

A Multi-Variate Reducible Product-Type Estimator in Two-Phase Sampling

Amiya Ojha

Department of Statistics, Ravenshaw University, Cuttack 753003, India
amiyaojha460@gmail.com

Available online at: www.isca.in , www.isca.me

Received 10th August 2025, revised 23rd September 2025, accepted 6th November 2025

Abstract

To estimate population mean using multiple supplementary variables in a two-phase sampling set-up, a reducible or generalized product estimator has been constructed. It is assumed that the mean of the primary supplementary variable is unavailable and the means of p other (additional) supplementary variables are easily available. After studying reducibility property of the proposed estimator, some of its desirable statistical properties have been analyzed both theoretically and empirically.

Keywords: Supplementary variable, bias, efficiency, product estimator, two-phase sampling.

Introduction

Let y_i and x_i , $i = 1, 2, \dots, N$, be the measurements corresponding to survey variable y and a high negatively correlated supplementary (auxiliary) variable x for the i th unit of a population U whose means are $\bar{Y} = \frac{1}{N} \sum_{i=1}^N y_i$ and $\bar{X} = \frac{1}{N} \sum_{i=1}^N x_i$. As is already known, to estimate \bar{Y} in the absence of information on \bar{X} , one needs a two-phase sampling. In the present context permitting simple random sampling without replacement (SRSWOR) at each phase, this sampling scheme consists of the selection of n_1 units for the first-phase sample $s_1 (s_1 \subset U)$ to observe x for an estimation of \bar{X} , and then selection of n_2 units for the second-phase sample $s_2 (s_2 \subset s_1)$ to determine y - values.

Define $\bar{y}_2 = \frac{1}{n_1} \sum_{i \in s_1} y_i$ and $\bar{x}_2 = \frac{1}{n_2} \sum_{i \in s_2} x_i$ as the mean values of y and x respectively for s_2 , and $\bar{x}_1 = \frac{1}{n_1} \sum_{i \in s_1} x_i$ as the mean value of x for s_1 . Then the traditional product estimator of \bar{Y} is given by $t_p = \bar{y}_2 \frac{\bar{x}_2}{\bar{x}_1}$.

Even though t_p is biased, effect of bias is insignificant for large samples, and the asymptotic mean square error (MSE) expression is given by

$$M(t_p) = \theta_2 S_y^2 + (\theta_2 - \theta_1) R (R S_x^2 + 2 \rho_{yx} S_y S_x), \quad (1)$$

where $\theta_1 = \frac{1}{n_1} - \frac{1}{N}$, $\theta_2 = \frac{1}{n_2} - \frac{1}{N}$, $R = \frac{\bar{Y}}{\bar{X}}$, $S_y^2 = \frac{1}{N-1} \sum_{i=1}^N (y_i - \bar{Y})^2$, $S_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{X})^2$ and ρ_{yx} is the coefficient of correlation among y and x . t_p is more error-free (précised) than the direct estimator \bar{y}_2 when $\frac{\beta_{yx}}{R} < -\frac{1}{2}$, such that β_{yx} is regression coefficient of y on x .

Following Chand and Kiregyera, improvement over t_p in the sense of reduction of its MSE is possible by involving an additional supplementary variable¹⁻³. This technique may be called *Chand-Kiregyera(C-K) Technique* that encompasses estimating \bar{X} from s_1 exploiting prior details on an additional supplementary variable to be used in place of \bar{x}_1 in any standard estimator. Although many researchers followed the idea of wielding an additional supplementary variable to compose varieties of estimators, only a handful efforts have been given to generate product-type estimators. Considering availability of multiple additional auxiliary variables, the present paper not only considers a generalized product-type estimator under C-K approach but also develops another new generalized product-type estimator under a modified approach called *Redesigned Approach*⁴.

