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Abstract

Multi-component multi-complex (MCMCS) are common in the engineering industry, including aerospace, power grid,
transportation, and manufacturing, where reliability is a significant factor of performance and safety. Conventional methods
of reliability analysis (mostly using probabilistic models) can be pretty ineffective in explaining the uncertainties that are
caused by incomplete data, subjective input, and operational variability in the real world. To overcome these shortcomings,
the fuzzy set theory provides a sound framework that allows one to model and optimize when facing vagueness and
imprecision. This paper presents a fuzzy optimization and performance appraisal model specific to MCMCS. This
methodology combines fuzzy membership functions of failure rates and repair times with multi-objective optimization
procedures that optimize system reliability and availability and lessen cost and resource constraints. The given approach is
practical, as evidenced by a case-based analysis that shows the improvement of the suggested method compared to the
conventional probabilistic one. Sensitivity analysis also shows the model's flexibility at different uncertainty levels. The main
contributions of this work are as follows: (i) a fuzzy modeling framework of complex interdependent systems is developed, (ii)
the fusion of the fuzzy multi-objective optimization to enhance reliability, and (iii) a set of performance evaluation metrics
can be applied to real-life engineering systems. The findings highlight the possibility of fuzzy reliability optimization to offer
more realistic and practical decision-making aids used in fundamental system design and maintenance approaches.-
component multi-complex (MCMCS) are common in the engineering industry, including aerospace, power grid,
transportation, and manufacturing, where reliability is a significant factor of performance and safety. Conventional methods
of reliability analysis (mostly using probabilistic models) can be pretty ineffective in explaining the uncertainties that are
caused by incomplete data, subjective input, and operational variability in the real world. To overcome these shortcomings,
the fuzzy set theory provides a sound framework, which allows one to model and optimize when facing vagueness and
imprecision. This paper presents a fuzzy optimization and performance appraisal model that is specific to MCMCS. This
methodology combines fuzzy membership functions of failure rates and repair times with multi-objective optimization
procedures that optimize system reliability and availability and lessen cost and resource constraints. The given approach is
effective, as evidenced by a case-based analysis that shows the improvement of the suggested method in comparison to the
conventional probabilistic one. Sensitivity analysis also shows the model's flexibility at different uncertainty levels.
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Introduction

Background on Reliability Engineering and System
Performance Analysis: Reliability engineering aims to ensure
that engineering systems can carry out their designed functions
with time without failure'. Multi-component systems, including
aerospace networks, energy grids, and manufacturing plants, are
interconnected elements the overall performance of which is
based on the reliability of the elements composing the system?,
Such systems have been assessed using traditional methods of
reliability assessment, such as fault tree analysis, reliability
block diagrams, and Markov models®. These classical methods
have, however, come under serious limitations with such
complex and interdependent systems of handling dynamic
interactions and uncertain parameters®.
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Importance of Fuzzy Logic in Handling Uncertainties in
Reliability Assessment: Reliability data is mostly uncertain
because of incomplete records because of expert judgment, or
change in the operating conditions®. Probabilistic models require
the availability of accurate statistical data, which cannot be
assumed with real-world systems. The fuzzy set theory is
another powerful alternative to the model's inaccuracy,
introduced by Zadeh, L. A.° whereby uncertain failure rates,
repair times, maintenance data can be represented as linguistic
variables or fuzzy numbers’. Recent research shows that the
fuzzy reliability analysis is more suitable than the conventional
probabilistic methods to capture the vagueness, hence it is
eminently applicable to complex engineering systems®®.
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Challenges in Optimizing Reliability in Multi-Component
and Interdependent Systems: There are several challenges
associated with the optimization of the reliability of multi-
component multi-complex systems (MCMCS). First, cascading
failures caused by interdependencies between the subsystems
are hard to model using linear probabilistic methods™. Second,
the optimization problem is usually multi-objective,
compromising cost, reliability, availability, and
maintainability'*. Third, optimization is complicated by
uncertainties and incomplete information, and one must have
well-developed  frameworks that could accommodate
fuzziness*2. Therefore, there is an urgent urgency to develop
structures that integrate fuzzy reliability models, as well as
optimization algorithms, to make effective decisions in the
engineering design and maintenance process.

Research Objectives and Scope: This study will (i) create a
fuzzy reliability modeling framework to suit multi-component
multi-complex systems, (ii) combine fuzzy-based multi-
objective optimization models to optimize reliability and system
performance in the face of uncertainty, and (iii) offer a
performance analysis framework that applies to a wide variety
of fields, including aerospace, power systems, and
manufacturing. The study aims to move beyond traditional
probabilistic reliability engineering methods by dealing with
uncertainty and complexity.

