α-Sasakian Manifolds Admitting Ricci Soliton

Ankita Rai and Dhruwa Narain

Department of Mathematics and Statistics, D.D.U. Gorakhpur University, Gorakhpur- 273009, INDIA

Available online at: www.isca.in, www.isca.me

Received 28th March 2014, revised 9th June 2014, accepted 13th June 2014

Abstract

In this paper we study η -Einstein α -Sasakian manifolds admitting Ricci soliton.

Keywords: Ricci soliton, α-Sasakian manifold, η-Einstein manifold. **Mathematical Subject Classification:** 53C25, 53C21, 53C44.

Introduction

A Ricci soliton is a generalization of an Einstein metric. In a Riemannian manifold (M, g), g is called a Ricci soliton studied by Hamilton¹ if

$$(\pounds_{V}g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) = 0,$$
(1)

where £ is the Lie derivative, S is the Ricci tensor, λ is a constant and V is a potential vector field on M. Metrics satisfying (1) are interesting and useful in physics and are often referred as quasi-Einstein. Compact Ricci soliton are special case of the Ricci flow $\frac{\partial}{\partial t}g_{ij}=-2S_{ij}$ with fixed point. There are many authors Perelman² which study compact Ricci soliton and obtain many good results.

If λ is negative the Ricci soliton is said to be shrinking, if λ is zero the Ricci soliton is said to be steady and if λ is positive the Ricci soliton is said to be expanding. g is said to be a gradient Ricci soliton if the vector field V is the gradient of a potential function –f and the equation (1) has written of the form $\nabla \nabla f = S + \lambda g$. In dimension 2 and 3, a Ricci soliton on a compact manifold has constant curvature. For detail we refer Chow and Knopf³ and Derdzinski⁴.

If Ricci tensor of α -Sasakian manifolds is written like (2) then it is η -Einstein manifold which is given as

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y), \tag{2}$$

where a and b are constant for n > 1, Zhang⁶ studied compact Sasakian manifold with constant curvature and quasi-positive holomorphic bisectional transverse curvature. Sharma and Ghosh⁷ show that, if a 3-dimensional Sasakian metric is a non trivial Ricci soliton, then it is homothetic to the standard Sasakian structure on Heisenberg group nil³. A K-contact manifold is Sasakian manifold in dimension 3 which is not true in higher dimension.

This paper organised as follow:

Section 2, is devoted to preliminaries definition of α -Sasakian manifold and some properties of α -Sasakian manifold. In section 3, we have a theorem and an example of a Sasakian-space form (generalized) $M(f_1,f_2,f_3)$ with $f_1=(c+3\alpha^2)/4$ and $f_2=f_3=(c-\alpha^2)/4$. Also, it is η -Einstein, and fallows all the conclusion of the theorem and M is $R^{(2n+1)}(\alpha^2-4)$ recognizable with the (2n+1)-dimensional Heisenberg group.

α-Sasakian Manifolds

A contact manifold is a (2n+1)-dimensional C^{∞} manifold M equipped with a global form η , called a contact form of M such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M. In particular, $\eta \wedge (d\eta)^n \neq 0$ is a volume element of M so that a contact manifold is orientable. A contact manifold associated with the Riemannian metric g is called contact metric manifold if it satisfy the following relation (3)

$$d\eta(X,Y) = g(X,\phi Y), \eta(X) = g(X,\xi), \ \phi^2 = -I + \eta \otimes \xi, \tag{3}$$

Where φ is a (1, 1)-tensor field and ξ is a unique vector field such that $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$. We denote the symbols ∇ , R and Q by Levi-Civita connection, curvature tensor and Ricci operator of g respectively. We define a (1, 1) type tensor field h by $h = \frac{1}{2} \pounds_{\xi} \varphi$ and we know that h and h φ are trace free and $h\varphi = -\varphi h$. We define an operator l by $lX = R(X, \xi)\xi$ for all X. Then obviously $l\xi = 0$ and l is a self-adjoint operator. contact metric manifolds has following properties,

$$\nabla_{\mathbf{X}}\xi = -\phi \mathbf{X} - \phi \mathbf{h} \mathbf{X},\tag{4}$$

