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Abstract 

This paper is concerned with a genetic algorithm approach for optimization problems considering an equality whose 

coefficients are chosen in such a way that they would represent the bits of genetic algorithms for minimization including six 

chromosomes of length three applying the operator cross over and mutation while a cubic function has been considered for 

maximization. In both cases, the fitness value of the population seems to be adequate and found satisfactorily well at least in 

one generation. These have been illustrated with two numerical examples added at the end. 
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Introduction 

Genetic algorithms are considered to be a heuristic domain 

algorithm on the basis of Darwinian’s evolutionary ideas of 

natural selection and genetics including the basic concept of 

genetic algorithms to create designing processes in natural 

system which is essential for evolution. Moreover, it represents 

an intelligent exploitation of a random search within a defined 

search dimension to solve a variety of problems given by John 

Holland
1
. He developed this idea in his book “Adaptation in 

natural and artificial systems”. He described how to apply the 

principles of natural evolution to optimization problems and 

built the first Genetic Algorithms. Holland’s theory has been 

further developed and now Genetic Algorithms (GAs) stand up 

as a powerful tool for solving search and optimization problems. 

Genetic algorithms are based on the principle of genetics and 

evolution. Which has been widely experimented studied and 

applied in many fields especially in engineering. The genetic 

algorithm not only provides an alternative method to solve the 

problem, but also consistently outperforms other traditional 

methods in most of the situations. During the last few decades, 

some of work reported by scientists including Andrey
2
; Bashir

3-

5
; Chakraborty

6
; Dharmistha and Vishwakarma

7
; Goldberg

8
; 

Dana Bani
9
; Haldurai

10
; Katoch et el.

11
; and  Jain

12
. 

 

The initial beginning of the evolutionary algorithm is to select 

the best individuals as parents from the population, making 

demand from them to reproduce to ultimate extend the 

generation. During reproduction, genes from both parents 

undergo crossover, and occasionally, an unintentional change 

occurs, known as mutation. Then the next generations are asked 

to reproduce their offspring and the process continues. The 

evolutionary algorithm is inspired on this theory of cross over 

and mutation where basically crossover is used to create new 

solutions from population’s genetic information and mutation 

occurs to bring new information or maintain diversity within the 

population and prevent premature convergence to make the 

solution more generic. It is commonly used to find or near-

optimal solutions to the problems from the search domain which 

otherwise would have taken a significant amount to solve. 

 

Optimization is a very important tool in any business circle viz., 

finance, automobile or health care. The purpose of optimization 

is to find a point or set of points in the search domain by 

minimizing/ maximizing the loss/cost function that provides us 

the optimal solution for the problem in hand. Here, we try to 

minimize/ maximize the objective function f(x) subject to one/ 

multiple constraints like variables. In genetic algorithms, the 

points like population, chromosomes, gene, fitness values, 

crossover, mutation, evaluation of new population etc. are more 

important. These points include – i. Determine the number of 

chromosomes, generation, mutation rate and cross over rate 

value, ii. Generate chromosome - chromosome number of the 

population, and the initialization value of the genes 

chromosome- chromosome with random value, iii. Process steps 

4-7until the number of generations is met, iv. Evaluation of 

fitness value of chromosomes by calculating objective function, 

v. Chromosomes selection, vi. Cross over, vii. Mutation, and 

viii. Solution (Best Chromosome). 

 

Linear equation problem 

In genetic algorithm chromosome coded as 0’s and 1’s, gene 

shall be represented with 2
i 

each genes lying in the 

chromosome, i.e., 2
0
, 2

1
, 2

2
, 2

3
,……2

i
.  

