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Abstract

In this paper we establish fixed point theorems in Fuzzy Menger space for weak commutative and weak compatible which
satisfying implicit relation.
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Introduction

The notion of probabilistic metric space is introduced by Menger' in 1942 and the first result about the existence of a fixed point of
a mapping which is defined on a Menger space is obtained by Sehgel and Barucha-Reid. A number of fixed point theorems for
single valued and multivalued mappings in menger probabilistic metric space have been considered by many authors*”. In 1998,
Jungck' introduced the concept weakly compatible maps and proved many theorems in metric space. Recently, Rajesh Shrivastav
et. al.""'"? have proved fixed point theorems for Fuzzy Menger space. In this paper we have proved some fixed point results for
weakly commuting mappings and weak compatible mappings in Fuzzy Menger space.

Preliminaries

We required following definitions:

Definition 2.1 A fuzzy probabilistic metric space (FPM space) is an ordered pair (X,Fa) consisting of a nonempty set X and a
mapping Fo from XxX into the collections of all distribution functions FaeR for all a. € [0,1]. For x, y € X we denote the
distribution function Fa (x,y) by Fa(x,y) and Fa(x,y) (u) is the value of Fa(x,y) at u in R. The functions Fa(x,y) for all a. € [0,1]
assumed to satisfy the following conditions: i. Fa(x,y) () =1 V u>0iff x =y, ii. Fa(x,y) (0) =0V x, yin X, iii. Fa(x,y) =
Foa(y,x) Vx,yinX,iv. If Fa(x,y) (u)=1and Fo(y,z) (v)=1then Fa(x,z) (u+v)=1V x.,y,zinX,v.andu,v >0

Definition 2.2 A commutative, associative and non-decreasing mapping t: [0,1] X [0,1]— [0,1] is a t-norm if and only if
t(a,1)=a for all ac[0,1] , t(0,0)=0 and t(c,d) > t(a,b) forc>a, d=>b

Definition 2.3 A Fuzzy Menger space is a triplet (X,Fa.t), where (X,Fa) is a FPM-space.t is a t-norm and the generalized triangle
inequality for all X, y, z in X u, v> 0 and ae[0,1]. Fa(x,z) (u+v) = t (Fa(x,z) (u), Fa(y,z) (v)) The concept of neighborhoods in
Fuzzy Menger space is introduced as

Definition 2.4 Let (X,Fo,t) be a Fuzzy Menger space. If xe X, € > 0 and A €(0,1), then (g,A) - neighborhood of x, called Ux
(g,M), is defined by Ux (e,A) = {ye X: Fa(x,y)(€)>(1-A)} An (g,A)-topology in X is the topology induced by the family {Ux
(&M):xe X,e>0,0.€e [0,1]and Ae(0,1)} of neighborhood.

Remark: If t is continuous, then Fuzzy Menger space (X,Fa,t) is a Housdroff space in (g,A)-topology. Let (X,Fa,t) be a complete
Fuzzy Menger space and AcX. Then A is called a bounded set if lim inf Fa(x,y) (u) =1. u—co X, ye A

Definition 2.5 A sequence {xn} in (X,Fo,t) is said to be convergent to a point x in X if for every €>0and A>0, there exists an
integer N=N(g,A) such that xn € Ux(g,A) for all n > N or equivalently Fo (xn, x; €) > 1-A for all n > N and o€ [0,1].

Definition 2.6 A sequence {xn}in (X,Fo,t) is said to be cauchy sequence if for every € > 0 and A > 0, there exists an integer
N=N(g,A) such that Fa(xn,xm; €) > 1-A V'n, m >N for all ae [0,1].
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Definition 2.7 A Fuzzy Menger space (X,Fa,t) with the continuous t-norm is said to be complete if every Cauchy sequence in X
converges to a point in X for all ae[0,1].

Definition 2.8 Let (X,Fo,t) be a Fuzzy Menger space. Two mappings f, g : X—X are said to be weakly comptable if they
commute at coincidence point for all ae [0,1].

Lemma 1 Let {xn} be a sequence in a Fuzzy Menger space (X,Fa,t), where t is continuous and t(p,p) = p for all pe[0,1], if there
exists a constant k(0,1) such that Vp >0 and ne N t(Fo (xn,xn+1; kp)) = t(Fa(xn-1,xn; p)),
for all ae[0,1] then {xn} is cauchy sequence.

