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Abstract  

The weighing problem originated in a casual illustration furnished by Yates. This illustration later led to a precise 

formulation of the weighing problem by Hotelling. Over the years the problem has attained a distinctive growth, has 

branched out in different directions, and has acquired meanwhile the status of a problem in the design of experiments. Many 

statisticians were thoroughly studied the problem of construction of weighing designs. The weighing problem originally 

considered by Yates and Hotelling, is concerned with finding the weights of ‘v’ objects in ‘n’ weighing operations. In the 

latter developments, attention has been in the direction of obtaining "optimum weighing designs” i.e. the design in which 

each of estimated weights attains the minimum. The optimality has been determined by means of "efficiency". A good quality 

of work has been done on the problem of determining optimal designs in terms of the A-, D- and E-optimality criteria. In 

recent years there has been very rapid development in this area of experimental design. This paper presents a review of the 

available literature on optimum chemical balance weighing design and its construction. 

 

Keywords: Weighing design, chemical balance weighing design, optimum chemical balance weighing design, Type I 

Criteria, D-optimality, A-optimality, E-optimality. 
 

Introduction 

Using a balance to measure the weight of an object or to compare the weight of two objects is called “Weighing”, which has been 

undertaken for thousands of years. Every human being on our planet is affected by weights and measures in some way or other. 

From the moment we are born and all through our daily lives, weighing and measuring are an important and often vital part of our 

existence. Our bodies, the food we eat and all the products we use as an essential part of modern living have all been weighed and 

measured at some stage in their development. Weights and measures are definitely one of man's greatest and most important 

inventions, ranking alongside the wheel in the development of civilization. Commerce would not have progressed beyond the 

barter system without the invention of a system of weights and measures. There are three elements to the weighing story and each 

evolved over the 6,000 years of its history; first, we have the use and development of weights; then the different weighing 

machines and apparatus; and finally the introduction of weights and measures to control commercial transactions. 

 

History of Weighing Designs 

Study of weighing problem originated in a casual illustration furnished by Yates
1
. The precise formulation of such problems is to 

be found in Hotelling
2
. Hotelling and Yates

1
 have shown that the individual weights may be determined more accurately by 

weighing the objects in combinations rather than weighing each one separately. Over the years the problem has attained a 

distinctive growth, has branched out in different directions, and has acquired meanwhile the status of a problem in the design of 

experiments. The problem has also become associated with the name of Hadamard and has given noticeable momentum to 

research in the extension of the Hadmard determinant problem. The experimental designs are applicable to a broad class of 

problems of measurement of similar objects. The chemical balance problem (in which objects may be placed in either of the two 

pans of the balance) is almost completely solved by means of designs constructed from Hadamard matrices. 

 

Origin of the Problem  

Yates
1
 showed that if several light objects such as seeds are weighed in groups rather than individually as customary and next the 

weights of the individual objects are estimated by the method of least squares, then the precision of the estimates increases quite 
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considerably. In the scheme suggested by Yates the objects are always placed on the same pan in a chemical balance or on a single 

pan in a spring balance. 

 

Yates considered the problem: A chemist has seven light objects (a, b, c, d, e, f, g) to weigh, and the scale also required a zero 

correction, so that eight weighings are necessary. The standard error of each weighing is denoted by σ, the variance therefore by 

σ2
. Since the weight assigned to each object by customary techniques is the difference between the readings of the scale when 

carrying that object and when empty, the variance of the assign weight is 2σ2
, and its standard error is σ√2. The improved 

technique suggested by Yates consists of weighing all seven objects together and also weighing them in groups of three so chosen 

that each object is weighed four times altogether, twice with any other object and twice without it. Calling the reading from the 

scale y1, y2, …, y8, we then have eight equations for determining the unknown weights 

 

a + b + c + d + e + f + g   = y1  

a + b + c                           = y2  

a             + d + e              = y3  

a                          + f + g  = y4  

b             + d        + f        = y5  

b                    + e       + g  = y6  

c              + d             + g  = y7  

c                    + e + f         = y8  

 

Any particular weight is found adding together the four equations containing it, subtracting the other four, and dividing by 4. Thus, 

estimate of object a is given by 4/)(ˆ
87654321

yyyyyyyya −−−−+++=      (1) 

  

For the first terms in the expression for a each coefficient is ¼ so the variance of “a” is σ2
/2, which is only one-fourth that for the 

direct method. The standard error has been halved. If a degree of accuracy is required calling for repetition a certain number of 

times of the weighings by the direct method, then only one-fourth as many weighing are needed by Yates’ method to procure the 

same accuracy in the average. This was the advantage of Yates’ method over the direct method. 