Suppose, there is an equality f(𝑥) = ∑
𝑛−1

2𝑖𝑏𝑖=0 =k, say,  

where k is an positive integer. The coefficients are chosen in 

such a way that it represents the bit of genetic algorithms. The 

genetic algorithm will be used to find the value of b0, 
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b1,b2,b3,…, and bn-1 that satisfy the above equation equal to k 

(say). Optimization is a very important concept in any business 

domain, it may be retail, finance, automobile or health care and 

its purpose is to find a point or set of points in the search space 

by minimizing/ maximizing the loss/cost function, that gives us 

the optimal solution for the problem in our hand. There are 5 

phases in genetic algorithm which are as follows: (i). Initial 

population (ii). Fitness function (iii). Selection (iv). Crossover 

(v). Mutation. 

 

Initial Population 

This process starts with a set of individuals which is called a 

Population. An individual have it’s own characteristics and 

theses individuals are known as Genes. Genes are combined into 

a string to form a Chromosome. 

 

Fitness Function: The fitness function determines how fit an 

individual is it will survive in next generation or not. The fitness 

function plays a vital role in genetic algorithm. The fitness 

function gives score to each individual. The probability that an 

individual will be selected for next generation is based on its 

fitness score. The fittest ones will survive in next generation. 

 

Selection: The idea of selection phase is to select the fittest 

individuals from the population and give approval to them for 

the next generation. Individuals are selected based on their 

fitness scores. Individuals with high fitness score have more 

chance to be selected for reproduction. 

 

Crossover: Crossover is the most important phase in a genetic 

algorithm. A crossover point is randomly selected from the 

generation and Offspring are created by exchanging the genes of 

parents among themselves until the cross over point is reached. 

The new offspring are added to the population and new 

population will be generated. 

 

Mutation: This process is used to maintain the diversity in the 

generation and it prevents premature convergence. In mutation 

genes are randomly replaced on a position with a new value. 

The algorithm terminates if the population has converged. On 

termination algorithm provides the optimal answer. The process 

of genetic algorithm is as follows: Step 1: Determine the 

number of chromosomes, generation, and mutation rate and 

crossover rate value for the population. Step 2: Generate 

chromosomes and initialization of values to the chromosomes. 

Step 3: Repeat steps 4-7 until the number of generations is met. 

Step 4: Calculation of fitness values of chromosomes by 

calculating the objective function. Step 5: Chromosomes 

selection. Step 6: Crossover. Step 7: Mutation. Step 8: Solution 

(Best Chromosomes). 

 

Linear equality problem 

So here is the example of applications of genetic algorithm to 

solve the simple mathematical linear equality problem. Suppose 

there is equality a + 2b + 3c + 4d+5e = 20, genetic algorithm 

will be used to find the value of a, b, c, d and e that satisfy the 

above equation for this problem the objective is minimizing the 

value of function f(x) where f(x) = ((a+2b+3c+4d+5e)-20). 

Since there are five variables in the equation, namely a,b,c,d and 

e we can compose the chromosome as follow: To speed up the 

computation, we can restrict that the values of variables a,b,c,a,d 

and e are integers between 0 and 20. Then, we define the 

number of chromosomes in population are 6, then we generate 

random value of gene a,b,c,d and e for 6 chromosomes. 

 

First, we should formulate the objective function, 

f(x)=b0+2b1+4b2=10. For minimizing the value of function f 

(x) where f(x)= (b0+ 2b1+4b2)–10). To speed up the 

computation, we can restrict that the values of variables b0, b1, 

b2 are integers lying between 0 and 10. 

 

Initialization: We Initialize the number of chromosomes in 

population as 6, then we generate random value of genes b0, 

b1,b2 for 6 chromosomes as given below. 

Chromosome [1]=[b0,b1,b2]=[2;1;4] 

Chromosome [2]=[b0,b1,b2]=[1;2;3] 

Chromosome [3]=[b0,b1,b2]=[3;4;7] 

Chromosome [4]=[b0,b1,b2]=[2;1;6] 

Chromosome [5]=[b0,b1,b2]=[1;4;9] 

Chromosome [6]=[b0,b1,b2]=[2;5;8] 

 

Evaluation: We compute the objective function value for each 

chromosome produced in initialization step as Objective 

function [1] = Abs (2 + 2*1 + 4*4- 10) =10 Objective function 

[2] = Abs (1 + 2*2 + 4*3 - 10) =7 Objective function [3] = Abs 

(3 + 2*4 + 4*7 - 10) = 29 Objective function [4] = Abs (2 + 2*1 

+ 4*6 - 10) = 18 Objective function [5] = Abs (1 + 2*4 + 4*9 - 

10) = 35 Objective function [6]=Abs (2+2*5+4*8 – 10=34. 