Structure of the Paper: The paper will follow the following
outline: Section 3 will review the literature on reliability
assessment and fuzzy optimization methods. Section 4 presents
the theoretical framework of the fuzzy reliability in MCMCS. In
Section 5, the proposed methodology, which involves fuzzy
modeling and optimization, is proposed. Section 6 is a case
study containing experimental findings. Section 7 analyzes the
results and their comparison with traditional models. Section 8
covers findings, whereas in Sections 9 and 10, the research
challenges and future directions are stated. Last but not least, the
implications and contributions are presented in Section 11.

Literature Review

Traditional Reliability Approaches: The classical reliability
methods are based on probabilistic models, whereby the
components of a system have the correct statistical data. System
failures and dependencies have been widely modeled by such
methods as fault tree analysis (FTA) and reliability block
diagrams (RBDs)"®. Another highly popular tool that allows
dynamically reliable analysis is Markov models, which consider
the transitions of state components of a system over time™.
Although these methods are helpful when dealing with well-
understood systems, they are not available with indefinite
systems and imprecise data that appear in the real world.

Multi-Component  System Reliability Studies: Multi-

component system reliability analysis normally involves system
configurations such as series, parallel and k-out-of-n systems?,
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Parallel systems are less vulnerable to single point failures and
series systems are vulnerable to one point failures®. These
models are abstracted on the k-out-of-n model that requires the
existence of a minimum of k out of n components to be fully
operational in order to be successful in the system. However, it
is challenging to provide proper performance evaluation using
these classical models when the level of interdependencies and
heterogeneity increases within a system™.

Role of Fuzzy Logic in Reliability Engineering: Fuzzy set
theory has been used to overcome the weakness of probabilistic
models in the field of reliability engineering. Fuzzy fault trees
are based on the traditional fault trees and utilize fuzzy failure
probabilities, enabling analysts to deal with imprecise input
data®. Likewise, fuzzy Bayesian networks are probabilistic
reasoning networks that employ fuzzy uncertainty modeling to
improve the reliability estimation in uncertain environments®.
Studies have shown that fuzzy reliability models have a more
accurate reflection of the language expert judgments. Therefore,
they are the most suitable in the systems where accurate
statistical data is unattainable’.

Reliability Optimization Methods: Several metaheuristic
algorithms have been used to achieve reliability optimization.
Genetic algorithms (GA) have been used to determine the best
component redundancies and system structures. The
optimization of system availability under constraints has been
successfully optimized using particle swarm optimization
(PSO)*®. Grey wolf optimization (GWO) and other swarm
intelligence approaches have recently proven valuable in
addressing complex multi-objective reliability problems®’.
Fuzzy multi-objective optimization frameworks are also
included, and they combine fuzzy modeling and evolutionary
computation to enable the simultaneous optimization of
conflicting goals in uncertainty™.

Identified Gaps: Although the literature has progressed in
fuzzy modelling and optimisation, some gaps remain.
Reliability modeling and optimization are studied in most cases.
However, little has been done to integrate both of these into a
unified system of multi-component multi-complex systems
(MCMCS). Moreover, most of the fuzzy techniques have been
applied to simplified models of the system, and there is still a
need to test them in large-scale, interdependent, and
heterogeneous systems™*2. This signifies the significance of
realizing integrated fuzzy reliability optimization frameworks
that deal with complexity, interdependence, and uncertainty.

Theoretical Framework

Definition of Multi-Component Multi-Complex Systems
(MCMCS):  Multi-component ~ multi-complex  systems
(MCMCS) refer to engineering systems that contain numerous
interdependent components which tend to interact with each
other nonlinearly, are heterogeneous and are highly structured®,
They are typically applied in aerospace, power grids, healthcare,
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and transportation where the entire system reliability is
determined by the functionality of the individual components as
well as their interactions?. Complexity is brought about by
redundancy, feedback loops, and cascading effects of failures,
heterogeneity stems out of the variety of components, with
varied behavior of failure and operation'®. This means that the
modeling and optimization of the reliability of MCMCS should
be structured in such a way that the reliability of the
components and the interaction on a system level is taken into
consideration.

Fuzzy Reliability Concepts: The fuzzy set theory can help in
solving uncertainty in reliability modeling where the precise
probabilistic data is not available®. Parameters in the
membership functions of the uncertain parameters in fuzzy
reliability analysis are failure rates, repair time periods, or
operational life. Linguistic judgments can be triangular or
trapeszoidal fuzzy numbers like low failure rate or high repair
time”.

Two significant results of the fuzzy reliability analysis are
Fuzzy Mean Time to Failure (FMTTF) and fuzzy availability.
FMTTF extends the classical mean time to failure by adding
fuzzy parameters and makes a more realistic consideration of
uncertainty®. Likewise, in fuzzy availability, system availability
is considered in the case of uncertain repair time, which is more
representative than crisp probabilistic methods’. Such notions
enable analysts to include ambiguity in the expert opinion and
missing data, enhancing the strength of reliability assessments.