 

Improvement suggested by Hotelling 

Hotelling
2 

suggested that a further improvement can be possible in the Yates’ method, if Yates’ procedure were modified by 

placing in the other pan of the scale those objects not included in the weighing and thus using two pan chemical balance. Calling 

the readings z1, z2, …, z8, we can write the scheme of weighing operations (interchanging c and d of Yates scheme). 

  

 a + b + c + d +  e +  f +  g   =  z1 

 a + b + c -  d  -  e  -  f  -  g   =  z2 

 a  - b  - c + d +  e  -  f  -  g   =  z3 

 a  - b  - c -  d  -  e +  f +  g   =  z4 

-a + b  - c + d  -  e +  f  -  g   =  z5 

-a + b  - c -  d +  e  -  f +  g   =  z6 

-a -  b + c + d  -  e  -  f +  g   =  z7 

-a -  b + c -  d +  e +  f -   g   =  z8 

 

From these equations, 8/)(ˆ
87654321

zzzzzzzza −−−−+++=       (2) 

 

A similar expression is obtained for each of the other unknowns. The variance of each unknown by this method is σ2
/8. This shows 

that precision of the estimates of the weight of the object increases further. The standard error is half that by Yates’ method or 

quarter of its value by the direct method of weighing each object separately. The number of repetition required to procure a 

particular standard error in the mean is one-sixteenth that by the direct method. 

 

Following the two procedures of weighings i.e. single pan and two pan weighing given by Yates and Hotelling respectively a 

number of authors provided the methods of construction and analysis of such designs, together with investigation of the precision 

of such design. 
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Definitions 

Weighing Design: Weighing designs consists of n groupings of the p objects and suppose we want to determine the individual 

weights of p objects. We can fit the results into the general linear model as y = Xw+e,     (3) 

 

where y is an n � 1 random column vector of the observed weights,
 

,....2,1,....,2,1),( pjnixX ij === is an n�p  matrix of 

known elements with 

 









−

+

=

 weighingi in the ednot weight isobject jth   theif

 weighingi in thepan right  in the placed isobject jth   theif

  weighing,i in thepan left  in the placed isobject jth   theif

0

1

1

th

th

th

ijx
 

 

w is the p�1 column vector representing the unknown weights of objects and e is an   n � 1 random column vector of error such 

that
   

E(e) = 0 and E(ee’) = 
n

I2σ
 

 

where 0n is the n � 1 column vector with zero elements everywhere, In is the   n�n identity matrix, “E” stands for the expectation 

and e’ is used for transpose of e. E is the vector of the error component in the different observations and  

).,0(~ 2

NINE σ
 

 

The normal equations estimating w are of the form 
 ,ˆ '' yXwXX =        

(4) 

 

Where ŵ  is the vector of the weights estimated by the least squares method. 

 

A chemical balance weighing design is said to be singular or nonsingular, depending on whether the matrix X’X is singular or 

nonsingular, respectively. It is obvious that the matrix X’X is nonsingular if and only if the matrix X is of full column rank (= p). 

Now, if X is of full rank, that is, when X
’
X = S is nonsingular, the least squares estimate of w is given by yXXXw '1' )(ˆ −= and 

the variance - covariance matrix of ŵ  is 
1'2 )()ˆ( −= XXwVar σ

       
(5) 

 

Hotelling
2
 has shown that the minimum attainable variance for each of the estimated weights in this case is 2

n
σ  and proved the 

theorem that each of the variance of the estimated weights attains the minimum if and only if X’X=nIp. 

