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Abstract

In this paper, we shall study Q-fuzzy ideal and Q-fuzzy quotient near-ring and investigate some of there properties and we prove
some characterizations of a near-ring in terms of Q-fuzzy quotient near-ring and Q-fuzzy ideal.
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Introduction

Zadeh' introduce fuzzy set in 1965. The idea of the fuzzy ideal®
in near-ring’ is discussed by Zaid®. Solarairaju er al.* introduce
the new structures of Q-fuzzy groups. On the other hand
Muhammad Akram’ introduces the T-fuzzy Ideals and quotient
near-ring. In this paper, we shall study quotient near-rings via
Q-fuzzy’ ideals and study some of their properties. Generally in
this work we follow a paper published by Muhammad Akram’
to prove theorems.

Preliminaries

Definition: A near-ring’ is a set R which is non empty with two
binary operation “+” and “.” Which holds the condition, (R, +)
is group, (R, .) is semi' group and multiplicative is distributive
with respect to addition.

Definition: Let us consider a non empty set A. Then a function
u:R — [0, 1] is a fuzzy' subset of A.

Definition: A function p : GxQ —[0, 1] is called Q-fuzzy3 set
in G, where Q be a set and G be group respectively.

Definition: Consider a function f from a set A to B and a Q-
fuzzy® set u in A. Then p is a Q- fuzzy® set in B defind by

sup _ 1, @) f () # ¢

0: otherwise

f(w(y, @ =

Definition: Let Im(A) denote the image set of A. Let A be a Q-
fuzzy3 setin a set R. For tin [0, 1] the set A={ xeR, qeQ; AMX,
Q)>t} is called Q-level’® subset of A .

Definition: Consider p a Q- fuzzy’ subset in a near-ring’ R,
then p is Q- fuzzy’ subnear-ring’ of R if it holds the conditions
L. p(x-y, @) = min{ u(x, q) , u(y, Q) }

2. p(xy, @) = min{ p(x, @) , u(y, 9 }
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Definition: A Q-fuzzy’ subnear-ring u in R is called Q-fuzzy’
ideal if

Lo p(y +x-y, @) 2 p(x, q)

2. pxy, @) = u(y, @)

3. u((x+2)y-xy, Q) 2 u(z, q)

Theorem: If we consider a onto homomorphism® function

f: A — B of near-rings. Consider p be a Q- fuzzy’ ideal® in A,
we get, then a Q- fuzzy3 ideal® f(u) in B.

Proof: Consider v, w be two elements in the set B.

Since f is onto homomorphism, then as Muhammad Akram’ we
are clear to show
{b — ¢ Ibef ' (v), cef (w)} is subset of {xI xe £'(v-w)}.

Now as definition' 2.9 of f(u)(x, q) we have
f(v-w. @ = sup _ .. H(X,q)

>sup,_ ., H(b—c,q)
Ceffl(w)

= min {SuPbef"(v) HD,q).sup_ ., H(c, Q)}
=min {f(u)(v, q), f(L)(w, @)}

Now following defination' 2.9
f(l.l)(VW, q) = Supxef*1 (vw) ,U(X, Q)

> sup,_ ., H(bc,q)

Ceffl(w)
= min {SuPbef"(v) H(b,q).sup _ .., H(c, Q)}
f(p) is Q-fuzzy3 sub near-rings.

Now also we have

f(W)(v+w-v, q) = Sup ,U(X,q)

xeffl(v+wfv)
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SUP,_ 1, Ub+c—b,q)
cef™ (w)

Supcefil (w) ﬂ(c’ Q)
= f(u)(w, q)

Again as just we did, it can show easily
fovw, @) =sup (X, q)
Supbef—l(v) u(bce,q)
cef™w)
SUP,_ 1, 4(6.4)
= f()(w, q)

[\

Now from the result above it is clear that

f (W((v+z)w-vw, q) > f( )(z, q).
Hence f(p) is Q-fuzzy3 ideal®.

Theorem 3.2 Consider an ideal® A of a near ring’ R. Consider
a Q- fuzzy’ ideal® p of R, let us construct Q- fuzzy’ set ¥ of
R/A such that

k4 (a+Av Q) = SUPxeA p(a+x, Q)

then W is Q-fuzzy’ ideal® of the quotient’ near- ring’ R/A with
respect to A.