Lemma 2 If (X,d) is a metric space, then the metric d induces, a mapping Fa: XxX—L defined by Fa (p, q) = Ha(x- d(p, q)), p,
q € R for all ae[0,1]. Further if t: [0,1] X [0,1]— [0,1] is defined by t(a,b) = min{a,b}, then (X,Fa,t) is a Fuzzy Menger space. It
is complete if (X,d) is complete.

Definition 2.10: Let (X, Fo,t) be a Fuzzy Menger space. Maps s: X = X and T: X—CB(X)), i. s is said to be T weakly commuting
at xe X if ssx € Tsx. ii. are weakly compatible if the commute at their coincidence points, i.e. if sTx = Tsx whenever sxe Tx.

Main Results

Theorem 1.1: Let (X, Fo, A) be a complete Fuzzy Menger space where t is continuous and t (p,p) = p forall p € [0,1]. Let A, B,
T and S be mappings from X into itself such that

1.1. S(X) € A(X) and T(X) c B(X)

1.2. AB = BA, ST = TS weakly commuting

1.3. The pair (S, A) and (T, B) are weakly compatible

1.4. There exists a number k € (0,1) such that Fysy 1y (kp) = t< Fa(axs(P) Fa(By.1y)(P)

, Jt(F ,
Fo(axBy)(P1)+Fsx By(P2) Fo(sxBy)(P1)+Fsx Ty(P2) ( a(AX,By)(p)

t(Fy(By,sx) (BP)) . _
m,t(Fa(AX_Ty)((Z - B)p))))) forallx,y € X,p € (0,2) and p > 0; p; + p, = p.

Then, A, B, S and T have a unique common fixed point in X.

Proof: Since S(X) c A(X) for any X, € X there exists a point X; € X such that Sx, = Ax;. Since T(X) c B(X) for this point X,
we can choose a point X, € X such that Tx; = Bx,. Inductively we can find a sequence {y,} as follows

Yan = SXan = AXpni1and Yong: = TXony1 = BXonyo '
Forn = 0,1,2,3by (1.4), forallp > 0andf =1 —q with q € (0,1), we have Fa(an+1.yZn+z) (kp) = Fa(Sin+1.TX2n+z) (kp)

/ Fa(axanis Sxaney (p) tFu(Bxon iz Txon4z) P)

\t(Fa(Ax2n+1 BXan+2) (P1)+Fo(Sxn41 BXan+2) (p2)’ tFo(sxontt BXan+2) (P1)+Fu(Sxon41 TXzn+2) (p2))’

t(Fu(AX2n+1 BX2n+2)

t(Fﬂl(BX2n+z SXan+1) (Bp)) Fu(an'Y2n+1) (p)

’ 't(Fa n n (Zp - Bp))) ) 2 t< ’
t(Fa(Sx2n+1,Bx2n+2) (p)) (Ban+1 Than+z) ) t(Fa(YZn.anH) (pl) + Fa(Y2n+1'Y2n+1) (pZ))
t( FG(Y2n+1'Y2n+z)(p) t(Fa(y2n+1,y2n+1)(ﬁp))

;t(Fa( nYzn (p); T Fa( nYz2n ((1 + q)p))) )
t(FCL(YZn+1.Y2n+1)(p1) + FCL(an+1.Y2n+2) (p2)) Yondendn) t(FCL(YZn+1'Y2n+1)(p)) ( Yenyant2) )
( Fa(an'Y2n+1) (p) FCL(an+1'Y2n+2)(p)) t(F ) t(Fa(y2n+1,y2n+1((1 —q)p))

)] )] (Y2n¥Y2n )]
t(F“(YZrleZn+1) () Fa(Y2n+1'an+z)(p) “anansn) t(Fa(YZn+1vYZn+1) (p)

(p)

=t

,t (F(X(an'yzn+2) ((1 + q)p)))))

=t (1'1' t(l::ﬁl(anranﬂ) (p)’ t(1,t (FG(YZn'anH) (p)’ FU(Y2n+1'an+2) (qp)))) =t <F0((Y2n'Y2n+1) (p)’ FU(Y2n+1'Y2n+2) (qp)>