 

Variance limit of estimated weights 

Let X be an pn ×  matrix of rank p of a chemical balance weighing design and let mj be the number of times in which j
th
 object is 

weighed, j=1,2,…., p (i.e. the mj be the number of elements equal to -1and 1 in j
th

 column of matrix X). Then Ceranka et al.
3 

proved the following theorems   

 

Theorem: For any nonsingular chemical balance weighing design given by matrix, the variance of 
jŵ  of a particular such that  

1 <  j < p cannot be less than ,/2 mσ  where m=max {m1,m2,……,mp}. 

 

Theorem: For any n x p matrix X, of a nonsingular chemical balance weighing design, in which maximum number of elements 

equal to -1 and 1 in columns is equal to m, each of the variances of the estimated weights attains the minimum if and only if 

p
ImXX ='               (6) 

 

Chemical Balance Weighing Design: When the objects are placed on two pans in a chemical balance, we shall call the weighings 

two pan weighing and the design is known as two pan design or chemical balance weighing design. In chemical balance the 

objects can be placed either on one pan or on both pans for each weighing. If in a weighing design, suppose we are given p objects 

weighed in n weighing operations, the elements of design matrix X = {xij} takes the values as  
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xij  = +1 if the j
th

 object is placed in the left pan in the i
th

 weighing,  

     = -1  if the jth object is placed in the right pan in the ith weighing,  

     =  0  if the j
th

 object is not weighted in the i
th

 weighing.  

 

The n
th
 order matrix X = {xij} is known as the design matrix of the chemical balance. If n weighing operations are to determine the 

weights of p=n objects, the minimum variance that each estimated weight might have is 2

n
σ . 

 

Optimum Chemical Balanced Weighing Design:   A nonsingular chemical bala- nce weighing design is said to be optimal for 

the estimating individual weights of objects if the variances of their estimators attain the lower bound given by,  

pj
m

wVar ,......2,1,)ˆ(
2

==
σ

           

(7) 

 

In other words, For any n x p matrix X of rank p, of a nonsingular chemical balance weighing design, in which maximum number 

of elements equal to -1 and 1 in columns is equal to m, then each of the variances of the estimated weights attains the minimum if 

and only if 
p

ImXX ='
            

(8) 

 

In other words, an optimum design is given by X satisfying (8). In particular case when m=n we have the theorem given by 

Hotelling
2
. 

 

Type I criteria: Type I criteria i.e. Information-based criteria are related to the information matrix X’X for the design. This matrix 

is important because it is proportional to the inverse of the variance-covariance matrix for the least-squares estimates of the linear 

parameters of the model. These criteria can be divided into two classes according to the number of parameters used; the first class 

uses all parameters of the model. In this class possible criterion to consider are G–, D–, A–, E– and I–optimality criteria. Here we 

discuss only D–, A– and E–optimality criteria. 

 

D–optimality: D–optimality is the most important and popular design criterion, introduced by wald
4
, put the emphasis on the 

quality of the parameter estimates. D-optimality criterion is also known as the determinant criterion. The aim of D-optimality is 

essentially a parameter estimation criterion. This is the most extensively studied of all the design criteria. D–optimality is defined 

as  

( ) 1

,...,1,

'min'max
,...,1,

−

=
≡

=

XXXX
niixniix

          

(9) 

which means maximizing the determinant of the information matrix, or equivalently, minimizing the determinant of the inverse of 

the information matrix.  

 

A–optimality: A–optimality criterion showed the employed criterion of optimality which is the one that involves the use of 

Fisher's information matrix. An algebraic approach for constructing A–optimal design under generalized linear models was 

presented by Yang
5
. A–optimality is defined as 

.1

,...,1,
)'(min −

=
XXtrace

niix

             
(10) 

or equivalently, minimizing the average variance of the parameter estimates.   

 

E–optimality: E–optimality introduced by Ehrenfeld but the Computations of E–optimal polynomial regression designs were 

introduced by Heiligers
6
. A method for computing E–optimal designs for a broad class of two parameter models was presented by 

Dette and Haines
7
. E–optimality is defined as  

1

maxmin )'(min)'(max −= XXXX λλ
          

(11) 

The procedure here builds on finding the design which maximizes the minimum eigen value of  X’X or equivalently, minimize the 

maximum eigen value of 1)'( −
XX . The aim of E-optimality is to minimize the maximum variance of all possible normalized 

linear combinations of parameter estimates.  