Performance Metrics: The reliability engineering approach
generally measures the performance of the system in terms of
reliability, availability, maintainability, and cost (RAM-C).
Reliability is used to describe the likelihood of a system to run
without a failure during a certain time, whereas availability
combines reliability and maintainability, which is used to reflect
the duration during which a system is running™. Maintainability
is how easy and fast it is to recover the system after failure and
can be affected by the logistics of the spare parts, the time
required to repair and the efficiency of the diagnostic test?.
Lastly, cost factors are incorporated to make the system
optimization economically viable to balance high reliability and
available resources™. In a fuzzy environment, these metrics are
modified to include uncertainty to allow decision-makers to
consider system trade-offs using more realistic assumptions*2.

Methodology

System Modeling: In order to examine the reliability of multi-
component multi-complex systems (MCMCS), Reliability
Block Diagrams (RBDs) and Fault Tree Analysis (FTA) are
initially used to represent the structure of the system. RBDs
describe the logical interconnection amongst components in
either series, parallel, or k-out-of-n constructs, and they are
helpful in reliability calculation at the system level®. FTAs are
used to build upon this by hierarchically decomposing root
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causes of failures, which are basic events, gates, and top
events™. Integrating RBD with FTA will provide the capability
of both structural model and failure mode modeling, which is
vital in taking dependencies and cascading impacts in complex
systems”.

Fuzzy Reliability Estimation: Traditional probabilistic
reliability estimation assumes precise values for failure and
repair rates, which may not exist in real-world systems. To
overcome this limitation, uncertain parameters are represented
using fuzzy numbers, typically in triangular or trapezoidal
forms>®. For instance, a failure rate may be expressed as a
triangular fuzzy number (AL, AM, AU), where L, M, and U
represent the lower, most likely, and upper bounds.

The reliability of such systems is computed using the o-cut
method, which converts fuzzy sets into interval values for
analysis at different confidence levels’. Subsequently,
defuzzification techniques such as centroid or mean of maxima
are applied to obtain crisp reliability values®. This process
ensures that expert judgments and incomplete failure data are
meaningfully incorporated into reliability estimations, offering
more robust results than classical approaches®.

Optimization Model: A multi-objective model is developed to
solve the problem of optimization of reliability. The main aims
are to maximize the system's reliability and availability at the
lowest possible cost and to use the resources™. These are
communicated as fuzzy constraints reflecting budget
constraints, redundancy policy, and structural dependency*?.

An optimization problem may be formulated as follows: i.
Maximize: Reliability (R) Availability (A), ii. Minimize: Cost
(©)

Constrained by: Resource, budget, and system configuration
constraints.

Fuzzy expression of constraints can also provide a more flexible
and realistic decision-making, especially when more accurate
economic or resource information is unavailable®.

Solution Approach: Evolutionary algorithms are used to
address the fuzzy multi-objective optimization problem because
of their capacity to deal with non-linear, non-convex, and non-
dimensional search spaces. Genetic Algorithms (GA)*, Particle
Swarm Optimization (PS0)%, and Non-Dominated Sorting
Genetic  Algorithm-Il1 are the most popular ones. They
effectively  investigate trade-offs between  conflicting
objectives™.

The optimization model is based on creating a Pareto front of
non-dominated solutions, which also correspond to the different
trade-offs of system reliability and availability versus cost®’.
The decision-makers may then choose the most suitable
configuration according to the requirements of the system and
risk tolerance. The application of fuzzy logic in this
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optimization will guarantee that uncertainties in parameters are
directly addressed in the solution process to give more realistic
and flexible solutions.

Note: The numerical results obtained from the proposed model
are summarized in Table-1 to 4. These Tables have been
generated in a separate Microsoft Excel file and are referred to
throughout the analysis section.

Table-1: Failure Rates of Components.

Component Failure Rate (per 1000 hrs)
C1 Power Unit 0.004
C2 Cooling System 0.007
C3 Control Module 0.002
C4 Sensor Array 0.006
C5 Communication Link 0.005

Table-1 presents the failure rates of the individual components
considered in the system.

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0 ClPowerUnit  C2Cooling  C3Control ~ C4 Sensor Array
System Module Commanication
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Figure-1: Failure Rates of Components Failure Rate (per 1000
hrs).

Table-2: Repair Times of Components

Component Repair Time (hrs)
C1 Power Unit 6
C2 Cooling System 8
C3 Control Module 4
C4 Sensor Array 5
C5 Communication Link 7
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Table-2:  shows the repair times associated with each
component of the system.
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Figure-2: Repair Times of Components.

Table-3: Component Costs.

