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Abstract 

In this paper, we focus attention on the construction of two bias reduced ratio estimators guided by a feasible and easily 

acceptable assumption that the coefficient of variation of the auxiliary variable is known prior to survey operation. Treating 

bias and mean square error as performance measures, superiority of the proposed estimators has been analyzed compared to 

the classical ratio and Tin’s ratio estimators under (i) a finite population set-up, (ii) an infinite population set-up assuming 

bivariate normal distribution between the considered variables, and (iii) the assumption of a super-population model. 
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Introduction 

Let   and   denote the survey variable and an auxiliary variable 

taking values    and    respectively on the 𝑖th unit of a finite 

population of   units. Define   
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between   and  . Assume that a random sample of   units is 

drawn from the population according to simple random 

sampling without replacement (SRSWOR) to estimate unknown 

mean   when   is known accurately. Let  ̅  
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When the correlation coefficient between   and   (   ) has a 

high positive value, the classical ratio estimator is defined by 

   
 ̅

 ̅
 , 

 

is strongly preferred to the direct estimator  ̅. Holistically, the 

estimator is biased with an asymptotic expression for the bias 

i.e., bias to terms of   (   ) given by 
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Although the bias may be small for large samples, in small 

samples its effect may be a matter of great concern. In survey 

sampling literature, attention is focused on the estimation of 

asymptotic bias. This leads to the creation of asymptotic 

unbiased estimators, i.e., estimators with reduced bias called 

almost unbiased ratio (AUR) estimators
1-10

. 

 

For the simplest case, direct estimation of   
  and     by their 

respective consistent estimators   
  

  
 

 ̅  and     
   

 ̅ ̅
, and then 

correction of the bias given in (1) gives rise to an AUR 

estimator defined by 

     [    (      
 )]. 

 

This estimator was considered by Tin
2 

who derived the 

following expressions for its bias and mean square (MSE) to 

terms of  (   ): 

 

 (  )    [   
    (       )  (    

   

 
) ]             (2) 

 

 (  )   
 
   (            )    

 (    
             

  

       )  
   

 
(            )                             (3) 

 

where    
 

   
 

  ,   (       ) and     
   

 
 
 

 ,     

being the (   )   cumulant in   and  11
. 

 

Some authors considered various ratio-type estimators for the 

estimation of   under the assumption that the coefficient of 

variation    of the auxiliary variable is known
12-21

. But here, 

concentration has been given on the bias reduction of the 

classical ratio estimator with a known   .  
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Our discussion in this paper presumes that    is a pre assigned 

constant, i.e., is known as a priori either from a pilot study or 

previous census or past data or experience, or even a value with 

very good approximation to its true value available from the 

expert guesses of the concerned field. In repetitive surveys this 

is essentially practicable as CV exhibits both temporal and 

cross-sectional stability so that good, guessed values are 

comfortably available. Despite these arguments, we can also 

point out some real-life situations in favor of known   . For 

example, as the CV of income distribution measures economic 

inequality or diversity, its computed values or good guessed 

values from the past studies or experience can be readily 

available from the official records or published results. This 

information may be useful to a socio-economic survey that 

considers income as an auxiliary variable and a variable like 

house rent paid, or expenditure on food items or income tax paid 

as study variable. On the other hand, in many agricultural or 

demographic surveys, it is a common practice to consider 

geographical area, cultivated area, population size etc. as 

auxiliary variables so that their CV values can be determined 

directly from the census data. 

 

Bias reduction and the suggested estimators 

Two different cases have been considered here for bias 

reduction in   . In the first case, assuming    as a known 

quantity, bias of    given in (1) is estimated by 

 (  )      (  
     ).                            (4) 

 

Then subtracting this estimated bias from   , the following 

estimator is obtained for  : 

        (  )    [    (      
 )]. 

 

This estimator may be viewed as a modified version of Tin’s 

estimator. 

 

For the second case, let us rewrite the bias expression in (1) as  

 (  )    (   
  

   

 
).                (5) 

 

Treating   and    as known quantities, estimation of bias needs 

estimations of   and    . Hence, estimating   by    and     by 

its unbiased estimator    , an estimate of the bias is obtained as 

 

  (  )    (    
  

   

 
). 

 

Adjusting    for this estimated bias, another modified version of 

Tin’s estimator for   is defined by 
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To scrutinize unbiasedness property of     and    
 , we derived 

their approximate bias expressions to terms of order     using 

Taylor linearization method. Omitting details of derivations, we 

present below these expressions as 
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Hence, the proposed estimators     and    
  are unbiased to 

 (   ) i.e., they are almost unbiased. 