 

Related Work 

In the field of Weighing Designs enormous work has been done by many Statisticians. Study of weighing problem originated in a 

casual illustration furnished by Yates
1
. The precise formulation of such problems is to be found in Hotelling

2
. Hotelling and Yates 

have shown that the individual weights may be determined more accurately by weighing the objects in combinations rather than 
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weighing each one separately. Hotelling
2
 showed that the minimum attainable variance for each of the estimated weights for a 

chemical balance weighing design is 2σ  /n. He showed that each of the variance of the estimated weights attained the lower hound 

if and only if X
’
 X = nIp. A design satisfying this condition is called an optimum chemical balance weighing design. In this case, 

several methods of construction optimum chemical balance weighing designs are available in the literature. Prominent among 

them are the works of Mood8, Dey9-10, Benerjee11-13, Kishen14, Raghavrao15-17 and others. 

 

Mood
8
 proposed some solutions of the weighing problems projected by Hotelling

2
. The experimental designs are applicable to a 

broad class of problems of measurement of similar objects. The chemical balance problem (in which objects may be placed in 

either of the two pans of the balance) is almost completely solved by means of designs constructed from Hadamard matrices. He 

provided designs both for a balance which has a bias and for one which has no bias. He found that when p objects were weighed 

in n ≥ p weighings, the variances of the estimates of the weights were of the order of σ
2
/n in the chemical balance case (σ

2
 is the 

variance of a single weighing). 

 

A good deal of work has been done on the problem of determining optimal designs in various classes and subclasses of D(N,n). A 

detailed account of weighing designs can be obtained from Banerjee
11-13 

and Raghavarao
15-17

. Some problems connected with the 

optimality of chemical balance weighing designs were considered by and Banerjee. Raghavarao
 
has provided a fairly complete 

account of the basic results available in this area. Banerjee
11-13

 has introduced the subject matter in general terms to research 

workers in applied sciences. He has shown that the arrangements afforded by a balanced incomplete block design can be used as 

an efficient chemical balance design. Such designs suffer from one drawback viz., there were only a few number of degrees of 

freedom left for the estimation of error-variance σ
2
. To overcome this difficulty, Dey

9-10
 has been suggested that the whole design 

may be repeated a certain number of times to get an estimate of the error variance. He made an attempt to give an alternative 

design where there was no necessity of such repetition. He also showed that these designs give a lesser variance of the estimated 

weights than the repeated design. 

 

Raghavarao
15-17

 and Bhaskarao
18

 have studied the problem in terms of the A-, D-, and E-optimality criteria, but their results were 

applicable only within the subclasses of designs of D (N,n) whose information matrices can be written in the form 

aIn + bJnm              (12) 

 

where a and b are real numbers, In is the n x n identity matrix and Jnm is the  m x n matrix of ones. Kiefer
19

 and Cheng
20

 have 

shown that designs whose information matrices can be written in the forms NIn and (N-1)In + Jnn were optimal over all designs in 

D(N,n) with respect to very large classes of criteria. However, as noted by Cheng
20

, optimal designs in D(N, n) and D’(N, n) do 

not always have information matrices of the form (12). Indeed, the results of Ehlich
21

 and Payne
22

 showed that when N= 2 (mod 

4), then a design d∈D’(N,n) whose information matrix has the form  










+−

+−
=

222

111

2)2(0

02)2(

nnn

nnn

d
JIn

JIn
M         (13) 

 

was D-optimal in D’(N,n) where 1
n = [n/2], 

2
n  = n - 

1
n , and [w] denotes the greatest integer not exceeding w ≥ 0. Work by Galil 

and Kiefer
23-24

 also shown that optimal designs need not have information matrices of the form given in (12).  

 

Further Jacroux et al.
25

 considered the problem of optimally weighing n objects with N weighings on a chemical balance. Several 

previously known results were generalized by them. In particular, the designs shown by Ehlich  and Payne to be D-optimal in 

various classes of weighing designs where N=2 (mod 4) were shown to be optimal with respect to any optimality criterion of Type 

I as defined in Cheng. Several results on the E-optimality of weighing designs were also given. They mainly generalized the 

results given by Ehlich and Payne. In particular, they shown that a design in D’(N, n) where N=2 (mod 4) whose information 

matrix has the form (13) was uniquely optimal with respect to any Type I criterion and that such designs were uniquely D-optimal 

over all designs in D(N,n). They also extended the result of Raghavarao
17

. They have shown that certain designs which can be 

obtained from SN matrices as defined in Raghavarao were E-optimal in various classes D(N, n). 