Component Cost (7 ©000)
C1 Power Unit 150
C2 Cooling System 120
C3 Control Module 200
C4 Sensor Array 100
C5 Communication Link 180

Table-3 summarizes the cost values of the components used in
the reliability optimization model.
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System Module Communlcatlon
Link
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Figure-3: Component Costs (] ‘000).
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Table-4: Radar Chart of Component Performance.

Component Reliability | Maintainability Cost
P (1-0) (1-Repair) Efficiency
C1 Power Unit 0.43 0.25 0.28
C2 Cooling 0.29 0 0.39
System
C3 Control
Module 0.71 0.5 0
C4 Sensor 0.14 0.38 0.5
Array
C5
Communication 0.29 0.13 0.11
Link

Table-4 provides the radar chart representing the overall
performance of the components based on multiple criteria.

C1 Power Unit
C3 Control Module

C2 Cooling System
e C4 Sensor Array

C5 Communication Link
Reliability (1-

A
0.8 )

0.6
0.4
0.2

Maintainabilit
y (1-Repair)

Cost
Efficiency

Figure-4: Radar Chart of Component Performance.

Case Study / Experimental Design

System Description: To illustrate this, a hypothetical aerospace
sub control system is taken as an example, which is a system
with five crucial components consisting of a power unit, cooling
system, control module, sensor array and communication link.
These types of subsystems are also typical of multi-component
multi-complex systems (MCMCS) in that they have structural
interdependence and non-homogeneous failure modes®. Any
failure in any of its components can cause a spill to other
components and consequent cascading failures in the mission-
critical aerospace functions®. Thus, one should quantify the
credibility of fuzzy and performance trade-offs to enhance the
operation and readiness to operate safety.

Data Representation: The fuzzy interval is used to express the
inputs of the reliability of the system that involves the

International Science Community Association

Res. J. Mathematical and Statistical Sci.

uncertainty in the real world data. The failure rates are
represented as triangular numbers that are fuzzy, whereas the
repair time is represented as a trapezoidal number that is fuzzy.
As an illustration, the failure rate of the power unit is modeled
(0.003, 0.004, 0.006), which indicates uncertainty between the
most likely, and the optimistic and pessimistic scenario®.
Likewise, the time of repair under different conditions are
different, and trapezoidal forms are used, e.g. (5, 6, 7, 8) of
power unit. The a-cut method is applied to these fuzzy inputs in
order to obtain confidence intervals and defuzzification is
applied to produce crisp values of reliability”®. The
methodology used will make sure that unfinished information
and expert judgments are introduced into reliability analysis in a
systematic manner.

Optimization Implementation: The fuzzy optimization is
defined as a multi-objective model, which aims to maximize
reliability and availability and minimize costs. Total budget
allocation, redundancy policies and structural system
dependencies are some of the constraints''. The optimization is
realized with the help of Non-Dominated Sorting Genetic
Algorithm 1l (NSGA-II), which is also known to be effective in
solving multi-objective problems®. The steps include:

Initialization: Set fuzzy parameters of every component.
Objective Evaluation: Calculate fuzzy reliability and
availability on the basis of a-cut intervals.

Population Evolution: Mutate by using crossover and mutation
operators.

Non-Dominated Sorting: Find Pareto-optimal performance-
cost solutions.

Defuzzification: Transform fuzzy output into clear trade-offs to
be used by any decision-making process.

Solutions are evaluated by computing performance indices, like
Fuzzy Mean Time to Failure (FMTTF), fuzzy availability, and
cost efficiency of the system®. The resulting Pareto front helps
decision-makers to make a selection of the best trade-offs and
hence enables them to choose configuring basing on the mission
priorities, cost tolerance, and risk appetite®’.

Results and Discussion

Reliability and Availability Estimation: The fuzzy reliability
estimation gave more realistic results, as opposed to the
traditional crisp computations. As an example, the Control
Module (C3) indicated a fuzzy reliability of 0.985 0.992 over-
cuts indicating high dependability in the event of uncertainty.
Equally, the PowerUnit (C1) recorded a fuzzy availability of
0.92 to 0.95 regarding changes in the repair times. The presence
of such ranges demonstrates the capability of the system to be
operated with reasonable accuracy even when there is
imprecision in the data and is consistent with the previous
studies on the topic that fuzzy methods are more adept at
representing uncertainty that is expert-influenced”?®.
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Optimization Outcomes: The optimization outcomes presented
Pareto-optimal selections of reliability, availability, and cost. An
example is the Cooling System (C2) redundancy which had a
great impact on the reliability of the system, and also cost
reduction, whereas prioritizing the Sensor Array (C4) gave cost-
effective solutions with an average increase in reliability. The
trade-off curve showed that the returns diminished beyond some
level of cost implying that there was an optimum configuration
that would perform sufficiently without exceeding the budget
limit***8. These findings show that decision-makers can be able
to change the system design strategies according to the mission
requirements or resource constraints.