Association of Multiple Additional Supplementary Variables

Consider a situation where prior details on p cheaply and easily accessible additional supplementary variables z_1, z_2, \dots, z_p (may be called as z -variables) with $\mathbf{z}' = (z_1, z_2, \dots, z_p)$, are obtainable. Assume that these z -variables acquire high correlation with y and x . Define $\bar{\mathbf{Z}}' = (\bar{Z}_1, \bar{Z}_2, \dots, \bar{Z}_p)$ as vector of their population means, where $\bar{Z}_j = \frac{1}{N} \sum_{i=1}^N z_{ji}$ and z_{ji} is the observation for z_j on the i -th unit of U , $j = 1, 2, \dots, p$; $i = 1, 2, \dots, N$. It is also accepted that \bar{Z}_j 's are known precisely.

In the usual definition, let $\mathbf{S}_{zz} = \begin{pmatrix} S_{z_1}^2 & \cdots & S_{z_1 z_p} \\ \vdots & \ddots & \vdots \\ S_{z_p z_1} & \cdots & S_{z_p}^2 \end{pmatrix}$, $\mathbf{S}'_{yz} = (S_{yz_1}, S_{yz_2}, \dots, S_{yz_p})$, $\mathbf{S}'_{xz} = (S_{xz_1}, S_{xz_2}, \dots, S_{xz_p})$, $\boldsymbol{\beta}_{yz} = \mathbf{S}_{zz}^{-1} \mathbf{S}_{yz}$ and $\boldsymbol{\beta}_{xz} = \mathbf{S}_{zz}^{-1} \mathbf{S}_{xz}$, where $S_{z_j}^2 = \frac{1}{N-1} \sum_{i=1}^N (z_{ji} - \bar{Z}_j)^2$, $S_{z_j z_k} =$

$$\frac{1}{N-1} \sum_{i=1}^N (z_{ji} - \bar{z}_j) (z_{ki} - \bar{z}_k) S_{yzj} = \frac{1}{N-1} \sum_{i=1}^N (y_i - \bar{Y}) (z_{ji} - \bar{z}_j) \text{ and } S_{xzj} = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{X}) (z_{ji} - \bar{z}_j), j \neq k = 1, 2, \dots, p.$$

Let us further define $\rho_{yzj} = S_{yzj} / S_y S_{zj}$ and $\rho_{xzj} = S_{xzj} / S_x S_{zj}$, $j = 1, 2, \dots, p$ respectively as the coefficients of simple correlation among (y, z_j) and (x, z_j) ; and $\rho_{y,z}^2 = \frac{S'_{yz} S_{zz}^{-1} S_{yz}}{S_y^2}$ as the squared of the coefficient of multiple correlation of y with the elements of \mathbf{z} .

In the considered two-phase sampling set-up, s_1 is used to accumulate information on x and all z -variables whereas s_2 on y only. Define $\bar{z}'_1 = (\bar{z}_{11}, \bar{z}_{12}, \dots, \bar{z}_{1p})$ and $\bar{z}'_2 = (\bar{z}_{21}, \bar{z}_{22}, \dots, \bar{z}_{2p})$ such that $\bar{z}_{1j} = \frac{1}{n_1} \sum_{i \in s_1} z_{ji}$ and $\bar{z}_{2j} = \frac{1}{n_2} \sum_{i \in s_2} z_{ji}$ for $j = 1, 2, \dots, p$.

Let us first discuss a generalized product-type estimator that can be considered under the C-K method in the presence of p z -variables. Superseding $\bar{x}_1 - \mathbf{A}'(\bar{z}_1 - \bar{Z})$ for \bar{x}_1 in t_p , the following generalized product-type estimator can be defined:

$$t_{MP} = \bar{y}_2 \frac{\bar{x}_2}{[\bar{x}_1 - \mathbf{A}'(\bar{z}_1 - \bar{Z})]},$$

where $\mathbf{A}' = (A_1, A_2, \dots, A_p)$ such that A_j 's are known constants (coefficients) normally decided to control MSE of the estimator. Note that, for various choices of the coefficients, t_{MP} clearly defines a class or a system of estimators of \bar{Y} . Asymptotic MSE expression for t_{MP} is given as

$$M(t_{MP}) = M(t_p) + \theta_1 R \mathbf{A}' S_{zz} (R \mathbf{A} + 2\beta_{yz}). \quad (2)$$

$$\text{From (2), } M(t_{MP}) < M(t_p) \text{ i.e., } t_p \text{ is less efficient than } t_{MP} \text{ if } \mathbf{A} < -2 \frac{\beta_{yz}}{R}. \quad (3)$$