$$1 - \phi l \phi = -2(h^2 + \phi^2), \tag{5}$$

$$\nabla_{\xi} h = \phi - \phi l - \phi h^2, \tag{6}$$

$$Tr. l = S(\xi, \xi). \tag{7}$$

An almost contact manifold $M(\varphi,\eta,\xi,g)$ is trans-Sasakian manifold if there exist two function α and β on M such that $(\nabla_X \varphi)Y = \alpha\{g(X,Y)\xi - \eta(Y)X\} + \beta\{g(\varphi X,Y)\xi - \eta(Y)\varphi X\}$, for any vector X,Y on M. If $\beta=0$ then M is α -Sasakian manifold. Sasakian manifolds is a case of α -Sasakian manifold with $\alpha=1$. If $\alpha=0$ then M is called β -Kenmotsu manifold. Kenmotsu manifolds are case of β -Kenmotsu with $\beta=1$. If

(18)

Res. J. Mathematical and Statistical Sci.

both α and β vanish, then M is a cosymplectic manifold. Here we consider α-Sasakian manifold and following holds in α-Sasakian manifold,

$$\nabla_{\mathbf{X}}\xi = -\alpha \phi \mathbf{X},\tag{8}$$

$$R(X,\xi)\xi = \alpha\{X - \eta(X)\xi\},\tag{9}$$

$$Q\xi = 2n\xi\alpha,\tag{10}$$

$$(\nabla_{\mathbf{X}}\mathbf{\Phi})\mathbf{Y} = \alpha\{\mathbf{g}(\mathbf{X}, \mathbf{Y})\mathbf{\xi} - \mathbf{\eta}(\mathbf{Y})\mathbf{X}\},\tag{11}$$

Theorems and Example

Theorem: If the η-Einstein (non-Einstein) α-Sasakian manifold $M(\phi, \eta, \xi, g)$ has Ricci soliton (non-trivial) with potential vector V, then

(i). Jacobi along the geodesics is V which is determine by ξ . (ii). V is infinitesimal contact transformation which depend on value of α . (iii). The Ricci soliton is expanding.

Proof: We take M is η -Einstein then from (2) we can get the value of r which is given by,

$$r = (2n + 1)a + b,$$
 (12)

now using (2) in (1) we get,

$$(\mathcal{E}_{V}g)(Y,Z) = -2(\lambda + a)g(Y,Z) - 2b\eta(Y)\eta(Z),$$
 (13)

Differentiating (13) with respect to vector field X and then applying (8) we have,

$$(\pounds_{V}\nabla_{X}g)(Y,Z) = 2b\alpha[g(Y,\phi X)\eta(Z) + g(Z,\phi X)\eta(Y)], (14)$$

now we taking use of Yano⁸ (1970) formula which is given as, $(\pounds_{V}\nabla_{X}g - \nabla_{X}\pounds_{V}g - \nabla_{[V,X]}g)(Y,Z)$ $= -g((\pounds_{V}\nabla)(X,Y),Z) - g((\pounds_{V}\nabla)(X,Z),Y),$

We obtain,

$$(\nabla_{\mathbf{X}} \mathcal{E}_{\mathbf{V}} \mathbf{g})(\mathbf{Y}, \mathbf{Z}) = \mathbf{g}((\mathcal{E}_{\mathbf{V}} \nabla)(\mathbf{X}, \mathbf{Y}), \mathbf{Z}) + \mathbf{g}((\mathcal{E}_{\mathbf{V}} \nabla)(\mathbf{X}, \mathbf{Z}), \mathbf{Y}), (15)$$

now, use of (14) in (15) and a straightforward combinatorial computational shows

$$(\pounds_{V}\nabla)(Y,Z) = 2b\alpha[\eta(Z)\phi Y + \eta(Y)\phi Z],\tag{16}$$

substituting $Y = Z = \xi$ in (15) we have, $(\pounds_V \nabla)(\xi, \xi) = 0$. In the formula of Duggal and Sharma⁹ (1999), we using above and ξ is geodesic [we can see from (8)] we have,

$$(\pounds_{V}\nabla)(X,Y) = \nabla_{X}\nabla_{Y}V - \nabla_{\nabla_{X}Y}V + R(V,X)Y,$$

gives that $\nabla_{\xi}\nabla_{\xi}V + R(V,\xi)\xi = 0$, which implies that Jacobi along the geodesics is V which is determine by ξ , which is (i)