Comparative Study: Comparative study on fuzzy-based
reliability estimation and the traditional probabilistic methods
revealed significant disparities. Probabilistic approach resulted
in a sharp reliability of 0.96 to the overall system whereas the
fuzzy model offered a range of 0.940.98 between 0-Alpha cuts.
This interval reflects the vagueness of the input parameters that
the probabilistic approach ignores. These results support the
previous research on the effectiveness of fuzzy logic when it
comes to dealing with incomplete and unprecise system
reliability data®®. The fuzzy framework therefore offers a more
solid and versatile foundation on the reliability based decision-
making.

Sensitivity Analysis: A sensitivity analysis was conducted to
evaluate the impact of uncertainty levels on optimization
performance. Increasing the spread of fuzzy intervals for failure
rates (e.g., widening C1 from (0.003, 0.004, 0.006) to (0.002,
0.004, 0.008)) caused noticeable shifts in the Pareto front, with
reduced system reliability at higher uncertainty. Components
with higher uncertainty in repair times, particularly the Cooling
System (C2), showed the greatest influence on system
availability. These results reinforce that system optimization
must account for uncertainty explicitly, as ignoring fuzziness
could lead to overly optimistic designs™**’.

Discussion: Interpretation of Findings: Findings suggest that
fuzzy optimization of reliability offers a more realistic
evaluation of the performance of the system than the
conventional probabilistic approaches. The strategy is able to
integrate expert opinions and inaccurate operational information
because it empowers failure rates and repair times to fuzzy
intervals. It has been evidenced that the Pareto front analysis
allows identifying the best system configurations by balancing
reliability, availability and cost that are important in decision
making under resource limited conditions***®, This confirms the
previous arguments where it has been indicated that fuzzy
methodologies are better than crisp models in dealing with
uncertainties”®.

Implications for Real-World Systems: These findings have
implications on various industries. Fuzzy optimization can also
be used in aerospace where system failure may be disastrous,
and redundant but economical component combinations can be
pointed out’. The approach may be used to aid maintenance
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planning in energy systems, especially smart grids in the sense
that it considers failure trends of distributed elements that
cannot be forecasted®. Fuzzy optimization in manufacturing is
used to reduce downtime and the cost of maintenance by
forecasting how the components will behave in uncertain
situations™®. Such applications illustrate how fuzzy reliability
models can be used to promote system robustness and system
efficiency.

Advantages of Fuzzy Optimization in Uncertain
Environments: The greatest quality of fuzzy optimization is
that it can directly deal with vagueness and incomplete
information, which is typical of real-world engineering
systems®. Fuzzy methods are applicable to the use of linguistic
and expert-based estimates, unlike classical probabilistic models
that demand comprehensive failure data, which means that they
are especially beneficial in the emerging or safety-critical
fields®. Moreover, evolutionary algorithms like NSGA-II and
PSO offer a powerful mechanism of the search in the
identification of trade-offs, so that the decision-makers are not
confined to a single solution but have a range of the Pareto-

optimal solutions'"*®,

Limitations of the Study: Although the suggested framework
has strengths, it also has weaknesses. First, the implementation
of fuzzy optimization can be rather computationally expensive,
especially in a situation where the scope of the system is quite
large and it contains interdependencies'?. Second, the findings
depend on the membership functions that the researcher chooses
and that can also bring the subjectivity in the analysis unless it is
done with a lot of care’. Third, although the hypothetical study
subsystem is based on aerospace, in reality, it should be
validated on large industrial datasets to ensure scalability and
generalizability. Lastly, the connection with real-time
monitoring, including loT-based predictive maintenance
platform, is an open issue to which the future studies should be
committed?.

Challenges and Research Gaps

Scalability to Very Large Systems: Scalability is one of the
problems in the application of fuzzy reliability optimization to
multi-component multi-complex systems (MCMCS). Whereas
small and medium-scale systems may be well modeled with
fuzzy methods, large industrial systems like smart grids or
aerospace networks have thousands of interacting systems, and
fuzzy modeling is computationally expensive and complicated®.
The issue of scalability is further enhanced when fuzzy
parameters are run on all the components resulting in
exponential increase in computation needs®. The next direction
of work should be a hybrid method of applying fuzzy models
with approximation methods to deal with scalability.

High Computational Cost of Fuzzy Evolutionary
Optimization: Fuzzy evolutionary algorithms, like GA, PSO,
and NSGA-II, are very strong in multi-objective optimization,
but frequently use a lot of computational power because the
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algorithms have to re-evaluate solutions under fuzzy
uncertainty*"*%. This makes them expensive to compute which
constrains their useful application particularly in real time
decision making settings™. Besides, the more the goals and
constraints, the slower the convergence, which implies
efficiency and applicability concerns in time-sensitive areas. To
address this impediment, it is necessary to develop lightweight
and parallel optimization frameworks™?.

