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Abstract 

The central limit theorem is the most fundamental theory in modern statistics and quite an important concept in biostatistics, 

and data science. The central limit theorem states that the sampling distribution of the mean for a variable will approximate 

a normal distribution regardless of that variable’s distribution in the population, when the sample size is large. In real life 

we cannot repeat studies (resampling) many times to estimate the sampling distribution of the mean. Hence only a 

simulation-based illustration is possible to understand the concept of central limit theorem. Present study aims to provide a 

clear understanding of the concept of central limit theorem with the help of simulated data using R codes. 
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Introduction 

Distribution of the variable is one of the most important factors 

in determining the right choice of any statistical analyses. 

Knowledge regarding the assumption of normality is critical, as 

it enables the researcher to choose either parametric or non-

parametric tests
1
. Prior to statistical analysis, researchers 

frequently become perplexed regarding the nature of the 

variables. Many variables like length of hospital stay, time to 

recovery, haemoglobin level etc., may follow non-normal 

distributions. Parametric tests are more powerful and yield more 

precise and accurate estimates than non-parametric tests. So, it 

is essential to decide whether the data follows normal 

distribution or not. The normality of the data can be checked 

either by using Kolmogorov-Smirnov test or Shapiro-Wilk 

test
2,3

. An alternative option is to plot histograms and see 

whether the curve fitted is bell shaped symmetrical in nature
4
. 

When the data fails normality, rather than proceeding straight 

away with non-parametric tests attempts should be made to 

make it normal using transformations.  

 

The central limit theorem is one of the most fundamental 

theories in modern statistics which has contributed greatly to the 

development of parametric tests. This concept holds 

significance in biostatistics, mathematics, and data science, 

making it essential for researchers to understand it
5
. The origin 

of the central limit theorem states back to Abraham de Moivre's 

1738 book, “The Doctrine of Chances”
6
. The mathematical 

definition of Central Limit Theorem is as follows
7
: 

 

Let X1 , X2 , … , X𝑛  be a sequence of independent random 

variables, each having the same distribution with finite mean µ 

and finite variance of 𝜎2. If  𝑋 𝑛 is the mean of X1 , X2 , … , X𝑛 , 

then the distribution of the standardized variable 𝑍𝑛 =

 𝑋 𝑛 − 𝜇  𝜎  𝑛    converges to the normal distribution as 

𝑛 → ∞. 

 

That means, when sample size is sufficiently large, the sampling 

distribution of the mean for a variable will approximate a 

normal distribution regardless of the distribution of that variable 

in the population
8,9

. In other words, if we randomly take large 

number of samples with a specific sample size without 

replacement from a population and plot the means of these 

samples, the histogram will be bell shaped symmetrical normal 

curve, when the sample size is sufficiently large. 

 

Usually we conduct a study once, and calculate the mean of that 

sample. We cannot repeat studies (resembling) many times to 

estimate the sampling distribution of the mean since it is not 

feasible and ethical. Hence only a simulation-based illustration 

is possible to understand the concept of central limit theorem in 

an easier way. The present article aims to provide the 

researchers with a clear understanding of the concept of central 

limit theorem with the help of simulated data using R codes. 

 

Methodology 

Probability distributions
10,11 

are mathematical functions that 

model different types of data. To provide a better understanding 

of the concept of central limit theorem using histogram of 

sampling distributions we simulated samples from distributions 

such as Uniform, Exponential, Poisson, Gamma and Binomial. 

 

We generated samples from these five distributions and 

simulated the data using R software
12

 version 4.1.1 and the R 

code is provided for readers to get a better hands-on experience.  

http://www.iscamaths.com/
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The main steps of data generation and simulation are given 

below: i. Generate 200 sample units (sample size, n=200) using 

simulation method, ii. Plot the histogram for the generated 

sample, iii. Repeat step 1 for various number of replicates such 

as n=100, n=500 and n=1000, iv. Estimate the statistic (mean) 

of each of the sample for various replicates, v. Plot the 

histogram to visualize the shape of the distribution of the 

statistic (mean) for various situations such as n=100, n=500 and 

n=1000 

 

Results and Discussion 

We created histograms for different distributions including 

Uniform, Exponential, and Poisson using R code (Figure-1, 3 

and 5). It is evident from the plots that none of the generated 

histograms exhibit a bell-shaped curve, as the samples generated 

from non-normal distributions. However, it is observed that the 

histogram plotted for the statistic (sampling distribution) is bell 

shaped for various selected distributions irrespective of the 

population/ distribution from which the samples are generated. 