At the time of evaluation of objective function, if the values are 

found to be zero, then again a random is generated and function 

is re- determined. 

 

Selection: The fittest chromosomes are the ones those have 

higher probability for selection at the next generation. To 

compute fitness probability we must compute the fitness of each 

chromosome. Fitness [1] = (1/Objective function [1] 1/10 = 

0.1000 Fitness  [2] = (1 / Objective function [2]) = 1/7 = 0.1429 

Fitness [3] = (1/Objective function [3]) = 1/29 = 0.0345 Fitness 

[4] = (1/Objective function [4]) = 1/18=0.0556 Fitness [5] = 

(1/Objective function [5]) =1/35=0.0286 Fitness [6]  = 1 / 

Objective function [6]) = 1/34 = 0.0294. 

 

Total= 0.1000+0.1429+0.0345+0.0556+0.0286+0.0294=0.3910 

The probability for each of the chromosomes is formulated by: 

P[i] = Fitness[i] / Total 

P[1]=0.1000/0.3910= 0.2558 

P[2]=0.1429/0.3910= 0.3655 

P[3]=0.0345/0.3910= 0.0882 

P[4]=0.0556/0.3910= 0.1422 
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P[5]=0.0286/0.3910= 0.0731 

P[6]=0.0294/0.3910= 0.0752 

 

From the above probabilities it can be seen that Chromosome 2 

that has the highest fitness, has highest probability to be selected 

for next generation chromosomes. For the selection process we 

use roulette wheel, for that we should compute the cumulative 

probability values: C[1] = 0.2558 

C[2]=0.2558+0.3655=0.6213 

C[3]=0.2558+0.3655+0.0882=0.7095 

C[4]=0.2558+0.3655+0.0882+0.1422=0.8517 

C[5]=0.2558+0.3655+0.0882 +0.1422+0.0731=0.9248 

C[6]=0.2558+0.3655+0.0882+0.1422+0.0731+0.0752= 1.0000 
 

After the computation of the cumulative probability of selection 

process using roulette - wheel, then the process is used to 

generate random Number R(i) being chosen randomly one at 

least from each cumulative category in the range 0-1. The range 

of R(i) is given as follows: 

0 ≤R(i)≤ 0.2558 

0.2559≤R(i)≤0.6213 

0.6214≤R(i)≤0.7095 

0.7096 ≤R(i) ≤0.8517 

0.8518≤R(i)≤0.9248 

0.9249≤R(i)≤1.0000 

R[1]=0.370 

R[2]=0.193 

R[3]=0.874 

R[4]=0.771 

R[5]=0.297 

R[6]=0.657 
 

If random number R [1] is greater than C [1] and smaller than C 

[2] then select Chromosome [2] as a chromosome in the new 

population for next generation:  

New Chromosome[1]=Chromosome[2] New Chromosome[2]= 

Chromosome[1] New Chromosome[3]= Chromosome[5] New 

Chromosome[4]= Chromosome[4] New Chromosome[5]= 

Chromosome[2]  New Chromosome[6]= Chromosome[3] New 

Chromosome in the population thus becomes: Chromosome[1] 

= [1;2;3] Chromosome [2]=[2;1;4] Chromosome [3]=[1;4;9] 

Chromosome[4]=[2;1;6] Chromosome [5]=[1;2;3] Chromosome 

[6]=[3;4;7]. 