Integration with Real-Time Monitoring Systems: The other
gap in the research would be on incorporating fuzzy
optimization structures with real-time monitoring systems, e.g.
loT-enabled predictive maintenance systems. Although fuzzy
models are efficient to model uncertainty, the majority of
applications are kept offline and do not come with the ability to
make a dynamic update to reliability estimates when new sensor
data is made available®. Online integration may improve
predictive quality and provide adaptive maintenance rules
particularly in systems that are of critical importance, such as
aerospace and healthcare machines®. To fill the aforementioned
gap, there is need to come up with adaptive fuzzy models that
are able to handle live data streams without compromising on
computation efficiency.

Lack of Standardized Fuzzy Reliability Benchmarks: At this
point, standardized benchmarks with regards to the evaluation
of fuzzy reliability models do not exist. In contrast to
probabilistic reliability analysis, which may have access to
clearly defined reliability databases and test cases, fuzzy
methods are frequently justified on case based or hypothetical
systems™®.  This incompatibility of the various fuzzy
optimization methods and decelerates their implementation in
industries is due to the absence of common evaluation criteria.
Setting standardized fuzzy reliability standards and data sets
would allow much more rigorous validation, comparison across
methods, and speed up its adoption in the engineering practice™.

Future Directions

Hybrid Approaches Combining Fuzzy, Probabilistic, and Al
Methods: Further studies are recommended in the hybrid
reliability models to combine fuzzy logic, probabilistic models
and artificial intelligence (Al). Fuzzy techniques are applicable
to imprecision; meanwhile, the probabilistic technique is
employed when there is an abundance of statistical data, and Al
methods reveal latent trends of big data**?. When these
paradigms are combined, it will be possible to perform more
accurate and adaptable reliability measurements of large,
heterogeneous systems. As an example, fuzzy-Bayesian
networks can represent uncertainty and probabilistic
dependencies, whereas the use of Al-based optimization might
make multi-objective reliability design converge faster”.

Use of Machine Learning for Predictive Reliability

Modeling: Deep learning, random forests, and reinforcement
learning are machine learning (ML) algorithms capable of being
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used to a great degree in improving predictive reliability
modeling. ML is capable of identifying trends that could not be
identified by traditional or fuzzy models by relying on the
experience of failure data in history and sensor streams'®. The
combination of ML and fuzzy logic enables the systems to
accurately and dynamically revise reliability estimations as new
information arises to enhance predictive maintenance policies®.
This type of adaptive models would be of special use in safety-
critical fields such as aerospace and health care where predictive
performance is crucial.

IoT and Digital Twins for Real-Time Fuzzy Reliability
Optimization: With the emergence of the Internet of Things
(1oT) and digital twins technologies, the nature of real-time
fuzzy reliability optimization has a new opportunity. The loT
sensors can continuously record performance information on a
component-level, and digital twins, a virtual representation of
real-world system, can also simulate reliability in uncertain
settings®. Combining fuzzy reliability models with digital twins
can be utilized to provide a continuous checkup and
optimization options in real-time, allowing the decision-makers
to work with the maintenance strategies before implementing
them in physical systems™. This real-time allows to provide a
better resilience of the system and minimizes downtime in
manufacturing, energy, and aerospace industries®’.

Policy and Regulatory Perspectives for Mission-Critical
Systems: In addition to technical innovations, the policy and
regulatory frameworks should be changed to accommodate the
use of fuzzy reliability analysis in areas of mission-critical
concerns. The existing requirements in the aerospace, nuclear
power and healthcare industries are mostly based on the
deterministic or probabilistic measures of reliability*. The
fuzzy-based standards should also be introduced because it
would enable regulators to capture the uncertainty in safety tests
more openly. In addition, regulatory adoption would promote
the investment in fuzzy reliability optimization tools by
industries, which would provide wider integration in
industries™. Engineers, policymakers and safety authorities will
have to work together in creating a set of standard structures
that will strike a balance between innovation and accountability.

Conclusion

This paper designed and presented a fuzzy reliability
optimization model that is specific to multi-component multi-
complex systems (MCMCS). The study combined the use of
fuzzy set theory, multi-objective optimization and performance
analysis, which overcomes serious drawbacks of the
conventional probabilistic models to deal with vagueness and
incomplete data. The framework systematically included fuzzy
membership functions to the failure rates and repair times, it
used alpha-cut and defuzzication methods to make estimates and
evolutionary algorithms by way of NSGA-II and PSO to
identify Pareto-optimal trade-offs of reliability, availability, and
cost.
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The results of the case study proved that fuzzy reliability models
deliver more realistic information than crisp probabilistic
models. Components that had high uncertainty like cooling
systems were found to have a high impact in total system
performance thus the need to include uncertainty in models of
optimization explicitly. The Pareto front analysis indicated the
cost-performance trade-offs where decision-makers choose the
best settings that suit their operational and budgetary priorities.
Sensitivity analysis further confirmed the strength of the
approach in that it showed the effect of different levels of
uncertainty on the results of optimization.

