worse distances.

Results and Discussion

In this section we discuss the results obtained from running the

17 city problem. In figure 2 early in the generation, the steep

drop indicates rapid rate of improvement of the solution

because of crossover and mutation operations, but as the

solution improves the rate decreases and finally flats out. Given

a large number of iterations the best, average and worse should

converge along the way.

Table-1

Number times GA executed

No. Optimum Sol. Found Change (-2085)

1 2119 34

2 2153 68

3 2090 5

4 2090 5

5 2090 5

6 2088 3

7 2090 5

8 2119 34

9 2120 35

10 2090 5

Figure-2

Solution (Distance) vs Generation

Using Brute force search for 17 cities TSP would have needed

checking 2.092279 x 10
13

 possibilities, But GA within 1000

iterations gives near the optimal solution. The table 2 presents

number of times GA was run and its result. The actual answer

for 17 cities TSP is 2085, we can see from table 1 that the

optimal solution found each time, and difference from actual

result is minimal.

Each GA run produces near optimal solution. In a real world

application, to get quick answers at an acceptable level, we can

define a threshold that would satisfy the particular domain. We

also ran GA for 26 and 42 TSP’s with average results of 1034

Research Journal of Mathematical and Statistical Sciences ___ISSN 2320–6047

Vol. 3(2), 1-3, February (2015) Res. J. Mathematical and Statistical Sci.

 International Science Congress Association 3

(actual 937) and 944 (actual 699) respectively for 5 runs. When

we increased the population size to 500, number generations to

2000 and max crossover gene parameter to 8, we got average of

994 and 837 for 26 cities and 42 cities TSP’s respectively. So

we could see that tuning the GA parameters optimizes the

result.

Conclusion

In this paper we have given a very effective procedure for TSP

by using the genetic algorithms. We have presented a GA

variant for solving the TSP that uses the novel cross over

method. In the crossover that uses one of the parent’s gene

structure (position) information to affect the gene crossover in

one of the parent’s chromosomes. The optimal solutions for

several TSPs obtained using this technique are generally

competitive with the best known solutions. These results

suggest that choice of representation plays an important role in

the GA's ability to satisfactorily solve the TSP. For the method

presented the maximum deviation of the optimal solutions from

the best known solutions is less than 2%.

References

1. Michalewicz Z, Genetic Algorithms + Data Structures =

Evolution Programs, Springer-Verlag, Berlin (1994)

2. P. Larrañaga, C.M.H. Kuijpers, R.H. Murga, I. Inza and S.

Dizdarevic, Genetic Algorithms for the Travelling

Salesman Problem: A Review of Representations and

Operators (1999)

3. J. Kirk, Traveling Salesman Problem – Genetic

Algorithm, Matlab Central, (2009)

4. Mou L., An efficient ant colony system for solving the

new generalized traveling salesman problem, CCIS2011 -

Proceedings: 2011 IEEE International Conference on

Cloud Computing and Intelligence Systems, 407 (2011)

5. R. Durbin and D. Willshaw, An Analogue Approach to

the Traveling Salesman Problem Using an Elastic Net

Method, Nature, vol. 326

6. N. Ernest and K. Cohen, Fuzzy clustering based genetic

algorithm for the multi-depot polygon visiting Dubins

multiple traveling salesman problem, in Proceedings of

the 2012 AIAA Infotech@Aerospace, no. AIAA-2012-

2562.Garden Grove, CA: (2012)

7. N. Ernest and K. Cohen, Self-Crossover Based Genetic

Algorithm for Performance Augmentation of the

Traveling Salesman Problem, AIAA,

Infotech@Aerospace 2011, St. Louis, Missouri (2011)

8. Bhattacharya Sourabh, Applications of DSTATCOM

MATLAB/Simulation in Power System, Res. J. Recent

Sci., 1(ISC-2011), 430-433 (2012)

9. PitalúaDíaz N., Lagunas Jiménez R. and González

Angelesa, Tuning Fuzzy Control Rules via Genetic

Algorithms: An Experimental Evaluation, Research

Journal of Recent Sciences, 2(10), 81-87, (2013)

10. Esmail Limouzade, Capacitor Replacement in Distribution

Networks using Genetic Algorithm, Research Journal of

Recent Sciences, 2(12), 54-64, (2013)