Next, differentiating (15) with respect to vector field X and then applying (8) we have,

$$(\nabla_{\mathbf{X}} \mathcal{E}_{\mathbf{V}} \nabla)(\mathbf{Y}, \mathbf{Z}) = 2b\alpha \{ -\alpha \mathbf{g}(\mathbf{Z}, \mathbf{\phi} \mathbf{X}) \mathbf{\phi} \mathbf{Y} - \alpha \mathbf{g}(\mathbf{Y}, \mathbf{\phi} \mathbf{X}) \mathbf{\phi} \mathbf{Z} + \eta(\mathbf{Z})(\nabla_{\mathbf{X}} \mathbf{\phi}) \mathbf{Y} + \eta(\mathbf{Y})(\nabla_{\mathbf{X}} \mathbf{\phi}) \mathbf{Z} \},$$
 (17)

making use of the (16) and the identity,

$$(\mathcal{E}_{V}R)(X,Y)Z = (\nabla_{X}\mathcal{E}_{V}\nabla)(Y,Z) - (\nabla_{Y}\mathcal{E}_{V}\nabla)(X,Z),$$
 one obtains

$$\begin{split} (\pounds_V R)(X,Y)Z &= 2b\alpha[-\alpha g(Z,\varphi X)\varphi Y + \alpha g(Z,\varphi Y)\varphi X \\ &+ 2\alpha g(X,\varphi Y)\varphi Z + \eta(Z)\{(\nabla_X \varphi)Y - (\nabla_Y \varphi)X\} \\ &+ \eta(Y)(\nabla_X \varphi)Z - \eta(X)(\nabla_Y \varphi)Z], \end{split}$$

setting
$$Y = Z = \xi$$
 in (18) shows that,

$$(\pounds_{\mathbf{V}}\mathbf{R})(\mathbf{X},\xi)\xi = 4\alpha\mathbf{b}[\eta(\mathbf{X})\xi - \mathbf{X}],\tag{19}$$

next Lie differentiation (9) along V and using (19) and (13) we

$$4\alpha b[\eta(X)\xi - X] + R(X, \pounds_{V}\xi)\xi + R(X, \xi)\pounds_{V}\xi$$

$$= \alpha\{-\eta(X)\pounds_{V}\xi - g(X, \pounds_{V}\xi)\xi + 2(\lambda + a + b)\eta(X)\xi\},$$
(20)

Contracting (20) over X and $g(\pounds_V \xi, \xi) = (\lambda + a + b)$ (follows from (13) by taking $Y = Z = \xi$) gives $a - b + \lambda = 0$, (21)

now we use integrability condition of the Ricci soliton we get,

$$\pounds_{V}r = -\Delta r + 2\lambda r + 2|S|^{2},$$
(22)

Where $\Delta r = -\text{div.} \, \text{Dr.} \, \text{Comparing the value of } |S|^2 \, \text{from } (2)$ and using (10) and (12) we find that, b(a + 2) = 0. Since $b \neq 0$, because if b = 0 then M is Einstein which is a contradiction hence we have,

$$a = -2$$
 and $b = 2(n + 1)$.

Thus, it follows that $\lambda = 2(n+2) > 0$, which show that Ricci soliton is expanding, which prove part (ii) of the theorem.

Contracting (18) along X and using the formula $(div\phi)X =$ $-2n\eta(X)$ for a contact metric one gets

$$(\pounds_{V}S)(Y,Z) = 4\alpha b[g(Y,Z) - (2n+1)\eta(Y)\eta(Z)], \tag{23}$$

next, in (2) we take the Lie-derivative of S(X, Y) along V and then using (13) we get,

$$(\pounds_{V}S)(Y,Z) = -2(a^{2} + a\lambda)g(Y,Z) + b[(\pounds_{V}\eta)(Y)\eta(Z) + \eta(Y)(\pounds_{V}\eta)Z] - 2ab\eta(Y)\eta(Z),$$
 (24)

comparing above two equations and put $Z = \xi$, and substituting the value of a, b and λ obtained above, we get $\mathcal{L}_V \eta =$ $-4(n + \alpha)$, V is infinitesimal contact transformation which depands on the value of α , which is the part (iii) of the theorem. Also by the straight forward calculation, we find that $\mathcal{L}_{V}\xi =$ $4(n + \alpha)\xi$. Thus proof of the theorem is complete.