The results have far-reaching practical implications in the field
of engineering and industry. Fuzzy optimization can be used to
aid the creation of fault-tolerant subsystems in aerospace in the
face of ambiguous operating requirements. It can enhance the
reliability and availability of smart grids in the energy systems
by directing redundancy planning. In the manufacturing sector,
it can be used to improve predictive maintenance policy and
minimize downtime by taking uncertainty into account
concerning component behaviours.

On the whole, this study is valuable as it (i) creates a unified
fuzzy reliability modeling and optimization framework, (ii)
confirms its performance by a case study, and (iii) offers
practical suggestions to decision-makers in the vital engineering
industries. The framework should be further pursued in the
future by hybrid Al-fuzzy-probabilistic methods, integration of
Al-fuzzy-probabilistic real-time with 10T, and benchmark
standards to hasten industrial implementation.

References

1. Elsayed, E. A. (2012). Reliability engineering. John Wiley
& Sons.

2. Rausand, M., & Hoyland, A. (2004). System reliability
theory: Models, statistical methods, and applications. John
Wiley & Sons.

3. Modarres, M. (2016). Reliability engineering and risk
analysis: A practical guide. CRC Press.

4. Zio, E. (2009). Reliability engineering: OIld problems and
new challenges. Reliability Engineering & System Safety,
94(2), 125-141.

5. Chen, S. J.,, & Pham, H. (2001). Fuzzy sets and fuzzy logic
in reliability engineering. CRC Press.

6. Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8(3), 338-353.

7. Kumar, U. D., Crocker, J., Knezevic, J., & El-Haram, M.
(2010). Reliability, maintainability and risk. CRC Press.

8. Onisawa, T. (1990). An approach to human reliability in
man-machine systems using fuzzy sets. Reliability
Engineering & System Safety, 27(3), 189-202.

International Science Community Association

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Res. J. Mathematical and Statistical Sci.

Xing, L., Amari, S. V., & Wang, X. (2016). Fuzzy Bayesian
networks for system reliability analysis under epistemic
uncertainty. IEEE Transactions on Reliability, 65(2), 816—
829.

Iyer, N., & Venkatachalam, S. (2013). Reliability modeling
of complex systems: Challenges and future trends.
International Journal of Quality & Reliability Management,
30(3), 247-268.

Coit, D. W., & Smith, A. E. (1996). Reliability optimization
of series—parallel systems using a genetic algorithm. IEEE
Transactions on Reliability, 45(2), 254-260.

Zhou, X., Huang, H. Z., & Li, Y. (2018). Fuzzy multi-
objective reliability optimization for complex systems.
Applied Soft Computing, 65, 315-327.

Modarres, M. (2016). Reliability engineering and risk
analysis: A practical guide. CRC Press.

Trivedi, K. S., & Bobbio, A. (2017). Continuous-Time
Markov Chain: Reliability Models. In Reliability and
Availability ~ Engineering:  Modeling, Analysis, and
Applications (pp. ~ 357-422).  chapter, ~ Cambridge:
Cambridge University Press.

Levitin, G. (2005). The universal generating function in
reliability analysis and optimization. Springer.

Mandal, S., & Pham, H. (2015). Reliability and availability
optimization of complex systems using particle swarm

optimization. Reliability Engineering & System Safety,
142, 357-364.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf
optimizer. Advances in Engineering Software, 69, 46-—61.

Deb, K., Pratap, A., Agarwal, S., &Meyarivan, T. (2002). A
fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation, 6(2),
182-197.

Cai, K. Y. (1996).
Springer.

Introduction to fuzzy reliability.

Pham, H. (2006). Reliability and optimal maintenance.
Springer.

Billinton, R., & Allan, R. N. (1992). Reliability evaluation
of engineering systems. Springer.

Barlow, R. E., &Proschan, F. (1975). Statistical theory of
reliability and life testing. Holt, Rinehart and Winston.

Goel, A. L. (1985). Software reliability models:
Assumptions, limitations, and applicability. IEEE
Transactions on Software Engineering, 11(12), 1411-1423.

Park, K. S. (1987). Fuzzy-set theoretic interpretation of
economic reliability. IEEE Transactions on Reliability,
36(5), 629-631.

Ross, T. J. (2004). Fuzzy
applications. John Wiley & Sons.

logic with engineering



Research Journal of Mathematical and Statistical Sciences
Vol. 14(1), 11-19, January (2026)

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

ISSN 2320-6047

Sait, S. M., & Youssef, H. (1999). lIterative computer
algorithms with applications in engineering: Solving
combinatorial optimization problems. IEEE Computer
Society Press.

