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Abstract

This paper is concerned with a genetic algorithm approach for optimization problems considering an equality whose
coefficients are chosen in such a way that they would represent the bits of genetic algorithms for minimization including six
chromosomes of length three applying the operator cross over and mutation while a cubic function has been considered for
maximization. In both cases, the fitness value of the population seems to be adequate and found satisfactorily well at least in
one generation. These have been illustrated with two numerical examples added at the end.
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Introduction

Genetic algorithms are considered to be a heuristic domain
algorithm on the basis of Darwinian’s evolutionary ideas of
natural selection and genetics including the basic concept of
genetic algorithms to create designing processes in natural
system which is essential for evolution. Moreover, it represents
an intelligent exploitation of a random search within a defined
search dimension to solve a variety of problems given by John
Holland'. He developed this idea in his book “Adaptation in
natural and artificial systems”. He described how to apply the
principles of natural evolution to optimization problems and
built the first Genetic Algorithms. Holland’s theory has been
further developed and now Genetic Algorithms (GAs) stand up
as a powerful tool for solving search and optimization problems.
Genetic algorithms are based on the principle of genetics and
evolution. Which has been widely experimented studied and
applied in many fields especially in engineering. The genetic
algorithm not only provides an alternative method to solve the
problem, but also consistently outperforms other traditional
methods in most of the situations. During the last few decades,
some of work reported by scientists including Andrey?; Bashir®
% Chakraborty®; Dharmistha and Vishwakarma’; Goldberg?®;
Dana Bani’; Haldurai'®; Katoch et el.’; and Jain'2.

The initial beginning of the evolutionary algorithm is to select
the best individuals as parents from the population, making
demand from them to reproduce to ultimate extend the
generation. During reproduction, genes from both parents
undergo crossover, and occasionally, an unintentional change
occurs, known as mutation. Then the next generations are asked
to reproduce their offspring and the process continues. The
evolutionary algorithm is inspired on this theory of cross over
and mutation where basically crossover is used to create new
solutions from population’s genetic information and mutation
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occurs to bring new information or maintain diversity within the
population and prevent premature convergence to make the
solution more generic. It is commonly used to find or near-
optimal solutions to the problems from the search domain which
otherwise would have taken a significant amount to solve.

Optimization is a very important tool in any business circle viz.,
finance, automobile or health care. The purpose of optimization
is to find a point or set of points in the search domain by
minimizing/ maximizing the loss/cost function that provides us
the optimal solution for the problem in hand. Here, we try to
minimize/ maximize the objective function f(x) subject to one/
multiple constraints like variables. In genetic algorithms, the
points like population, chromosomes, gene, fitness values,
crossover, mutation, evaluation of new population etc. are more
important. These points include — i. Determine the number of
chromosomes, generation, mutation rate and cross over rate
value, ii. Generate chromosome - chromosome number of the
population, and the initialization value of the genes
chromosome- chromosome with random value, iii. Process steps
4-7until the number of generations is met, iv. Evaluation of
fitness value of chromosomes by calculating objective function,
v. Chromosomes selection, vi. Cross over, vii. Mutation, and
viii. Solution (Best Chromosome).

Linear equation problem

In genetic algorithm chromosome coded as 0’s and 1’s, gene
shall be represented with 2' each genes lying in the
chromosome, i.e., 2°, 2%, 22 2% ... 2\

n—1
Suppose, there is an equality f(x) =Y 2ibi=0 =k, say,
where k is an positive integer. The coefficients are chosen in
such a way that it represents the bit of genetic algorithms. The
genetic algorithm will be used to find the value of by,
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by,byb,,..., and b, that satisfy the above equation equal to k
(say). Optimization is a very important concept in any business
domain, it may be retail, finance, automobile or health care and
its purpose is to find a point or set of points in the search space
by minimizing/ maximizing the loss/cost function, that gives us
the optimal solution for the problem in our hand. There are 5
phases in genetic algorithm which are as follows: (i). Initial
population (ii). Fitness function (iii). Selection (iv). Crossover
(v). Mutation.

Initial Population

This process starts with a set of individuals which is called a
Population. An individual have it’s own characteristics and
theses individuals are known as Genes. Genes are combined into
a string to form a Chromosome.