 

Cheng et al.
26

 developed a technique for finding optimum designs for weighing n objects in N weighings (N => n) on a chemical 

balance. Certain designs were shown to be optimal with respect to a large class of criteria (including the A- and D-criteria) for 

sufficiently large N ≡ 2 or 3 (mod 4). For small N, the result allows the elimination of a large number of competitors, and those 

that remain can be checked by a computer. 
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Several methods of construction of optimum chemical balance weighing designs without any restrictions on the number of objects 

placed on the either pan are available in the literature. Dey9-10, Saha27 , Kageyama and Saha28 and others have shown how optimum 

chemical balance weighing designs can be constructed from the incidence matrices of balanced incomplete block designs for p = v 

objects. Various aspects of chemical balance weighing designs were studied by Shah and Sinha
29

. They have presented various 

theoretical aspects of optimality studies in the set-up of traditional experimental designs. Kageyama and Saha
30

 have constructed 

optimum chemical balance weighing designs for p = v + 1 objects in   n = 4(r - λ ) weighings from incidence matrices of balanced 

incomplete block designs for v treatments. In the same case, Ceranka and Katulska
31-33

 have studied another method of 

construction. They gave the necessary and sufficient conditions under which a chemical balance weighing design for v + 1 objects 

was optimal. Also certain new construction methods of these optimum designs by utilizing the incidence matrices of BIB designs 

for v treatments were given. They studied some other methods of the construction of the design matrix X for a chemical balance 

weighing design problem (p = v + 1 objects) using the incidence matrices of some BIB designs for v treatments, which gave new 

optimum chemical balance weighing designs. They also studied the problem of estimating the individual weights of objects with 

minimum variances by using a weighing design with non-homogeneity of the variances of errors in the model. They proposed the 

necessary and sufficient conditions for optimum biased spring balance weighing designs with non-homogeneity of the variances of 

errors and for optimum chemical balance weighing designs with non-homogeneity of the variances of errors and the relations 

between these designs were investigated. They also found the new optimum weighing designs. 

 

Some results of construction chemical balance weighing designs under the restriction on the number of objects placed on the either 

pan were given by Swamy
34

, Ceranka et al.
35

 and Ceranka and Katulska
36

. Ceranaka and Katulska
36

 have shown relations between 

parameters of chemical balance weighing designs in situation, when matrix X of chemical balance weighing design was based on 

the incidence matrices of balanced incomplete block designs and on balanced bipartite block designs, respectively. Ceranka and 

Katulska
32

 have constructed optimum chemical balance weighing designs from two incidence matrices of balanced incomplete 

block designs. Several methods of constructing matrix X are available in the literature Ambrozy and Ceranka. 

 

In this area of chemical balance weighing designs enormous work has been done by Ceranka et al.
37-53

. Ceranka et al.
37

 provided 

the way to deal  with the problem of estimating individual weights of objects, using a chemical balance weighing design under the 

restriction on the number in which each object is weighed. A lower bound for the variance of each of the estimated weights from 

this chemical balance weighing design was obtained and a necessary and sufficient condition for this lower bound to be attained 

was given. The incidence matrix of ternary balanced block design was used to construct optimum chemical balance weighing 

design under the restriction on the number in which each object was weighed. 

 

Ceranka et al.
38

 studied the problem of estimating individual weights of objects, using a chemical balance weighing design under 

the restriction on the number of times in which each object was weighed. A lower bound for the variance of each of the estimated 

weights from this chemical balance weighing design was obtained and a necessary and sufficient condition for this lower bound to 

be attained was given. The incidence matrices of balanced bipartite block designs were used to construct the design matrix of 

chemical balance weighing designs under the restriction on the number in which each object was weighed. 