 

Crossover: In this example, we use one-cut point for crossover, 

i.e. randomly chosen a position in the parent chromosome and 

then exchanging sub- chromosome. Parent chromosome which 

will mate is randomly selected and the number of mate 

Chromosomes is controlled using crossover-rate (cr) 

parameters. Pseudo-code for the crossover process is as follows: 

Begin k←0; while (k<population) do R[k] ← random (0-1); 

If (R[k]<cr) then select Chromosome [k] as parent; end; k=k+1; 

end; end; Chromosome k will be selected as a parent if R [k] 

<ρc ). Suppose we set that the cross over rate as 25%, then 

Chromosome number k will be selected for cross over if random 

generated value for Chromosome k is below 0.25. 

The process is as follows: First we generate a random number R 

as the number of population 

R[1]=0.090 

R[2]=0.168 

R[3]=0.659 

R[4]=0.995 

R[5]=0.073 

R[6]=0.236 

 

For random number R above, parents are Chromosome [1], 

Chromosome [2], Chromosome [5] and Chromosome [6] will be 

selected for cross over. Chromosome [1] >< Chromosome [6] 

Chromosome [2] >< Chromosome [5] Chromosome [5] >< 

Chromosome [1] Chromosome [6] >< Chromosome [2]  

 

After chromosome selection, the next process is determining the 

position of the cross over point. This is done by generating and 

om numbers between 1 to (length of Chromosome – 1). In this 

case, generated random numbers should be between 1 and 2. 

After we get the crossover point, parents Chromosome will be 

cut at cross over point and its gens will be inter changed. For 

example we generated 3 random number and we get 

C[1]=1 

C[2]=1 

C[3]=1 

C[4]=1 

 

Then for cross over, cross over, parent’s gens will be cutatgen 

number 1, e.g 

Chromosome [1]>< Chromosome 6] 

=[1;2;3]><[3;4;7] = [1;4;7] 

Chromosome [2]><Chromosome[5] 

=[2;1;4]><[1;2;3] = [2;2;3] 

Chromosome [5]><Chromosome[1] 

=[1;2;3]><[1;2;3] = [1;2;3] 

Chromosome [6]>< Chromosome [2] 

=[3;4;7]><[2;1;4] = [3;1;4] 

 

Thus, Chromosome population after experiencing a cross over 

process: Chromosome [1] = [2;2;3] 

Chromosome [2]=[2;2;3] 

Chromosome [3]=[1;4;7] 

Chromosome [4]=[2;2;3] 

Chromosome [5]=[3;1;4] 

Chromosome [6]=[3;4;7] 

 

Mutation: The number of chromosomes that results in a 

population governed by the mutation rate (mr) parameter. It is 

process done by replacing the gen at random position with a 

fresh new value. We compute the total length of gen in the 

population. Then, the total length of gen is equal to Total 

gen=number of gen in Chromosome x number of population = 

3x6 = 18. Mutation process is done by generating a random 

integer between 1 and total gen (1to18). If generated random 

umber is smaller than mutation rate (mr) variable then marked 

the position of gen in chromosomes. Suppose we define mr as 
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10%, it is expected that 10% (0.1) of total gen in the population 

that will be mutated: number of mutations = 0.1 * 18 = 1.8 ≈ 2. 

Suppose generation of random number yield 10 and 14 then the 

chromosome which have mutation are chromosome number 4 

gen number 1 and chromosome 5ge number 2. The value of 

mutated genes at mutation point is replaced by random number 

between 0-10. Suppose generated random number are 1 and 0 

then chromosome composition after mutation are: 

Chromosome[1]=[2;2;3] 

Chromosome[2]=[2;2;3] 

Chromosome[3]=[1;4;7] 

Chromosome[4]=[2;2;3] 

Chromosome[5]=[3;1;4] 

Chromosome[6]=[3;4;7] 

 

We, then, can now evaluate the objective function after one 

generation: Chromosome [1] = [2;2;3] 

Objective function [1] = Abs(2+2*2+4*3) -10)=8  

Chromosome [2] = [2;2;3]  