Example

A $M(f_1, f_2, f_3)$ generalized Sasakian-space-form which is α -Sasakian manifold with $f_1 = (c + 3\alpha^2)/4$ and $f_2 = f_3 =$ $(c - \alpha^2)/4$. Also, it is η -Einstein hence it follow the theorem. The value of a and b for generalized Sasakian-space-form are $a = \frac{n(c+3\alpha^2)+(c-\alpha^2)}{2} \quad \text{and} \quad b = \frac{-(c-\alpha^2)(n+1)}{2}. \quad \text{Now from these}$

Res. J. Mathematical and Statistical Sci.

values, comparing the values of a and b which get from the theorem, we get $c = \alpha^2 - 4$. Thus $M(f_1, f_2, f_3)$ is $R^{2n+1}(\alpha^2 - 4)$ identifiable with the (2n+1)-dimensional Heisenberg group. This prove the corollary. Hence M is $R^{(2n+1)}(\alpha^2 - 4)$ 6. recognizable with the (2n+1)-dimensional Heisenberg group.

Conclusion

In this paper we study α -Sasakian manifold whose metric manifolds whose metric manifolds whose metric as Ricci soliton and we can see that when it is non-trivial Ricci soliton with potential vector V then Ricci soliton is expanding, V is Jacobi along geodesics determine by ξ and V is infinitesimal contact transformation.

Acknowledgement

The author Ankita Rai is supported by UGC (University Grant Commission) (JRF) fellowship for her research work.

References

- 1. Hamilton R.S., The Ricci flow on the surface, Mathematics and general relativity (santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Mathematical society, (1988)
- **2.** Perelman G., The entropy formula for the Ricci flow and its geometry application (preprint). arXiv.org/abs/math.DG/02111159.
- **3.** Chow B. and Knopf D., The Ricci flow: An Introduction, Mathematical Surveys and Monographs 110, American Math. Sco., (2004)
- 4. Derdzinski A., Compact Ricci Soliton, Preprint (2008)

- Yano K. and Kon M., Structure on manifold, Series of Pure Mathematics, 3, Word Scientific Pub. Co., Singapore (1984)
- **6.** Zhang X., A note on Sasakian metric with constant scalar curvature, *J. Math. Phys.*, **50**, 103505, 1-11 (**2009**)
- 7. Sharma R., Ghosh A., A Sasakian 3-manifold as a Ricci soliton represent a Heisenberg group, *Int. J. Geom. Methods Mod. Phy.*, **8**, 149-154 (2011)
- 8. Blair D.E., Riemannian geometry of contact and symplectic manifold, Prog. Math., 203, Birkhauser, Besel (2002)
- **9.** Yano K., Integral formula in Riemannian geometry. Marcel Dekker, New Yark (1970)
- **10.** Duggal K.L. and Sharma R., Symmetries of spacetimes and Riemannian manifold, Kluwer, Dordrecht (**1999**)
- 11. Ghosh A., Sharma R. and Cho J.T., Contact metric manifold with η-parallel torsion tensor, *Ann. Glob. Anal. Geo.*, **34**, 287-299 (**2008**)
- **12.** Tanno S., Promenades on spheres, Lecture note, Tokyo Institute of Technology, Tokyo (**1996**)
- **13.** Blair D.E., Koufoguiorgos T. and Papantoniou B.J., Contact metric manifold satisfying a nullity condition, *Israel J. Math.*, **91**, 189-214 (**1995**)
- **14.** Carriazo A., Blair D.E. and Alegre P., On generalized Sasakian-space-forms, Proceeding of the Ninth International Workshop on Diff. Geom. **9**, 31-39 (**2005**)
- **15.** Ghosh A. and Sharma R., *K*-contact metrics as Ricci solitons, Beitr Algebra Geom., DOI 10,1007/s13366-011-0038-6 springer (**2012**)