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Abstract 

In this paper we study �-Einstein �-Sasakian manifolds admitting Ricci soliton. 
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Introduction 

A Ricci soliton is a generalization of an Einstein metric. In a 

Riemannian manifold (M, g), g is called a Ricci soliton studied 

by Hamilton
1
 if 

(£
g)(X, Y) + 2S(X, Y) + 2λg(X, Y) = 0,              (1) 

 

where £ is the Lie derivative, S is the Ricci tensor, λ is a 

constant and V is a potential vector field on M. Metrics 

satisfying (1) are interesting and useful in physics and are often 

referred as quasi-Einstein. Compact Ricci soliton are special 

case of the Ricci flow  
�

��
g�� = −2S�� with fixed point. There are 

many authors Perelman
2
 which study compact Ricci soliton and 

obtain many good results. 

 

If  λ is negative the Ricci soliton is said to be shrinking, if λ is 

zero the Ricci soliton is said to be steady and if  λ is positive the 

Ricci soliton is said to be expanding.  g is said to be a gradient 

Ricci soliton if  the vector field V is the gradient of a potential 

function – f and the equation (1) has written of the form 

∇∇f = S + λg.  In dimension 2 and 3, a Ricci soliton on a 

compact manifold has constant curvature. For detail we refer 

Chow and Knopf
3
 and Derdzinski

4
. 

 

If Ricci tensor of α-Sasakian manifolds is written like (2) then 

it is η-Einstein manifold which is given as 

S(X, Y) = ag(X, Y) + bη(X)η(Y),                  (2) 

 

where a and b are constant for n > 1, Zhang
6
 studied compact 

Sasakian manifold with constant curvature and quasi-positive 

holomorphic bisectional transverse curvature. Sharma and 

Ghosh
7
 show that, if a 3-dimensional Sasakian metric is a non 

trivial Ricci soliton, then it is homothetic to the standard 

Sasakian structure on Heisenberg group nil
3
. A K-contact 

manifold is Sasakian manifold in dimension 3 which is not true 

in higher dimension.  

 

This paper organised as follow: 

Section 2, is devoted to preliminaries definition of α-Sasakian  

manifold  and  some  properties of α-Sasakian manifold. In 

section 3, we have a theorem and an example of a  Sasakian-

space form (generalized) M(f%, f&, f') with f% = (c + 3α&) 4⁄   

and  f& = f' = (c − α&) 4⁄  . Also, it is η-Einstein, and fallows 

all the conclusion of the theorem and M is R(&-.%)(α& − 4) 

recognizable with the (2n + 1)-dimensional Heisenberg group. 

 

/-Sasakian Manifolds 

A contact manifold is a (2n + 1)-dimensional C∞ manifold M 

equipped with a global form η, called a contact form of M such 

that η ∧ (dη)- ≠ 0 everywhere on M. In particular, η ∧
(dη)- ≠ 0 is a volume element of M so that a contact manifold 

is orientable. A contact manifold associated with the 

Riemannian metric g is called contact metric manifold if it 

satisfy the following relation (3)  

dη(X, Y) = g(X, ϕY), η(X) = g(X, ξ), ϕ& = −I + η⨂ξ,        (3) 

 

Where ϕ is a (1, 1)-tensor field and ξ is a unique vector field 

such that dη(ξ, X) = 0 and η(ξ) = 1. We denote the symbols 

∇,   R and Q by Levi-Civita connection, curvature tensor and 

Ricci operator of g respectively. We define a (1, 1) type tensor 

field  h by h = %

&
£9ϕ and we know that h and hϕ are trace free 

and hϕ = −ϕh. We define an operator l by lX = R(X, ξ)ξ for 

all X. Then obviously lξ = 0 and l is a self-adjoint operator. 

contact metric manifolds has following properties, 

∇;ξ = −ϕX − ϕhX,                          (4) 

l − ϕlϕ = −2(h& + ϕ&),                       (5) 

∇9h = ϕ − ϕl − ϕh&,                           (6) 

Tr. l = S(ξ, ξ).                                        (7) 

 

An almost contact manifold M(ϕ, η, ξ, g)  is trans-Sasakian 

manifold if there exist two function α and β on M such that 

(∇;ϕ)Y = α>g(X, Y)ξ − η(Y)X? + β>g(ϕX, Y)ξ − η(Y)ϕX?, 
for any vector X, Y on M. If β = 0 then M is α-Sasakian 

manifold. Sasakian manifolds is a case of α-Sasakian manifold 

with α = 1. If α = 0 then M is called β-Kenmotsu manifold. 

Kenmotsu manifolds are case of β-Kenmotsu with β = 1. If 
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both α and β vanish, then M is a cosymplectic manifold. Here 

we consider α-Sasakian manifold and following holds in α-

Sasakian manifold, 

∇;ξ = −αϕX,                                (8) 

R(X, ξ)ξ = α>X − η(X)ξ?,             (9) 

Qξ = 2nξα,                                   (10) 

(∇;ϕ)Y = α>g(X, Y)ξ − η(Y)X?,             (11) 

 

Theorems and Example 

Theorem: If the η-Einstein (non-Einstein) α-Sasakian manifold 

M(ϕ, η, ξ, g) has Ricci soliton (non-trivial) with potential vector 

V, then 

(i). Jacobi along the geodesics is V which is determine by ξ. 

(ii). V is infinitesimal contact transformation which depend on 

value of α. (iii). The Ricci soliton is expanding.  