Objective function [2] = Abs(2+2*2+4*3) -10)=8  

Chromosome [3] = [1;4;7] 

Objective function [3] = Abs(1 +2*4+4*7)- 10) =27 

Chromosome [4] = [2;2;3] 

Objective function [4] = Abs(2+2*2+4*3) -10)=8  

Chromosome [5] = [3;1;4] 

Objective function [5] = Abs(3+2*1+4*4) -10)=11  

Chromosome [6] = [3;4;7] 

Objective function [6] = Abs (3+2*4+4*7)-10)=29 

 

From the evaluation of above objective function, it seems that 

the objective function of new prepared chromosome has been 

decreasing, implies that we have better chromosome or solution 

compared with previous chromosome generation. The senew 

chromosomes will undergo the same process as the previous 

generation of chromosomes such as evaluation, selection, 

crossover and mutation and at the end it produce new generation 

of chromosome for the next iteration. This process will be 

repeated until a predetermined number of generations. For this 

example, after running 100 generations, best chromosome is 

obtained: Chromosome=[4;1;1] 

This means that: b0=4,b1=1,b2=1 

If we use the number in the problem equation b0 +2 b1+4 b2=4 

+ (2 * 1) + (4 * 1) = 10. 

We can see that the value of variable b0, b1 and b2 generated by 

genetical growth can satisfy that equality of linear equation 

population in Table-1. 

 

Maximizing a function of one variable 

In order to generate the number and length of the chromosomes 

as 10 and 6 respectively, we consider the number of Bernoulli 

trials as 6 and signify head as 1 and tail as 0. Let us write the 

combination of 1,2,3,4, and 5 successes out of 6 Bernoulli trials, 

we have the following combinations: 1,2,3,4,5,6 for one 

success. For two successes as 12,13,14,15,16,23,24, 25,26,34, 

35,36,45,46 and 56.  

  Table-1: Values of b0, b1 and b2 in linear equation population. 

b0 value b1value b2 value 

0 1 2 

2 0 2 

4 1 1 

6 0 1 

4 3 0 

2 4 0 

0 5 0 

0 3 1 

8 1 0 

10 0 0 

2 2 1 

4 3 0 

6 2 0 
 

For three we have 123, 234, 345, 456,156, 126, 134, 245, 356, 

146,125, 236, 145, 256, 136, 124, 235,3 46, 156 and 126. 

Similarly, we have four combinations as 1234, 2345, 3456, 

1456, 1256, 1236, 1345, 2456, 1356, 1246, 1235, 2346, 1456, 

1236 and 1256. For five combinations 12345, 23456, 13456, 

12456, 12356, and 12346. Thus, we have 62 combinations. Out 

of these 62 combinations, ten Chromosomes having length 6 

would have been randomly chosen in the form of binary number 

as 0 and 1and proceeded on the similar lines of Sharma et.el,
13 

for maximizing the function f(x) = √x subject to the condition 

that 1≤x≤ 25. 

 

This example adapts the method of an example presented in 

Goldberg
8
. Consider the problem of maximizing the function 

f(x)=--
       

   
   x  

where x is allowed to vary between 0 and 31. 

This function is displayed in Figure-1. To solve this using a 

genetic algorithm, we must encode the possible values of x as 

chromosomes. For this example, we will encode x as a binary 

integer of length 5. Thus the chromosomes for our genetic 

algorithm will be sequences of 0’s and 1’s with a length of 

5bits, and have a range from 0 (00000) to 31 (11111). To begin 

the algorithm, we select an initial population of 10 

chromosomes at random. We can achieve this by tossing a fair 

coin 5 times for each chromosome, letting heads signify 1 and 

tails signify 0. The resulting initial population of chromosomes 

is shown in Table-2. Next we take the x-value that each 

chromosome represents and test its fitness with the fitness 

function. The resulting fitness values are recorded in the third 

column of Table-2. 
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Figure-1: Graph of f(X) = -
       

   
    x  

   Table-2: Initial Population. 