Proof: Consider two elements a, b of R so that (a+A) is equal to
(b+A). Then we have

b =a+y for some y in A. Now as Muhammad Akram’ we try to
show ¥ is well define

W (b+A, q)= supxea H(b+x, q)

= SUPxeA p(a+y+X, q)

= SUPx+y=z¢A p(a+z, CI)

=Y(a+A, q).

Consider (x+A), (y+A) be two elements of R/A, now following
definition® 2.6, 2.9 and 2.12 we do the following steps

¥ (x+A)-(y+A), 9=F((x-y)+A, q)

= SUPzea M ((X'Y)+Z’ Q)

= SUPy-y=zeA M ((X'Y) + (u-v), q)

= SUPxea M ((X+W)-(y+V), q)

2 min{supyea H(X+U, q), SUPxea M(Y+V, Q) }

Also similarly following the definition® 2.9
¥ (x+A)(y+A), Q=F(xy+A, q)

= Supzea M (Xy+2, q)

= Supz:uveA P- (XY+UV7 Q)

2 min {Supu,ch M(X-H,l, Q)’ SUPxcA H(Y+Vv Q)}

This shows that ¥ is Q- fuzzy® sub near-ring in R/A.
Thus we can show ¥ is an Q- fuzzy® ideal®.

Theorem 3.3 Consider an ideal® A of a near- ring’ R. We can
have then one to one mapping between then set of Q-fuzzy’
ideals® p of R so that (0, q) is equal to u(s, q) for all “s” in A
and ¥ set of all Q-fuzzy” ideals® of R/A.
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Proof: Let u be Q-fuzzy” ideal® of R so following theorem 3.1
and 3.2 and from definition 2.4 and 2.6 we are clear to show
Y(a+A, q)=supxea H(a, q) is a Q-fuzzy3 ideal® of R/A.

Since, we have u(0, q)=u(s, q)

Also from definition? 2.12
u(a+s, q)=u(a, q).

Also, u(a, q) = u(a+s-s, q) = u(a+s, q)
Thus we have p(a+s, q)=u(a, q), for all s € A.

Thus, W(a+A, q) is equal to p(a, q).

Hence the corresponding p |— ¥ is one to one.

Let ¥ be Q-fuzzy® ideal® of R/A. Consider p as a Q- fuzzy” set
in R so that for all “a” in A u(a, q) is equal to W(a+A, q).

Now, for x, y €R, we have from definition 2.6 and from
theorems 3.1 and 3.2 it follows

u(x-y, @)= P((x-y)+A, q)

= W((x+A)-(y+A), q)

>min { ¥((x+A), @), Y((y+A), @)}

= min{ Y((x+A)-(y+A), @)}

u(xy, @)= ¥((xy)+A, q)
= P((x+A)(y+A), Q)

> P(x+A, q)

=p(x, q).

Thus p is Q-fuzzy® ideal® of R. clearly p(a, q) is equal to
Y(a+A, q) which equal to (A, q), for all a in A. This indicates
that u(0, q) is equal to u(s, q) for all s €A.

Theorem 3.4 Let us consider A be an ideal® of a near-ring’ R.
We can have then a Q-fuzzy3 ideal® p of R so that pu(0, a) is t
and A, is A, for te[0, 1] where A, is called Q-level3 subset of A.
Proof: Following definition 2.6 and theorems 3.1, 3.2, 3.3 the
proof is straight forward®.

Theorem 3.5 Consider a Q-fuzzy’ ideal® u of a near-ring® R
also (0, a) is t. Then ¥ is a Q-fuzzy3 ideal® of R/A., where ¥ is
constructed as W(x+X,, q) =pu(x, q) for all xeR and A, is called
Q-level® subset of A.

Proof: Similarly following definition 2.6 and theorems 3.1, 3.2,
3.3 and 3.4 proof is straight forward®.

Conclusion

In this paper we have defined Q-fuzzy subnear-ring, Q-fuzzy
ideal. With the help of Q-fuzzy subnear-ring and Q-fuzzy ideal,
we have discussed on Q-fuzzy quotient near-ring and proved
some theorems on Q-fuzzy quotient near-ring. We hope that
this work will help for further work of fuzzy set.
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