 

Proof: We take M is η-Einstein then from (2) we can get the 

value of  r which is given by, 

r = (2n + 1)a + b,                  (12) 

 

now using (2) in (1) we get, 

(£
g)(Y, Z) = −2(λ + a)g(Y, Z) − 2bη(Y)η(Z),           (13) 

 

Differentiating (13) with respect to vector field X and then 

applying (8) we have, 

(£
∇;g)(Y, Z) = 2bαCg(Y, ϕX)η(Z) + g(Z, ϕX)η(Y)D,  (14) 

 

now we taking use of Yano
8
 (1970) formula which is given as, 

E£
∇;g − ∇;£
g − ∇C
,;DgF(Y, Z)
= −gE(£
∇)(X, Y), ZF − gE(£
∇)(X, Z), YF, 

 

We obtain, 

(∇;£
g)(Y, Z) = gE(£
∇)(X, Y), ZF + gE(£
∇)(X, Z), YF, (15) 

 

now, use of (14) in (15) and a straightforward combinatorial 

computational shows 
(£
∇)(Y, Z) = 2bαCη(Z)ϕY + η(Y)ϕZD,             (16) 

 

substituting Y = Z = ξ in (15) we have, (£
∇)(ξ, ξ) = 0. In the 

formula of Duggal and Sharma
9
 (1999), we using above and  ξ 

is geodesic [we can see from (8)] we have, 

(£
∇)(X, Y) = ∇;∇GV − ∇∇HI V + R(V, X)Y, 
gives that  ∇9∇9V +  R(V, ξ)ξ = 0, which implies that Jacobi 

along the geodesics is V which is determine by ξ, which is (i)  

 

Next, differentiating (15) with respect to vector field X and 

then applying (8) we have, 

(∇;£
∇)(Y, Z) = 2bα>−αg(Z, ϕX)ϕY − αg(Y, ϕX)ϕZ +
η(Z)(∇;ϕ)Y + η(Y)(∇;ϕ)Z?,                (17) 

 

making use of the (16) and the identity, 

(£
R)(X, Y)Z = (∇;£
∇)(Y, Z) − (∇G£
∇)(X, Z), 
one obtains 

(£
R)(X, Y)Z = 2bαC−αg(Z, ϕX)ϕY + αg(Z, ϕY)ϕX
+ 2αg(X, ϕY)ϕZ + η(Z)>(∇;ϕ)Y − (∇Gϕ)X?
+ η(Y)(∇;ϕ)Z − η(X)(∇Gϕ)ZD, 

(18) 

 

setting Y = Z = ξ in (18) shows that, 

(£
R)(X, ξ)ξ = 4αbCη(X)ξ − XD,                (19) 

 

next Lie differentiation (9) along V and using (19) and (13) we 

get, 

4αbCη(X)ξ − XD + R(X, £
ξ)ξ + R(X, ξ)£
ξ
= α>−η(X)£
ξ − g(X, £
ξ)ξ
+ 2(λ + a + b)η(X)ξ?, 

(20) 

 

Contracting (20) over X and g(£
ξ, ξ) = (λ + a + b) (follows 

from (13) by taking Y = Z = ξ ) gives 

a − b + λ = 0,                   (21) 

 

now we use integrability condition of the Ricci soliton we get, 

£
r = −∆r + 2λr + 2|S|&,                (22) 

 

Where ∆r = −div. Dr. Comparing the value of |S|& from (2) 

and using (10) and (12) we find that, b(a + 2) = 0. Since 

b ≠ 0, because if b = 0 then M is Einstein which is a 

contradiction hence we have, 

a = −2 and b = 2(n + 1). 
 

Thus, it follows that λ = 2(n + 2) > 0, which show that Ricci 

soliton is expanding, which prove part (іі) of the theorem. 

 

Contracting (18) along X and using the formula (divϕ)X =
−2nη(X) for a contact metric one gets 

 
(£
S)(Y, Z) = 4αbCg(Y, Z) − (2n + 1)η(Y)η(Z)D,           (23) 

 

next, in (2) we take the Lie- derivative of S(X, Y) along V and 

then using (13) we get, 

(£
S)(Y, Z) = −2(a& + aλ)g(Y, Z) + bC(£
η)(Y)η(Z) +
η(Y)(£
η)ZD − 2abη(Y)η(Z),                   (24) 

 

comparing above two equations and put Z = ξ, and substituting 

the value of a, b and λ obtained above, we get £
η =
−4(n + α), V  is infinitesimal contact transformation which 

depands on the value of α, which is the part (ііі) of the theorem. 

Also by the straight forward calculation, we find that   £
ξ =
4(n + α)ξ. Thus proof of the theorem is complete. 

 

Example 

A M(f%, f&, f') generalized Sasakian-space-form which is α-

Sasakian manifold with f% = (c + 3α&) 4⁄   and  f& = f' =
(c − α&) 4⁄  . Also, it is η-Einstein hence it follow the theorem. 

The value of a and b for generalized Sasakian-space-form are 

a = -EO.'PQF.(ORPQ)

&
 and b = REORPQF(-.%)

&
. Now from these 
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values, comparing the values of  a and b which get from the 

theorem, we get c = α& − 4. Thus M(f%, f&, f') is R&-.%(α& −
4) identifiable with the (2n + 1)-dimensional Heisenberg 

group. This prove the corollary. Hence M is R(&-.%)(α& − 4) 

recognizable with the (2n + 1)-dimensional Heisenberg group. 

 

Conclusion 

In this paper we study α-Sasakian manifold whose metric 

manifolds whose metric manifolds whose metric as Ricci 

soliton and we can see that when it is non-trivial Ricci soliton 

with potential vector V then Ricci soliton is expanding,  V is 

Jacobi along geodesics determine by ξ and V is infinitesimal 

contact transformation. 
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