Also, the shape of the curve became more towards bell shaped 

symmetrical when the sample size of sampling distribution 

increases from 200 to 1000 (Figure-2, 4 and 6). The R codes 

along with observed histograms for various distributions are 

provided below. 

 

Uniform distribution: Step 1: Generate histogram of uniform 

distribution based on R code 

R code: x=runif(200,1,2);hist(x) # x denote the variable with 

uniform distribution. 

hist(x,prob=T);lines(density(x),col="red",lwd=2) 

Step 2: Generate histogram for mean(statistic) obtained from the 

variable with uniform distribution for different sample sizes 

such as 100, 500 and 1000. (The R code given below is only for 

sample size 1000)   

R code: data=data.frame(replicate(1000,runif(200,1,2))); 

mean=sapply(data,mean)#  number of replicates can change. 

hist(mean, prob=T);lines(density(mean),col="red",lwd=2) 

 

 
Figure-1: Histogram showing the uniform distribution of 

variable x. 

 

Exponential distribution: Step 1: Generate histogram of 

exponential distribution based on R code 

R code: x=rexp(200,1/30);hist(x)  # x denote the variable with 

exponential distribution 

hist(x,prob=T);lines(density(x),col="red",lwd=2) 

Step 2: Generate histogram for mean(statistic) obtained from the 

variable with exponential distribution for different sample sizes 

such as 100, 500 and 1000. 

R code:   data=data.frame (replicate(1000, rexp(200,1/30))); 

mean=sapply (data,mean) 

hist (mean, prob=T);lines(density(mean),col="red",lwd=2) 

 

Poisson distribution: Step 1: Generate histogram of Poisson 

distribution based on R code 

R code: x=rpois(200,8);hist(x)  # x denote the variable with 

exponential distribution 

hist(x,prob=T);lines(density(x),col="red",lwd=2) 

Step 2: Generate histogram for mean(statistic) obtained from the 

variable with poisson distribution for different sample sizes such 

as 100, 500 and 1000. 

R code: data=data.frame(replicate(1000,rpois(200,8)));mean= 

sapply(data,mean) 

hist(mean,prob=T);lines(density(mean),col="red",lwd=2) 

 

 

 
Figure-2: Histogram showing the sampling distribution for number of replicates such as n= 100, n=500 and n=1000 for uniform 

variable. 
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Figure-3: Histogram showing the exponential distribution of variable x. 

 

 

 
Figure-4: Histogram showing the sampling distribution for number of replicates such as n= 100, n=500 and n=1000 for exponential 

variable. 

 
Figure-5: Histogram showing the Poisson distribution of variable x. 
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Figure-6: Histogram showing the sampling distribution for number of replicates such as n= 100, n=500 and n=1000 for Poisson 

variable. 

 

R code for other distributions: R code for other distributions 

such as Gamma and binomial are given below: 

 

Gamma Distribution: Step 1: Generate histogram of Gamma 

distribution based on R code 

R code: x=rgamma(200,10,4);hist(x) 

hist(x,prob=T);lines(density(x),col="red",lwd=2) 

Step 2: Generate histogram for mean(statistic) 

R code: data=data.frame(replicate(1000,rgamma(200,10,4))); 

mean=sapply(data,mean) 

hist(mean,prob=T);lines(density(mean),col="red",lwd=2) 

 

Binomial distribution: Step 1: Generate histogram of binomial 

distribution based on R code 

R code: x=rbinom(200,10,.4);hist(x) 

hist(x,prob=T);lines(density(x),col="red",lwd=2) 

Step 2: Generate histogram for mean(statistic) 

R code: data=data.frame(replicate(1000,rbinom(200,10,.4))); 

mean=sapply(data,mean) 

hist (mean,prob=T);lines(density(mean),col="red",lwd=2) 

 

Conclusion 

Central limit theorem plays a crucial role in statistical inference. 

The histogram plotted for the statistic (sampling distribution) is 

bell shaped for various selected distributions irrespective of the 

distribution from which the samples are generated. The shape of 

the histogram became more towards bell shaped symmetrical 

when the sample size increases. This simulation-based 

illustration aids in comprehending the Central Limit Theorem, 

and this article assists researchers from non-statistical 

backgrounds in grasping the concept through simulated data 

facilitated by R code. 
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