Hence, under this reasonable limitation, t_{MP} can give a remarkable increase of precision over t_p and accordingly selection of \mathbf{A} can be made. Note that this selection is not only influenced by the correlation of x with y but also by the correlations of all z -variables with y .

The optimum value of \mathbf{A} that computed in the usual manner to minimize $M(t_{MP})$ is

$$\hat{\mathbf{A}} = -R^{-1} S_{zz}^{-1} S_{yz} = -R^{-1} \beta_{yz}. \quad (4)$$

Utilization of this optimum value gives minimum $M(t_{MP})$ i.e., the minimum MSE bound of t_{MP} as

$$M_{\min}(t_{MP}) = M(t_p) - \theta_1 S'_{yz} S_{zz}^{-1} S_{yz} = M(t_p) - \theta_1 S_y^2 \rho_{y,z}^2, \quad (5)$$

and the optimum i.e., minimum MSE bound estimator of t_{MP} as

$$\hat{t}_{MP} = \bar{y}_2 \frac{\bar{x}_2}{[\bar{x}_1 + R^{-1} \beta'_{yz} (\bar{z}_1 - \bar{Z})]}.$$

For the case of one z -variable $z_j, j = 1, 2, \dots, p$, say, $\hat{t}_{MP} = t = \bar{y}_2 \frac{\bar{x}_2}{[\bar{x}_1 - d(\bar{z}_{1j} - \bar{z}_j)]}$, a composite estimator considered earlier⁵.

See that t is generalizable for various selections of d . For example, t_p , $t_{RP} = \bar{y}_2 \frac{\bar{x}_2 \bar{z}_{1j}}{\bar{x}_1 \bar{z}_j}$, $t_{PP} = \bar{y}_2 \frac{\bar{x}_2 \bar{z}_j}{\bar{x}_1 \bar{z}_{1j}}$ and $t_{RGP} = \bar{y}_2 \frac{\bar{x}_2}{[\bar{x}_1 - \beta_{xzj}(\bar{z}_{1j} - \bar{z}_j)]}$ appear as specified cases of t if $d = 0$, $\frac{\bar{x}_1}{\bar{z}_{1j}}$, $-\frac{\bar{x}_1}{\bar{z}_j}$ and $\beta_{xzj} = \frac{S_{xzj}}{S_{zj}^2}$ respectively. For this case, also note that

$$\hat{t}_{MP} \rightarrow \hat{t} = \bar{y}_2 \frac{\bar{x}_2}{\bar{x}_1 - \frac{\beta_{yzj}}{R} (\bar{z}_{1j} - \bar{z}_j)}$$

and

$$M_{\min}(t_{MP}) \rightarrow M_{\min}(t) = M(\hat{t}) = M(t_p) - \theta_1 S_y^2 \rho_{yzj}^2. \quad (6)$$

The Proposed Reducible Product-Type Estimator

In many times the C-K approach has been denounced on the ground that it encourages substitution of \bar{x}_1 only by another estimator of \bar{X} taking into account of one z -variable using data on s_1 but without considering \bar{x}_2 which happens to be less efficient estimate than \bar{x}_1 for estimating \bar{X} ⁴. This approach therefore fails to exploit information contents on the additional supplementary variable z_j at different phases of sample selection. Keeping this in mind, the authors developed a more refined system contemplating certain modification over the C-K approach for the adequate use of available information on single z -variable z_j and to bring increased precision over t_p . They also called this technique a *Redesigned Technique* that involves making use of two difference estimators viz., $\bar{x}_1 - \delta(\bar{z}_{1j} - \bar{z}_j)$ established on s_1 and $\bar{x}_2 - \eta(\bar{z}_{2j} - \bar{z}_{1j})$ established on s_2 in lieu of \bar{x}_1 and \bar{x}_2 respectively in t_p . This methodology prompted them to define a new more generalized or a reducible (as named by the authors) product-type estimator:

$$\ell^{(G)} = \bar{y}_2 \frac{\bar{x}_2 - \eta(\bar{z}_{2j} - \bar{z}_{1j})}{\bar{x}_1 - \delta(\bar{z}_{1j} - \bar{z}_j)}.$$

The reducibility characteristic of $\ell^{(G)}$ brings a system of estimators of product-type for \bar{Y} . Taking $\eta = 0$ and $\delta = d$, $\ell^{(G)} = t$. This implies that the generalized estimator t forms a sub-class of the class generated by $\ell^{(G)}$. On the other hand, if $\eta = 0$ and $\delta = 0$, $\ell^{(G)} = t_p$ i.e., our base estimator; and if $\eta = 0$, $\ell^{(G)} \rightarrow t_{RP}$, t_{PP} and t_{RGP} for $\delta = \frac{\bar{x}_1}{\bar{z}_{1j}}$, $-\frac{\bar{x}_1}{\bar{z}_j}$ and β_{xzj} respectively.

Under their designed technique using p z -variables, the following reducible estimator, a direct multi-variate extension of $\ell^{(G)}$, is proposed:

$$\ell_{MP}^{(G)} = \bar{y}_2 \frac{\bar{x}_2 - C'_2(\bar{z}_2 - \bar{z}_1)}{\bar{x}_1 - C'_1(\bar{z}_1 - \bar{Z})},$$

where: $C'_1 = (C_1, C_2, \dots, C_p)$ and $C'_2 = (C_{21}, C_{22}, \dots, C_{2p})$ are vectors of known coefficients decided to reduce $M(\ell_{MP}^{(G)})$ as per requirement. Notice that $\ell_{MP}^{(G)}$ is compiled when \bar{x}_1 and \bar{x}_2 in t_p are replaced by $\bar{x}_1 - C'_1(\bar{z}_1 - \bar{z})$ and $\bar{x}_2 - C'_2(\bar{z}_2 - \bar{z}_1)$ respectively. Furthermore, note that $\ell_{MP}^{(G)} = t_{MP}$ if $C'_1 = A$ and $C'_2 = 0$.

An asymptotic MSE of $\ell_{MP}^{(G)}$ is obtained as

$$M(\ell_{MP}^{(G)}) = M(t_p) + \theta_1 R C'_1 S_{zz} (R C_1 + 2\beta_{yz}) + (\theta_2 - \theta_1) R C'_2 S_{zz} (R C_2 - 2\beta_{yz} - 2R\beta_{xz}). \quad (7)$$

As from (7) it is difficult to get both necessary and sufficient conditions, the following sufficient conditions are presented for warranting an appreciable gain in precision of $\ell_{MP}^{(G)}$ over t_p i.e., $M(\ell_{MP}^{(G)}) < M(t_p)$:

$$C_1 < -2 \frac{\beta_{yz}}{R} \text{ and } C_2 < \frac{2(\beta_{yz} + R\beta_{xz})}{R}. \quad (8)$$

Hence, to meet (8) selections of the coefficient vectors C_1 and C_2 don't depend on the impact of x on y but on the impacts of all z -variables on both x and z .