Fitness Function: The fitness function determines how fit an
individual is it will survive in next generation or not. The fitness
function plays a vital role in genetic algorithm. The fitness
function gives score to each individual. The probability that an
individual will be selected for next generation is based on its
fitness score. The fittest ones will survive in next generation.

Selection: The idea of selection phase is to select the fittest
individuals from the population and give approval to them for
the next generation. Individuals are selected based on their
fitness scores. Individuals with high fitness score have more
chance to be selected for reproduction.

Crossover: Crossover is the most important phase in a genetic
algorithm. A crossover point is randomly selected from the
generation and Offspring are created by exchanging the genes of
parents among themselves until the cross over point is reached.
The new offspring are added to the population and new
population will be generated.

Mutation: This process is used to maintain the diversity in the
generation and it prevents premature convergence. In mutation
genes are randomly replaced on a position with a new value.
The algorithm terminates if the population has converged. On
termination algorithm provides the optimal answer. The process
of genetic algorithm is as follows: Step 1: Determine the
number of chromosomes, generation, and mutation rate and
crossover rate value for the population. Step 2: Generate
chromosomes and initialization of values to the chromosomes.
Step 3: Repeat steps 4-7 until the number of generations is met.
Step 4: Calculation of fitness values of chromosomes by
calculating the objective function. Step 5: Chromosomes
selection. Step 6: Crossover. Step 7: Mutation. Step 8: Solution
(Best Chromosomes).

Linear equality problem

So here is the example of applications of genetic algorithm to
solve the simple mathematical linear equality problem. Suppose
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there is equality a + 2b + 3c + 4d+5e = 20, genetic algorithm
will be used to find the value of a, b, ¢, d and e that satisfy the
above equation for this problem the objective is minimizing the
value of function f(x) where f(x) = ((a+2b+3c+4d+5e)-20).
Since there are five variables in the equation, namely a,b,c,d and
e we can compose the chromosome as follow: To speed up the
computation, we can restrict that the values of variables a,b,c,a,d
and e are integers between 0 and 20. Then, we define the
number of chromosomes in population are 6, then we generate
random value of gene a,b,c,d and e for 6 chromosomes.

First, we should formulate the objective function,
f(x)=b0+2b1+4b2=10. For minimizing the value of function f
(x) where f(x)= (bo+ 2b1+4b2)-10). To speed up the
computation, we can restrict that the values of variables b0, b1,
b2 are integers lying between 0 and 10.

Initialization: We Initialize the number of chromosomes in
population as 6, then we generate random value of genes bo,
b1,b2 for 6 chromosomes as given below.

Chromosome [1]=[b0,b1,b2]=[2;1;4]

Chromosome [2]=[b0,b1,b2]=[1;2;3]

Chromosome [3]=[b0,b1,b2]=[3;4;7]

Chromosome [4]=[b0,b1,b2]=[2;1;6]

Chromosome [5]=[b0,b1,b2]=[1;4;9]

Chromosome [6]=[b0,b1,b2]=[2;5;8]

Evaluation: We compute the objective function value for each
chromosome produced in initialization step as Objective
function [1] = Abs (2 + 2*1 + 4*4- 10) =10 Objective function
[2] = Abs (1 + 2*2 + 4*3 - 10) =7 Objective function [3] = Abs
(3 +2*4 + 4*7 - 10) = 29 Objective function [4] = Abs (2 + 2*1
+ 4*6 - 10) = 18 Objective function [5] = Abs (1 + 2*4 + 4*9 -
10) = 35 Objective function [6]=Abs (2+2*5+4*8 — 10=34.

At the time of evaluation of objective function, if the values are
found to be zero, then again a random is generated and function
is re- determined.

Selection: The fittest chromosomes are the ones those have
higher probability for selection at the next generation. To
compute fitness probability we must compute the fitness of each
chromosome. Fitness [1] = (1/Objective function [1] 1/10 =
0.1000 Fitness [2] = (1 / Objective function [2]) = 1/7 = 0.1429
Fitness [3] = (1/Objective function [3]) = 1/29 = 0.0345 Fitness
[4] = (1/Objective function [4]) = 1/18=0.0556 Fitness [5] =
(1/Objective function [5]) =1/35=0.0286 Fitness [6] = 1 /
Objective function [6]) = 1/34 = 0.0294.