 

Ceranka et al.
39

discussed the problem of estimating individual weights of objects using a chemical balance weighing design under 

the restriction on multiplicity of each object weighing. There were given the conditions under which the existence of an optimum 

chemical balance weighing design for p = v objects implies the existence of an optimum chemical balance weighing design for p = 

v + 1 objects. A new method of constructing the optimum chemical balance weighing design for p = v + 1 objects was proposed. 

The construction was based on the incidence matrices of balanced bipartite block designs for v treatments.  

 

Ceranka et al.
40

 studied the problem of estimating individual weights of objects, using a chemical balance weighing design under 

the restriction on the number in which each object was weighted. A lower bound for the variance of each of the estimated weights 

from this chemical balance weighing design was obtained and a necessary and sufficient condition for this lower bound to be 

attained was given. The incidence matrices of balanced incomplete block designs and balanced bipartite block design were used to 

construct the design matrix X of optimum chemical balance weighing design under the restriction on the number in which each 

object is weighted. 

 

Assuming that in each weighing operation not all objects are included, Ceranka et al.
41

 studied the problem of estimating 

individual weights of objects in chemical balance weighing design. All variances of estimated weights were equal and they 

attained the lower bound. They proposed necessary and sufficient condition under which this lower bound was attained by 

variances of each of the estimated weights from this chemical balance weighing design. For the construction of the design matrix 

X of optimal chemical balance weighing design they used the incidence matrices of balanced bipartite block designs and ternary 

balanced block design.  
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The incidence matrices of ternary balanced block designs for v treatments have been used by Ceranka et al.42-44 to construct 

chemical balance weighing designs for p = v and v+1 objects with uncorrelated estimators of weights. Ceranka et al.
42

 have shown 

that the chemical balance weighing design with uncorrelated estimators of weights be constructed from the incidence matrices of 

ternary balanced block designs and then they constructed chemical balance weighing designs with uncorrelated estimators of 

weights for p = v +1 objects from incidence matrices of ternary balanced block designs for v treatments. Conditions under which 

the existence of a chemical balance weighing designs with uncorrelated estimators of weights for v objects implies the existence of 

the design with the same restrictions for v + 1 objects were given. The existence of a chemical balance weighing design with 

uncorrelated estimators of weights for v + 1 objects implies the existence of the design the same restrictions for p < v +1 objects. 

Ceranka et al.
43

 studied the problem of estimation of the weights of p objects in n weighings using chemical balance weighing 

design under the restriction ppp <+ 21
  where p1 and p2 represent the number of objects placed on the right and left pan, 

respectively. The incidence matrices of two ternary balanced block designs for  v  treatments were used to construct chemical 

balance weighing designs of  p=v + 1 objects. The conditions for uncorrelated estimates of unknown weights were proposed. They 

studied two methods of construction of the design matrix X for a chemical balance weighing design for p = v + 1 objects under the 

restriction on the number of objects placed on either pan. These methods were based on two incidence matrices of ternary 

balanced block designs for v treatments. 

 

Ceranka et al.
44-45

 studied the estimation problem of individual weights of objects using a chemical balance weighing design under 

the restriction on the number times in which each object was weighed. Conditions under which the existence of an optimum 

chemical balance weighing design for p = v objects implies the existence of an optimum chemical balance weighing design for p = 

v + 1 objects were given. The existence of an optimum chemical balance weighing design for p = v + 1 objects implies the 

existence of an optimum chemical balance weighing design for each p < v + 1. The new construction method for optimum 

chemical balance weighing design for p = v + 1 objects was given using the incidence matrices of ternary balanced block designs 

for v treatments. 

 

For the case when the errors are correlated with equal variances, the conditions for determining the existence of the optimum 

chemical balance weighing design were considered in Ceranka et al.
46

. They proposed the lower bound of variance of each of the 

estimators and the construction methods of the optimal design. In the case of G = I n , Wong et al.
47

 proposed some construction 

methods of the A-optimal chemical balance weighing designs and also gave the lower bound for tr(XX)
−1