To explain situations where the gain in efficiency of $\ell_{MP}^{(G)}$ over t_{MP} is remarkable, from (2) and (7) it is deduced that

$$M(\ell_{MP}^{(G)}) = M(t_{MP}) + \theta_1 R (C_1 - A)' [R(C_1 + A) + 2\beta_{yz}] + (\theta_2 - \theta_1) R C'_2 S_{zz} (R C_2 - 2\beta_{yz} - 2R\beta_{xz}). \quad (9)$$

This implies that $\ell_{MP}^{(G)}$ would be more efficient than t_{MP} when the following conditions are met: either

$$A < C_1 < -\frac{RA+2\beta_{yz}}{R} \text{ or } -\frac{RA+2\beta_{yz}}{R} < C_1 < A, \quad (10)$$

and

$$C_2 < \frac{2(\beta_{yz} + R\beta_{xz})}{R}. \quad (11)$$

But when $C_1 = A$, (11) is sufficient for $M(\ell_{MP}^{(G)}) < M(t_{MP})$.

It is very important to remark that the comparisons of $\ell_{MP}^{(G)}$ with t_p and t_{MP} would of course be meaningful only when t_p out performs over the direct estimator \bar{y}_2 i.e., if $2\beta_{yz} < -R$.

Following conventional optimization procedure, the optimum values of C_1 and C_2 to minimize $M(\ell_{MP}^{(G)})$ in (9) are determined as

$$\hat{C}_1 = -R^{-1} S_{zz}^{-1} S_{yz} = -R^{-1} \beta_{yz} \quad (12)$$

$$\hat{C}_2 = R^{-1} S_{zz}^{-1} S_{yz} + S_{zz}^{-1} S_{xz} = R^{-1} \beta_{yz} + \beta_{xz}. \quad (13)$$

Evaluating (9) for $C_1 = \hat{C}_1$ and $C_2 = \hat{C}_2$, after simplification, the minimum MSE bound of $\ell_{MP}^{(G)}$ is derived as

$$M_{\min}(\ell_{MP}^{(G)}) = M(t_p) - \theta_1 S_y^2 \rho_{yz}^2 - (\theta_2 - \theta_1) (S_{yz} + R S_{xz})' S_{zz}^{-1} (S_{yz} + R S_{xz}). \quad (14)$$

See that the minimum MSE bound expression for $\ell_{MP}^{(G)}$ relies upon the partial correlation of y and x for fixed z , and multiple correlations of y and x with z .

Conclusively, a minimum MSE bound estimator of $\ell_{MP}^{(G)}$ corresponding to equation (14) is

$$\hat{\ell}_{MP}^{(G)} = \bar{y}_2 \frac{\bar{x}_2 - (R^{-1} \beta_{yz} + \beta_{xz})' (\bar{z}_2 - \bar{z}_1)}{\bar{x}_1 + R^{-1} \beta_{yz}' (\bar{z}_1 - \bar{z})}.$$

Here we also straight forwardly derive that when one additional supplementary variable z_j has been used,

$$\hat{\ell}_{MP}^{(G)} \rightarrow \hat{\ell}_p^{(G)} = \bar{y}_2 \frac{\bar{x}_2 - \left(\frac{\beta_{yz} z_j}{R} + \beta_{xz} z_j \right) (\bar{z}_2 - \bar{z}_1)}{\bar{x}_1 + \frac{\beta_{yz} z_j}{R} (\bar{z}_1 - \bar{z}_j)},$$

and

$$M_{\min}(\ell_{MP}^{(G)}) \rightarrow M_{\min}(\ell_p^{(G)}) = M(\hat{\ell}_p^{(G)}) = M(t_p) - S_y^2 \left[\theta_1 \rho_{yz}^2 + (\theta_2 - \theta_1) \left(\rho_{yz} + \frac{c_x}{c_y} \rho_{xz} \right)^2 \right]. \quad (15)$$