Fa(Y2n+1'Y2n+2) (kp) = t (FG(Y2n1Y2n+1) (p), Fa(an+1'Y2n+2)(qp)>

Since t is continuous and the distribution function is left continuous, making q — 1 we have
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Fa(Y2n+1'Y2n+2) (kp) = t (Fa(YvaYZn+1) (p), Fa(an+1'Y2n+2) (p)> Similarly

Fa(an+2'Y2n+3)(kp) =t (Fa(an+1'Y2n+2)(p)’ Fu(an+2'Y2n+3) (p))
Therefore Fyy, o o 5 (kp) =t <F ayne1yn) P Faynyns D (p)) foralln € N

Consequently Fy(y, v, (P) > t (Fu(yh_ &P Fouy v " (k‘lp)) foralln € N

Repeated application of this inequality will imply that
Faynynen (P) 2 t<Fa(yn—1.yn) k~'p), Fa(anYn+1)(k_1p)> Z e 2 t<Fa(yn—1.Yn)(k_1p)' Foynynin (k“p)),i EN

Since Fogyp yn4) (k7ip) » 1asi — oo, it follows that Foynynen (p) = t(Fa(yn-l.yn) (k‘lp)) foralln € N

Consequently Fyy, v 0o (kp) =t (Fu(yn_ WY (p)) foralln € N

Therefore by lemma *, {y,} is a Cauchy sequence in X. Since X is complete, {y, }converges to a point z € X.

Since {Sxzn}, {TX2n41 b {AX2n+1} and {Bx,,4, } are subsequences of {y,} , they also converge to the point z, i.e. as n — oo,
SXon) TXzn+1, AXon+1 BXonsz = 2

SinceS(X) < A(X), there exists a point u € X such that Au = z. By putting x =uandy = 2n — 1 with p = 1 in (1.4)we have,
Fu(Su,Txm_l)(kp) = t(

t(Fa(BXZn_l ,Su) (Bp))
' t(Fu(Su,Bx2n_1 )(p)) '

Fo(ausuw)(P) t(Fo(Bxan_1 TXzn—1) ®

, ,t(F
t(Fa(Au,BXZH_l) (p1)+Fa(Su,Bx2n_1) (p2)) t(Fa(Su,BXZH_l) (pl)"'Fa(Su,TXZn_l) (p2)) ( a(Au'szn_l) (p)

t(Faursany (2 = DP)))

Proceeding limit as n — oo, we have Fo(su,2 (kp)

Fo(zsw(P) t(Fo(zz)(P) t(Fy(z,su)((1-q)p))
= , ,t(F ,—————————, t(F 1+
(t(Fa(z,z) (p1)+Fa(Su,z) (P2)) t(Fa(Su,z)(p1)+Fa(Su,z) (p2)) ( «(z2) (p) t(Fa(Su,z)(p)) ( a(z2) (( q) p)))))

Fu(z,Su) (p) t( Fa(z,z) (p) t(Fm(z,Su) (p))
=2t (t(Fa(z,Su) (p)) , t( Fa(z,z) (p) , t(Fa(z,z) (p)' m! t(Fa(z,z) (p))))> =2t (Fa(z,Su) (p)' t( 1, t(l'l' t(l))))

COHSCquently Fu(su’z) (p) > F(X(SU,Z) (k_lp) = 2 F(X(SU,Z) (k_]p)

which tends to 1 and j tends to « (j € N) Therefore Su = z and thus Au = Su = z.
SinceT (X) < B(X), there exists a point v € X such that Bv = z. Then by putting x = uand y = v with f = 1in (1.4.) we have