 

Comparison of bias of the estimators 

As   ,     and    
  are bias reduced estimators over the 

classical ratio estimator   , a desirable task therefore is their 

bias comparison to gain idea on the reduced bias amount. Here 

we need expressions to terms of order  (   ) given in (2), (6) 

and (7) to compare their bias. But these expressions are 

complicated as they contain some second order cumulants 

(positive) and third order cumulants (either positive or 

negative), and the bias amount depends on the signs and 

magnitudes of the quantities (       ),     and  . Hence, 

direct dealing with these bias expressions will lead to no 

conclusive results. However, for simplicity, we carry out bias 

comparisons under two useful but practical situations that 

impose certain mild restrictions on the parent population as 

discussed in the following sub-sections. Further, noting that the 

bias of an estimator is either positive or negative, either its 

absolute value or square is taken into consideration for our 

purpose. 

 

Assumption of bi-variate normality: Let us assume that the 

sample is drawn from an infinite population in which the joint 

distribution of   and   is bivariate normal. Then           

and the following bias expressions for   ,     and    
  to 

 (   ) are obtained: 
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From (8) and (9),  
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The right-hand side of (11) is positive if both (    ) and 

(    ) are either positive or negative and is negative if one of 

the two factors is positive and other is negative. After solving 

respective simultaneous in equations, we see that     is more 

biased than     i.e., | (   )|  | (  )| if 
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and     is less biased than    i.e., | (   )|  | (  )| if 

either   
 

 
  or   

 

 
 .               (13) 

 

From (8) and (10) we directly have | (   
 )|  | (  )| i.e.,    

  

is less biased than   . However, from (9) and (10)  

  (   ) 
    (   

 )   
 

     
  (   ).             (14) 

 

It means that | (   )|   or  | (   
 )| according as 

    or     .                (15) 

 

In the context of the sample survey,     is not an easily 

acceptable condition because in most of the situations the 

coefficient of variation ratio 
  

  
 is not too far from unity

22
. 

Hence,     is likely to be more biased than    
 . However, 

compilation of foregoing derived results under the bivariate 

normality assumption leads to the following tentative 

conclusions: 

 

Among the three AUR estimators   ,     and    
 ,    

  emerges 

out as the least biased estimator with  | (   
 )|  | (  )|  

| (   )|  if 
 

 
   

 

 
   and | (   

 )|  | (   )|  | (  )| if 

either   
 

 
  or   

 

 
 . 

 

Assumption of a super-population model:  Suppose that the 

population under consideration is a random sample from a 

super-population under the linear regression model(  ) 

 

           , 𝑖           ,              (16) 

 

Where   and   are real constants called parameters or 

coefficients of the model,   ’s are uncorrelated random errors 

such that  (  |  )    and  (  
 |  )     

  for all 𝑖 with 

      and      . Further, assume that     and   ’s 

are 𝑖 𝑖    gamma variates with a common parameter   (  ) 

taken equal to the mean  . 

 

By the direct substitution under the model, biases of the 

estimators to  (   ) are derived as follows:  
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It appears that to  (   )    
  is unbiased whereas    is unbiased 

when     and | (   )|  | (  )| when   |
 

 
|. But, since 

the variables are positively correlated and   is the slope 

parameter, it cannot be negative. It is also quite possible that the 

intercept parameter   is non-negative. Because for   
 ,               which is unrealistic in a sample survey 

situation as the measurements on   and   are positive. Hence 

under the model   ,     is less or more biased than    

according as   or  
 

  
. 

 

Efficiency of     and    
  compared to    

To evaluate efficiencies of the proposed AUR estimators     

and    
  compared to Tin’s AUR estimator   , we derived 

expressions for their mean square errors (MSEs) to order     as 

given below. Here we also follow the same notations and 

approximations used inTin
2
 and Kendall et al.

11
.   
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From (3), (20) and (21), it is clearly understood that        and 

   
  are equally well to  (   ) under MSE criteria. In view of 

this, comparing their MSEs considering terms up to  (   ) the 

following results are obtained: 
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 It seems that the efficiency difference between either    and     

or    and    
  is strongly dependent on the range of   as well as 

the sign and magnitude of the parametric function,  . By 

expressing  as 
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We see that when the regression line of   on   confirms toa 

straight line through the origin which of course an ideal 

condition for the visibility of ratio method of estimation,   has 

a very small negative value. On the other hand, its value 

approaches to zero for a population where   is directly 

proportional to   i.e., observations are tightly scattered around 

    . Thus, if the contribution of   in (22) and (23) is quite 

negligible,     would be most likely to be more efficient than    

if     whereas    
  would be most likely to be more efficient 

than    if both (   ) and (    )  are either negative or 

positive i.e., if either     and   
 

 
   or     and   

 

 
. 