Total= 0.1000+0.1429+0.0345+0.0556+0.0286+0.0294=0.3910
The probability for each of the chromosomes is formulated by:
P[i] = Fitness[i] / Total

P[1]=0.1000/0.3910= 0.2558

P[2]=0.1429/0.3910= 0.3655

P[3]=0.0345/0.3910= 0.0882

P[4]=0.0556/0.3910= 0.1422
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P[5]=0.0286/0.3910= 0.0731
P[6]=0.0294/0.3910= 0.0752

From the above probabilities it can be seen that Chromosome 2
that has the highest fitness, has highest probability to be selected
for next generation chromosomes. For the selection process we
use roulette wheel, for that we should compute the cumulative
probability values: C[1] = 0.2558

C[2]=0.2558+0.3655=0.6213
C[3]=0.2558+0.3655+0.0882=0.7095
C[4]=0.2558+0.3655+0.0882+0.1422=0.8517
C[5]=0.2558+0.3655+0.0882 +0.1422+0.0731=0.9248
C[6]=0.2558+0.3655+0.0882+0.1422+0.0731+0.0752= 1.0000

After the computation of the cumulative probability of selection
process using roulette - wheel, then the process is used to
generate random Number R(i) being chosen randomly one at
least from each cumulative category in the range 0-1. The range
of R(i) is given as follows:

0 <R(i)< 0.2558

0.2559<R(i)<0.6213

0.6214<R(1)<0.7095

0.7096 <R(i) <0.8517

0.8518<R(i)<0.9248

0.9249<R(i)<1.0000

R[1]=0.370

R[2]=0.193

R[3]=0.874

R[4]=0.771

R[5]=0.297

R[6]=0.657

If random number R [1] is greater than C [1] and smaller than C
[2] then select Chromosome [2] as a chromosome in the new
population for next generation:

New Chromosome[1]=Chromosome[2] New Chromosome[2]=
Chromosome[1] New Chromosome[3]= Chromosome[5] New
Chromosome[4]= Chromosome[4] New Chromosome[5]=
Chromosome[2] New Chromosome[6]= Chromosome[3] New
Chromosome in the population thus becomes: Chromosome[1]
= [1;2;3] Chromosome [2]=[2;1;4] Chromosome [3]=[1;4;9]
Chromosome[4]=[2;1;6] Chromosome [5]=[1;2;3] Chromosome
[61=[3;4;7].

Crossover: In this example, we use one-cut point for crossover,
i.e. randomly chosen a position in the parent chromosome and
then exchanging sub- chromosome. Parent chromosome which
will mate is randomly selected and the number of mate
Chromosomes is controlled using crossover-rate  (cr)
parameters. Pseudo-code for the crossover process is as follows:
Begin k«—0; while (k<population) do R[k] < random (0-1);

If (R[K]<cr) then select Chromosome [K] as parent; end; k=k+1;
end; end; Chromosome k will be selected as a parent if R [k]
<pc ). Suppose we set that the cross over rate as 25%, then
Chromosome number k will be selected for cross over if random
generated value for Chromosome k is below 0.25.
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The process is as follows: First we generate a random number R
as the number of population

R[1]=0.090

R[2]=0.168

R[3]=0.659

R[4]=0.995

R[5]=0.073

R[6]=0.236

For random number R above, parents are Chromosome [1],
Chromosome [2], Chromosome [5] and Chromosome [6] will be
selected for cross over. Chromosome [1] >< Chromosome [6]
Chromosome [2] >< Chromosome [5] Chromosome [5] ><
Chromosome [1] Chromosome [6] >< Chromosome [2]

After chromosome selection, the next process is determining the
position of the cross over point. This is done by generating and
om numbers between 1 to (length of Chromosome — 1). In this
case, generated random numbers should be between 1 and 2.
After we get the crossover point, parents Chromosome will be
cut at cross over point and its gens will be inter changed. For
example we generated 3 random number and we get

C[1]=1

C[2]=1

C[3]=1

C[4]=1

Then for cross over, cross over, parent’s gens will be cutatgen
number 1, e.g

Chromosome [1]>< Chromosome 6]

=[1;2;3]><[3;4;7] = [1;4,7]

Chromosome [2]><Chromosome[5]

=[2;1;4]><[1;2;3] = [2;2;3]

Chromosome [5]><Chromosome[1]

=[1;2;3]><[1;2;3] = [1;2;3]

Chromosome [6]>< Chromosome [2]

=[3;4;7]><[2;1;4] = [3;1:4]