Efficiency Comparison

Various conditions procured above to show $\ell_{MP}^{(G)}$ is more efficient than t_p and t_{MP} are hard to verify unless they are tried to a definite surveyed situation. However, from the said conditions it may be inferred that the composed redesigned methodology has scope to bring improvements over that of Chand-Kiregyera. But for more clarification, precision of $\ell_{MP}^{(G)}$ compared t_p and t_{MP} has been evaluated in term of minimum MSE bound. For this let us modify (14) as

$$M_{\min}(\ell_{MP}^{(G)}) = M(t_p) - \theta_1 S_y^2 \rho_{yz}^2 - (\theta_2 - \theta_1) \mathbf{U}' \mathbf{S}_{zz}^{-1} \mathbf{U}, \quad (16)$$

such that $\mathbf{U}' = (U_1, U_2, \dots, U_p)$ and $U_j = \frac{1}{N-1} \sum_{i=1}^N (g_i - \bar{G})(z_{ji} - \bar{z}_j)$, $j = 1, 2, \dots, p$, where $g_i = y_i + R x_i$ and $\bar{G} = \frac{1}{N} \sum_{i=1}^N g_i = \bar{Y} + R \bar{X}$. \mathbf{S}_{zz} being a variance-covariance matrix, is necessarily positive definite and so also \mathbf{S}_{zz}^{-1} . Hence, the quadratic form $\mathbf{U}' \mathbf{S}_{zz}^{-1} \mathbf{U}$ is positive definite, i.e., $\mathbf{U}' \mathbf{S}_{zz}^{-1} \mathbf{U} \geq 0^6$. Then, from (5), (14) and (16)

$$M_{\min}(\ell_{MP}^{(G)}) < M_{\min}(t_{MP}) < M(t_p), \quad (17)$$

which establishes that $\hat{\ell}_{MP}^{(G)}$ is more efficient than both \hat{t}_{MP} and t_p . This outcome simply confirms that the methodology used to

formulate $\ell_{MP}^{(G)}$ is superior to that used for t_{MP} under the minimum MSE bound criterion.

Empirical Study

To authenticate previous theoretical outcomes relating to the recommended generalized estimators t_{MP} and $\ell_{MP}^{(G)}$, five populations with two z -variables (z_1 and z_2), as detailed below, have been considered.

Population 1 ⁷: $N = 32$ automobiles, $y =$ miles/gallon, $x =$ displacement, $z_1 =$ horse power, $z_2 =$ weight.

Population 2 ⁸: $N = 64$ countries, $y =$ child mortality, $x =$ female literacy rate, $z_1 =$ per capita GNP, $z_2 =$ total fertility rate.

Population 3 ⁹: $N = 46$ observations, $y =$ evaporation, $x =$ integrated area under daily humidity curve, $z_1 =$ minimum daily relative humidity, $z_2 =$ integrated area under daily air temperature curve.

Population 4 ¹⁰: $N = 45$ observations, $y =$ pigment creatinine, $x =$ Phosphate (mg/mL), $z_1 =$ volume (mL), $z_2 =$ creatinine (mg/mL).

Population 5¹¹: $N = 44$ married couples of medium and high-class families, $y =$ no. of ever born children, $x =$ education level of mother, $z_1 =$ education level of father, $z_2 =$ duration of marriage

To avoid complicacies, we focused on the minimum MSE so that only minimum MSE bound estimators \hat{t} , $\hat{\ell}_P^{(G)}$, \hat{t}_{MP} and $\hat{\ell}_{MP}^{(G)}$ along with the base estimator t_P were taken for comparison. Relative efficiencies (REs) of these equipotential estimators

compared to \bar{y}_2 whose variance is $V(\bar{y}_2) = \theta_2 S_y^2$, are compiled in Table-1 for specific values of n_1 and n_2 .

Table-1 shows that t_P works better than the direct estimator \bar{y}_2 but as desired, its performance over all minimum MSE bound estimators is considerably inferior. Among four minimum MSE bound estimators, \hat{t} turns out as the worst performer and appears to be less efficient than $\hat{\ell}_P^{(G)}$ although the efficiency loss in population 4 is marginal when established on z_1 . $\hat{\ell}_{MP}^{(G)}$ emerges as the best performer followed by $\hat{\ell}_P^{(G)}$ in most cases even though the efficiency gain of $\hat{\ell}_{MP}^{(G)}$ compared to $\hat{\ell}_P^{(G)}$ in population 4 is just marginal. Although this empirical study has a limited scope, its overall findings indicate that $\hat{\ell}_{MP}^{(G)}$ is superior to others on the ground of MSE.