Chromosome number Initial population x-value Fitness value f(x) Selection probability 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15 

16 

17 

18 

19 

20 

21 

22 

23. 

24 

25 

26 

27 

28 

29 

30 

10000 

01000 

00100 

00010 

00001 

11000 

01100 

00110 

00011 

10001 

10100 

01010 

00101 

10010 

01001 

11100 

01110 

00111 

10011 

11001 

11010 

01101 

10110 

01011 

10101 

11110 

01111 

10111 

11011 

11101 

16 

8 

4 

2 

1 

24 

12 

6 

3 

17 

20 

10 

5 

18 

9 

28 

14 

7 

19 

25 

26 

13 

22 

11 

21 

30 

15 

23 

27 

29 

116.48 

74.24 

39.20 

19.88 

9.98 

96.00 

101.28 

57.48 

29.64 

117.98 

116.00 

89.00 

48.5 

118.44 

81.9 

52.64 

110.60 

66.08 

117.80 

87.50 

77.48 

106.34 

108.68 

95.48 

112.98 

21.00 

114.00 

103.04 

65.88 

37.70 

0.0487 

0.0310 

0.0164 

0.0083 

0.0042 

0.0401 

0.0423 

0.0240 

0.0124 

0.0493 

0.0485 

0.0372 

0.0203 

0.0495 

0.0342 

0.0220 

0.0462 

0.0276 

0.0492 

0.0366 

0.0324 

0.0444 

0.0454 

0.0399 

0.0472 

0.0088 

0.0476 

0.0431 

0.0275 

0.0158 

  

Sum  

Average 

Max 

2393.20 

79.7733 

118.44 

 

 

 
      

 
     120 

      
 

    100 
 
 

 
f(x) 

80  

     
 
60 
       1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 



Research Journal of Mathematical and Statistical Sciences ____________________________________________ISSN 2320-6047 

Vol. 13(3), 14-19, September (2025) Res. J. Mathematical and Statistical Sci. 

 International Science Community Association          19 

Table-3: Contined for re-production and second generation. 

Chromosome number Mating pairs New population X-value Fitness value f(X) 

1. 

19. 

7. 

22. 

10. 

23. 

11. 

25. 

14. 

27. 

17. 

28. 

100|00 

100|11 

011 |00 

011|01 

10|001 

10|110 

101|00 

101|01 

100|10 

011|11 

01|110 

10|111 

1 0 0 1 1 

1 0 0 0 0 

0 1 1 0 1 

0 1 1 0 0 

1 0 1 1 0 

1 0 0 0 1 

1 0 1 0 1 

1 0 1 0 0 

1 0 0 1 1 

0 1 1 1 0 

0 1 1 1 1 

1 0 1 1 0 

19 

16 

13 

12 

22 

17 

21 

20 

19 

14 

15 

22 

117.80 

116.48 

106.34 

101.28 

108.68 

117.98 

112.98 

116.00 

117.80 

110.60 

114.00 

108.68 

   

Sum  

Average 

Max 

1348.62 

112.385 

117.98 

 

Conclusion 

We select the chromosomes that will reproduce based on their 

fitness values, using the following probability: 

     P (Chromosome produces) =        

(��)
 

                 ∑
�=1

(��) 

Goldberg has decided this process to spinning a weighted 

roulette wheel. Since our population has 30 chromosomes and 

each ‘mating’ produces 2 off spring, we need 15 matings to 

produce a new generation of 30 chromosomes. The selected 

chromosomes are displayed in Table-3 with the priority given 

on the basis of selection probability which has greater 

probability to be 0.04 20 and more. To create their off spring, 

across over point is chosen at random, which is shown in the 

table as a vertical line. It is to be noted that the sum of the 

chromosomes number selected format in g pairs is equal to 

2393.20 from Table-2 while it is 1348.62 for fitness value f(X) 

in Table-3 for 12 chromosomes randomly selected with the 

priority of higher probability. It indicates that fitness value of 

the population has been increased at least after only one 

generation. 
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