. Ceranka et al.
48

 studied 

the estimation problem of individual measurements (weights) of objects in a model of chemical balance weighing design with 

diagonal variance - covariance matrix of errors under the restriction k1 + k2 < p, where k1 and k2 represent the number of objects 

placed on the right and left pans, respectively. They want all variances of estimated measurements to be equal and attaining their 

lower bound. For this they gave a necessary and sufficient condition under which this lower bound was attained by the variance of 

each of the estimated measurements. They proposed some methods of construction of an optimum chemical balance weighing 

design under the restriction on the number of objects placed on either of the pans. To construct the design matrix X of the 

considered optimum chemical balance weighing design they utilized the incidence matrices of balanced bipartite weighing 

designs. For the case of G being a positive definite diagonal matrix of known elements, Ceranka et al.
49

 gave the lower bound of  

tr( X
'
G

- 1
X )

- 1
 and the necessary and sufficient condition for this lower bound to be attained. The problem studied by them 

concerns the estimation of individual weights of p objects according to the model of an A-optimal chemical balance weighing 

design with a positive definite diagonal variance matrix of errors under the restriction  p 1 + p 2 = q  ≤  p , where p1 and p2 represent 

the numbers of objects placed on the left and on the right pan respectively, in each of the measurement operations. The lower 

bound of tr( X
′
G

- 1
X )

- 1
 was obtained and the necessary and sufficient condition for this lower bound to be attained under the 

given restriction on the number of objects included in the particular measurement operation was given. To construct the A-optimal 

chemical balance weighing design a set of incidence matrices of the balanced bipartite weighing designs were used. Ceranka et 

al.
50

 studied the estimation problem of individual weights of p objects using the design matrix X of the A-optimal chemical 

balance weighing design under the restriction p1 + p2 = q ≤ p, where p1 and p2 represent the number of objects placed on the left 

pan and on the right pan, respectively, in each of the measurement operations. The lower bound of tr(X’X)
-1

 was attained and the 

necessary and sufficient conditions for this lower bound to be obtained was given by them. They have given new construction 

methods of the A-optimal chemical balance weighing designs based on incidence matrices of the balanced bipartite weighing 

designs and the ternary balanced block designs. 

 

Assuming that errors are uncorrelated with different variances, Ceranka et al.
51

 studied the estimation problem of individual 

weights of objects using a chemical balance weighing design under the restriction on the number of times in which each object 

was weighed. The necessary and sufficient condition under which the lower bound of variance of each of the estimated weights is 

attained was given. For a new construction method of the optimum chemical balance weighing design they used the incidence 

matrices of the balanced incomplete block designs and the ternary balanced block designs. 
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The problem of estimation of individual measurements (weights) of p objects using n measurement operations according to the 

model of the chemical weighing design was presented by Ceranka et al.52. Assuming that not all objects in each measurement were 

included, the optimality conditions and the construction methods of the design matrix X of the optimum chemical balance 

weighing design for p = v + 1 objects were given. The construction was based on the incidence matrices of the balanced 

incomplete block designs and the balanced bipartite weighing designs for v treatments. 

 

The problem of the estimation of unknown weights of p = v + 1 objects in the model of the chemical balance weighing design 

under the assumption that the measurement errors are uncorrelated and they have different variances was considered by Ceranka et 

al.
53

. The existence conditions determining the optimum design were presented. Ceranka et al.
54

 utilized the incidence matrices of 

two group divisible designs with the same association scheme and the design matrix of chemical balance weighing design to 

construct optimum chemical balance weighing design. 

 

Applications of weighing designs  

Besides being helpful in routine weighing operations, the weighing designs, either the balanced ones or the others are 

applicable. i. to determine the weights of light objects, ii. useful in chemistry, physics, biological, economic and other sciences, 

iii. to a great variety of problems of measurement, not only of weights, but of lengths, voltages and resistances, iv. to determine 

concentration of chemicals in solutions, v. particularly useful in biological and chemical laboratories engaged in routine 

chemical analysis, vi. some special instances of balanced weighing designs, like in calibration, vii. to any problem of 

measurement in which the measure of a combination is expressible as a linear combination of the separate measures with 

numerically equal coefficients, viii. in general to any situation with additive effects. 

 

Conclusion 

It is difficult to weight the light objects accurately by weighing balance when measured individually. For getting high precision of 

the estimates, weighing designs are used. So if several light objects are weighed in groups rather than individually, we will obtain 

the estimates of high precision. Weighing designs are useful in various problems experimental designs. In this study the research 

and literature review were organized according to the construction and subject. 
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