Since the ratio method of estimation is normally used for 

  
 

 
, 
 

 
     remains as an ideal condition in favor of    

 . 

However, under the bi-variate normality assumption    , 
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and     and    
  are straightforwardly superior to    when 

    and 
 

 
     respectively. 
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This means that  (   )  or   (   
 ) according as   or  

  i.e., for     ,     is less efficient than    
 .  

 

After combining the forgoing results under the bi-variate normal 

assumption, we have the following conclusions:  

 

 (   )   (  )   (   
 ) when    ,  

and  (   
 )   (  )   (   ) when 

 

 
    . 

 

For many real-life situations, it is not so easy to check feasibility 

of the derived conditions to draw any meaningful conclusion as 

they depend on the survey situations, unknown population 

parameters, composition of population units, joint distribution 

of   and  , and many other constraints. This may mislead our 

efficiency comparison. However, this comparison clearly 

indicates that there is enough scope for using     and    
  over 

  .   

 

To make our efficiency comparison more viable and to obtain 

an idea on the gain in efficiency, we computed numerical values 

of the percentage relative efficiencies (RE) of        and    
  

compared to    under the assumption of bivariate normal 

distribution with    . Here the computation is based on the 

MSE expressions to order    .  

 

RE in each case is calculated for some selected values of 

        and     as shown in table 1. For a given value of   , 

the values of    and     are chosen to satisfy the condition 

      to make the ratio method of estimation effective. Here 

the tabular results fully agreed with the analytical results in the 

sense that    
  is superior to others if             otherwise, 

i.e., if         )     is superior. It is also noticed from the 

tabular results that the efficiency gains in    
  decreases rapidity 

when   increases gradually from 1.0 to  . 

 

Table-1: Relative efficiencies of the estimators w.r.t.    (in %). 

                        
  

10 0.50 

0.45     0.55 105.76 102.50 105.93 

0.40     0.75 101.92 102.10 103.99 

0.35 0.7 1.00 100.25 100.25 100.25 

0.30 0.8 1.33 100.30 100.33 100.13 

0.25 0.9 1.80 102.67 104.13 100.81 

20 0.75 

0.49 0.4 0.61 102.11 101.23 102.21 

0.47 0.5 0.80 102.30 101.84 102.44 

0.45 0.6 1.00 102.00 102.00 102.00 

0.43 0.7 1.22 101.97 102.49 101.66 

0.41 0.8 1.46 102.29 103.40 101.24 

30 1.0 

1.0 0.6 0.60 109.62 103.00 110.33 

0.9 0.7 0.78 106.18 102.69 107.20 

0.8 0.8 1.00 104.18 104.18 104.18 

0.7 0.9 1.28 104.53 108.68 101.50 

0.6 1.0 1.67 108.29 116.50 100.00 
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Efficiency comparison under the super-population model 

  : From equations (3), (20) and (21), we directly get the 

following model-based MSE expressions up to  (   ): 
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 (   
 ) formula involves both parameters of the model where 

as  (  ) and  (   )   formulas involve only  . As  (  )  
 (   ), it seems that the estimators are equally efficient under 

the model up to terms of order    . However, the MSE 

formulas show that the three estimators perform equally well 

when the intercept parameter    , i.e., the regression line of   

on   passes through the origin. 

 

Comparing (27) with (25) or (26) with        , we report 

the following model-based results:  
 

 (   
 )   (  )   (   ),  

 

implying that    
  is preferable to both     and      on the 

ground of MSE. 
 

Conclusion 

The present work focalizes on the construction of almost 

unbiased ratio (AUR) estimators guided by a reasonable and 

easily achievable situation that the CV of the auxiliary variable 

is known in advance. Under this motivation, bias estimation and 

bias adjustment of the classical ratio estimator in the usual way 

led to the development of two new AUR estimators called as 

modified versions of Tin’s AUR estimator.  ur investigation 

under certain mild restrictions imposed on the parent population 

has revealed that the new estimators outperform the Tin’s 

estimator in terms of two standard performance measures viz., 

bias and efficiency. To put it differently, there is a room where 

the proposed estimators can work more satisfactorily than the 

Tin’s estimator provided an accurate value of said CV is 

available. Additionally, from the computational point of view 

the former estimators are also more acceptable. Finally, it may 

be concluded that the new estimation mechanism formulated 

here has a greater scope in many real-life scenarios and for 

further development of a wide variety of estimators.  
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