Thus, Chromosome population after experiencing a cross over
process: Chromosome [1] = [2;2;3]

Chromosome [2]=[2;2;3]

Chromosome [3]=[1;4;7]

Chromosome [4]=[2;2;3]

Chromosome [5]=[3;1;4]

Chromosome [6]=[3;4;7]

Mutation: The number of chromosomes that results in a
population governed by the mutation rate (mr) parameter. It is
process done by replacing the gen at random position with a
fresh new value. We compute the total length of gen in the
population. Then, the total length of gen is equal to Total
gen=number of gen in Chromosome x number of population =
3x6 = 18. Mutation process is done by generating a random
integer between 1 and total gen (1to18). If generated random
umber is smaller than mutation rate (mr) variable then marked
the position of gen in chromosomes. Suppose we define mr as
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10%, it is expected that 10% (0.1) of total gen in the population
that will be mutated: number of mutations = 0.1 * 18 = 1.8 = 2.
Suppose generation of random number yield 10 and 14 then the
chromosome which have mutation are chromosome number 4
gen number 1 and chromosome 5ge number 2. The value of
mutated genes at mutation point is replaced by random number
between 0-10. Suppose generated random number are 1 and 0
then chromosome composition after mutation are:
Chromosome[1]=[2;2;3]

Chromosome[2]=[2;2;3]

Chromosome[3]=[1;4;7]

Chromosome[4]=[2;2;3]

Chromosome[5]=[3;1;4]

Chromosome[6]=[3;4;7]

We, then, can now evaluate the objective function after one
generation: Chromosome [1] = [2;2;3]

Objective function [1] = Abs(2+2*2+4*3) -10)=8
Chromosome [2] = [2;2;3]

Objective function [2] = Abs(2+2*2+4*3) -10)=8
Chromosome [3] = [1;4;7]

Obijective function [3] = Abs(1 +2*4+4*7)- 10) =27
Chromosome [4] = [2;2;3]

Obijective function [4] = Abs(2+2*2+4*3) -10)=8
Chromosome [5] = [3;1;4]

Obijective function [5] = Abs(3+2*1+4*4) -10)=11
Chromosome [6] = [3;4;7]

Objective function [6] = Abs (3+2*4+4*7)-10)=29

From the evaluation of above objective function, it seems that
the objective function of new prepared chromosome has been
decreasing, implies that we have better chromosome or solution
compared with previous chromosome generation. The senew
chromosomes will undergo the same process as the previous
generation of chromosomes such as evaluation, selection,
crossover and mutation and at the end it produce new generation
of chromosome for the next iteration. This process will be
repeated until a predetermined number of generations. For this
example, after running 100 generations, best chromosome is
obtained: Chromosome=[4;1;1]

This means that: bo=4,b1=1,b2=1

If we use the number in the problem equation b0 +2 b1+4 b2=4
+(2*1)+(4*1)=10.

We can see that the value of variable b0, b1 and b2 generated by
genetical growth can satisfy that equality of linear equation
population in Table-1.

Maximizing a function of one variable

In order to generate the number and length of the chromosomes
as 10 and 6 respectively, we consider the number of Bernoulli
trials as 6 and signify head as 1 and tail as 0. Let us write the
combination of 1,2,3,4, and 5 successes out of 6 Bernoulli trials,
we have the following combinations: 1,2,3,4,5,6 for one
success. For two successes as 12,13,14,15,16,23,24, 25,26,34,
35,36,45,46 and 56.
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Table-1: Values of by, b; and b, in linear equation population.
bo value bivalue b2 value
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For three we have 123, 234, 345, 456,156, 126, 134, 245, 356,
146,125, 236, 145, 256, 136, 124, 235,3 46, 156 and 126.
Similarly, we have four combinations as 1234, 2345, 3456,
1456, 1256, 1236, 1345, 2456, 1356, 1246, 1235, 2346, 1456,
1236 and 1256. For five combinations 12345, 23456, 13456,
12456, 12356, and 12346. Thus, we have 62 combinations. Out
of these 62 combinations, ten Chromosomes having length 6
would have been randomly chosen in the form of binary number
as 0 and land proceeded on the similar lines of Sharma etel
for maximizing the function f(x) = Vx subject to the condition
that 1<x< 25.