Conclusion

Reviewing foregoing theoretical as well as empirical findings under the two-phase sampling network with numerous additional supplementary variables, we may eventually conclude that the imputed redesigned method with reference to the new reducible estimator $\ell_{MP}^{(G)}$ is not likely inferior to the C-K method and can be applied in many sample surveys for constructing estimators under the considered situations.

Acknowledgement

The author wishes to thank Dr Archana Panigrahi and Prof L.N. Sahoo for their invaluable guidance to carry out this project.

Table-1: REs of Comparable Estimators w.r.t. \bar{y}_2 (in%).

Estimator	Supplementary variable(s) used	Population				
		1 $n_1 = 10$ $n_2 = 5$	2 $n_1 = 19$ $n_2 = 10$	3 $n_1 = 14$ $n_2 = 7$	4 $n_1 = 14$ $n_2 = 7$	5 $n_1 = 13$ $n_2 = 7$
t_P	x	152.48	157.94	117.81	119.39	116.50
\hat{t}	x, z_1	256.19	178.49	152.90	137.06	143.13
	x, z_2	271.29	229.52	150.77	151.59	171.56
$\hat{\ell}_P^{(G)}$	x, z_1	360.15	182.81	201.44	137.72	144.09
	x, z_2	349.02	231.37	208.45	153.02	202.38
\hat{t}_{MP}	x, z_1, z_2	280.82	250.42	166.42	151.83	178.74
$\hat{\ell}_{MP}^{(G)}$	x, z_1, z_2	403.40	259.66	227.91	153.27	224.55

References

1. Chand, L. (1975). Some ratio-type estimators are based on two or more auxiliary variables (Unpublished doctoral dissertation). Iowa State University, Ames, Iowa.
2. Kiregyera, B. (1980). A chain ratio-type estimator in finite population double sampling using two auxiliary variables. *Metrika*, 27, 217-223. <https://doi.org/10.1007/BF01893599>
3. Kiregyera, B. (1984). Regression-type estimators using two auxiliary variables and the model of double sampling. *Metrika*, 31, 215-226. <https://doi.org/10.1007/BF01915203>
4. Panigrahi, A, Ojha, A. & Sahoo, L.N. (2025). A reducible product-type estimator in two-phase sampling using an additional auxiliary variable. *International Journal of Statistics and Applied Mathematics*, 10(16), 195-202. <https://www.doi.org/10.22271/math.2025.v10.i6c.2072>
5. Sahoo, J, Sahoo, L.N. & Nayak, S.R. (2006). Some product-type estimators in double sampling. *International Journal of Agricultural & Statistical Sciences*, 2(2), 131-135.
6. Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis. (3rd Edition), John Wiley & Sons, Inc., Theorem A.1.1, pp 628. ISBN: 0-471-36091-0
7. Montgomery, D.C., Peck, E.A. & Vining, G.G. (2012). Introduction to Linear Regression Analysis. (5th Edition), John Wiley & Sons, Inc., pp556. ISBN: 978-0-470-54281-1
8. Gujarati, D.N. & Porter, D.C. (2009). Basic Econometrics. (5th Edition), McGraw-Hill, New York, pp 168. ISBN: 978-0-07-337577-9
9. Rencher, A.C. (2002). Methods of Multivariate Analysis. (2nd Edition), John Wiley & Sons, Inc, pp 269. ISBN: 0-471-41889-7
10. Morrison, D.F. (1990). Multivariate Statistical Methods. (3rd Edition), McGraw-Hill Publishing Company, New York, pp 470. ISBN-10: 0070431876
11. Bhuyan, K.C. (2005). Multivariate Analysis and its Applications. New Central Book Agency (P) Ltd, Kolkata, pp 4. ISBN-10: 8173814775.