Yao, J.,, & Lin, C. (2002). Fuzzy optimization: Recent
advances and applications. Springer.

Pham, H., & Wang, H. (1996). Imperfect maintenance.
European Journal of Operational Research, 94(3), 425-438.

Birolini, A. (2017). Reliability engineering: Theory and
practice. Springer.

Yang, B. (2007). Reliability, maintainability and risk:
Practical methods for engineers. Butterworth-Heinemann.

Gupta, A., & Gupta, R. (2013). Reliability analysis of multi-
component systems with fuzzy failure data. International
Journal of Quality & Reliability Management, 30(3), 325—
340.

Wang, W., & Pham, H. (2011). Reliability modeling and
optimization under fuzzy environment. Applied Soft
Computing, 11(1), 119-129.

Guo, H., & Yang, X. (2007). Fuzzy fault tree analysis of a
control system. Reliability Engineering & System Safety,
92(3), 396-403.

Kang, R., & Zhou, X. (2012). System reliability
optimization under uncertainty using fuzzy mathematics.
International Journal of Performability Engineering, 8(5),
531-540.

Tsoukalas, L. H., & Uhrig, R. E. (1997). Fuzzy and neural
approaches in engineering. John Wiley & Sons.

Patra, G., & Pham, H. (2014). Reliability analysis of
repairable systems with fuzzy parameters. International
Journal of Quality & Reliability Management, 31(2), 159—
173.

Liu, Y., & Li, X. (2015). Reliability analysis of k-out-of-n
systems with fuzzy components. Soft Computing, 19(7),
1933-1946.

Cheng, C. H. (1998). Evaluating weapon systems using
fuzzy multi-criteria decision making. Fuzzy Sets and
Systems, 100(1-3), 9-26.

Murthy, D. N. P., & Nguyen, D. (1985). System reliability

under fuzzy environments. IEEE Transactions on
Reliability, 34(5), 473-478.

Zhao, Y., & Liu, H. (2013). Reliability allocation for
complex systems under fuzzy constraints. Reliability
Engineering & System Safety, 116, 78-87.

International Science Community Association

41.

42,

43.

44,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

Res. J. Mathematical and Statistical Sci.

Huang, H. Z., & Zuo, M. J. (2000). Optimization of system
reliability using fuzzy numbers. Computers & Industrial
Engineering, 38(2), 357-372.

Lin, C., & Yao, J. (2003). Fuzzy linear programming
models for reliability design. Fuzzy Sets and Systems,
139(3), 395-414.

Misra, K. B. (1992). Reliability analysis and prediction: A
methodology oriented treatment. Elsevier.

Zhu, Q., & Chen, X. (2007). Reliability modeling with
uncertain failure data. Applied Mathematics and
Computation, 185(1), 23-34.

Jain, R., & Garg, H. (2018). A novel reliability measure of a
system with complex structure using intuitionistic fuzzy set.
IEEE Transactions on Fuzzy Systems, 26(4), 2130-2137.

Li, X., & Huang, H. Z. (2008). Fuzzy lifetime data analysis
and reliability estimation. International Journal of
Reliability, Quality and Safety Engineering, 15(4), 323
339.

Garg, H., & Sharma, S. (2012). Multi-objective reliability-
redundancy allocation problem using fuzzy goal
programming. Computers & Industrial Engineering, 62(4),
1091-1100.

Singh, C., &Billinton, R. (1977). System reliability
modeling and evaluation. Hutchinson Ross.

Zuo, M. J., & Cui, L. (2003). Reliability evaluation of
multi-state systems using fuzzy sets. IEEE Transactions on
Reliability, 52(2), 181-187.

Mahapatra, G. S., & Roy, T. K. (2009). Reliability
evaluation using fuzzy failure rates. Applied Mathematical
Modelling, 33(1), 146-157.

Gupta, R., & Sharma, A. (2011). Reliability analysis of
communication networks under fuzzy environment.
International Journal of Performability Engineering, 7(2),
171-182.

Singh, V., & Yadav, O. P. (2013). Reliability-based design
optimization under fuzzy uncertainty. Quality and
Reliability Engineering International, 29(3), 365-375.

Xu, J., Zhan, T., & Deng, Y. (2025). Evaluating evidential
reliability in pattern recognition based on intuitionistic
fuzzy sets. International Journal of Fuzzy Systems, 1-15.
Kamal, M., Modibbo, U. M., AlArjani, A., & Ali, I. (2021).
Neutrosophic fuzzy goal programming approach in
selective maintenance allocation of system
reliability. Complex & intelligent systems, 7(2), 1045-1059.
Sharma, H. L., Shukla, V., & Shukla, V. (2025). A genetic
algorithm approach for optimization problems. Research
Journal of Mathematical & Statistical Sciences, 13(3), 14—
19.