This example adapts the method of an example presented in
Goldberg®. Consider the problem of maximizing the function
x2(x+1)

f(x)=--— =10

where X is allowed to vary between 0 and 31.

This function is displayed in Figure-1. To solve this using a
genetic algorithm, we must encode the possible values of x as
chromosomes. For this example, we will encode x as a binary
integer of length 5. Thus the chromosomes for our genetic
algorithm will be sequences of 0’s and 1’s with a length of
5bits, and have a range from 0 (00000) to 31 (11111). To begin
the algorithm, we select an initial population of 10
chromosomes at random. We can achieve this by tossing a fair
coin 5 times for each chromosome, letting heads signify 1 and
tails signify 0. The resulting initial population of chromosomes
is shown in Table-2. Next we take the x-value that each
chromosome represents and test its fithess with the fitness
function. The resulting fitness values are recorded in the third
column of Table-2.
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Figure-1: Graph of f(X) = -% + 10 x
Table-2: Initial Population.

Chromosome number Initial population x-value Fitness value f(x) Selection probability
1. 10000 16 116.48 0.0487
2. 01000 8 74.24 0.0310
3. 00100 4 39.20 0.0164
4, 00010 2 19.88 0.0083
5. 00001 1 9.98 0.0042
6. 11000 24 96.00 0.0401
7. 01100 12 101.28 0.0423
8. 00110 6 57.48 0.0240
9. 00011 3 29.64 0.0124
10. 10001 17 117.98 0.0493
11. 10100 20 116.00 0.0485
12. 01010 10 89.00 0.0372
13. 00101 5 48.5 0.0203
14, 10010 18 118.44 0.0495
15 01001 9 81.9 0.0342
16 11100 28 52.64 0.0220
17 01110 14 110.60 0.0462
18 00111 7 66.08 0.0276
19 10011 19 117.80 0.0492
20 11001 25 87.50 0.0366
21 11010 26 77.48 0.0324
22 01101 13 106.34 0.0444
23. 10110 22 108.68 0.0454
24 01011 11 95.48 0.0399
25 10101 21 112.98 0.0472
26 11110 30 21.00 0.0088
27 01111 15 114.00 0.0476
28 10111 23 103.04 0.0431
29 11011 27 65.88 0.0275
30 11101 29 37.70 0.0158

Sum 2393.20
Average 79.7733
Max 118.44
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Table-3: Contined for re-production and second generation.

Res. J. Mathematical and Statistical Sci.

Chromosome number Mating pairs New population X-value Fitness value f(X)
1. 100/00 1 0 O 1 1 19 117.80
19. 100/11 1 0 0 0 0 16 116.48
7. 011 |00 0 1 1 0 1 13 106.34
22. 011)01 0 1 1 0 0 12 101.28
10. 10j001 1 0o 1 1 0 22 108.68
23. 10/110 1 0 0 O 1 17 117.98
11. 101/00 1 0 1 O 1 21 112.98
25, 101j01 1 0 1 O 0 20 116.00
14, 100/10 1 0 0 1 1 19 117.80
27. 011/11 0 1 1 1 0 14 110.60
17. 01/110 0 1 1 1 1 15 114.00
28. 10]111 1 0O 1 1 0 22 108.68
Sum 1348.62
Average 112.385
Max 117.98
4. Bashir, Lubna Zaghlul and Raja Salih (2015). Solving
Banana (Rosenbrock) function based on fitness functionl.
Conclusion World Scientific News, 6, 41-56.
We select the chromosomes that will reproduce based on their 5. Bashir, Lubna Zaghlul (2015). Solve simple linear equation

fitness values, using the following probability:

(@m)
P (Chromosome produces) =
Y p=q(@e)

Goldberg has decided this process to spinning a weighted
roulette wheel. Since our population has 30 chromosomes and
each ‘mating’ produces 2 off spring, we need 15 matings to
produce a new generation of 30 chromosomes. The selected
chromosomes are displayed in Table-3 with the priority given
on the basis of selection probability which has greater
probability to be 0.04 20 and more. To create their off spring,
across over point is chosen at random, which is shown in the
table as a vertical line. It is to be noted that the sum of the
chromosomes number selected format in g pairs is equal to
2393.20 from Table-2 while it is 1348.62 for fitness value f(X)
in Table-3 for 12 chromosomes randomly selected with the
priority of higher probability. It indicates that fitness value of
the population has been increased at least after only one
generation.
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