Fo(au,su)(P) t( FoBv,Tv)(P) t(Fo(Bv,su)(BP))
F kp) > t( ¢ , , t(F ,——————, t(F 2—
“(SU'TV)( P) t(Fo(au,Bv)(P1)+Fo(su,Bv)(P2)) " t(Fy(su,Bv)(P1)+Fa(su,Tv)(P2) ( “(AU'BV)(p) t(Fy(su,Bv)(P)) ( “(AU'TV)(( B)p)))))
Foau,su)(P) t(Fo(Bv,Tv)(P) t(FoBv,su)(BP))
=t ) ,t(F ,—————,t(F 2—
(t(Fa(Au,Bv)(pl)+Fa(Su,Bv)(p2)) t(Fo(su,Bv) (P1) +Fo(suTv) (P2) ( “(Au'BV)(p) t(Fy(su,Bv)(P)) ( a(Au'TV)(( B)p)))))
Fo(z,2)(P) t(FyBv,Tv)(P)

Using above we have we have  Fy gy 1v)(kp) = t( t(Fo(z,2) (D),

t(Fa(z,z)((l - q)p))

t(Fy(z,2) (p1)+Fa(z,z) (p2))’ t(Fo(z,2) (p1)+Fa(z,Tv) (p2)’

A(Fuguro) (L + OP)))

t(Fu(z,Z) (p))
Fozz)P) FozTv)(P)
> _Mzz) ) Cu(zTv)
Fa(su'Tv) (kp) =t <Fa(z,z)(p) " FozTv)®)’

l:cr.(z,Tv) (kp) 2t (Fa(z,Tv) (p))

t(Fo(z,2)(1-9)p))
t(Fo(z,2) ()

tFaay (), (Fuaro (1 + Dp))))
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As above we have Tv = z. Therefore Au =Su=Tv=Bv=1z.... (a)

Since pair of maps S and A are weakly compatible, then Su = Au implies S(A)u = (A)Su, i.e. Sz = Az. Now to show that z is a
fixed point of S so by puttingx = zandy = x,, withp = 1in(1.4)

Fo(az,52)(P)
F kp) >t utz , ,
a(SZ'TXZ“)( P) <t(Fa(Az,Bx2n) (P1+Fu(Sz,Bx,py (P2)) " t(Fa(Sz,Bx,p) (P +Fa(S2,Txy ) (P2))

t( FoBxan TXap) )

t(Fa(Az,BXZn ) (p),

t(F(X(BXZn ,Sz) (p)

IO (5 G)))
t(Fa(SZ,BXZn)(p)) ( oAz Txzn)

Fo(sz,52)(P) t(Fo(z,2)(P)
t(Fo(s2,2) (P)+Fa(s2,2)(P2)) " t(Fo(s2,2) () +Fo(s2,2)(P2))

Fo(sz,52)(P)  Fu(z,z)(P) t(Fo(z,52)(P))
,t(F 1 , =t , ,t(F , ——————, t(F
( a(Sz,z)(( + q)p))))) (Fa(Sz,Sz)(p) Fa(z,z)(p) ( o(Sz,z) (p) t(Fa(Sz,z)(p)) ( a(Sz,z) (p)))))

Using above, we have Fy s, 5 (kp), = t<

t(Fo(z,52)(1-q)p))
t(Fo(sz,z) ()

t(Foz(Sz,z) (p)’

Thus we have Sz = z. HenceSz = z = Az.

Similarly, pair of maps T and B is weakly compatible and by (a) implies T(Bv) = B(Tv), i.e. Tz = Bz Now we show that z is a
fixed point of T so by putting x = x,, andy = zwithf = 1in(1.4.)

Fo(Axon.Sx )(p) t( Fa(Bz,Tz)(p)
F k > ( (AXx2n.Sx2n , )
a(SXZ”’TZ)( P) t(Fo(Axyn,B2)(P1)+Fa(Sxp7,B2)P2))  t(Fu(Sxon,B2)(P1)+Fa(Sx5n,T2)(P2))
t(Fau(Bz,Sx,5)P)) ( Fo(AxonSxan)®)  FouTzrz)®)
t(F, ,—————— t(F, >t Zotin ,t(F, ,
( a(AXZn,Bz)(p) t(FO.(SXZn,BZ)(p)) ( a(AxZn,Tz)(p))))) t(Fa(sznVSin)(p)) Fa(Tz,Tz)(p) ( a(AXZn,Bz)(p)
t(Fa(BZ,SJCZn)(p)) t(F ( )))))
T Ax2n,T2)\P
t(Fa(SXZn,Bz) (p)) 4xznT2)
Proceeding limit as n — oo, we have F, kp) =t Luzz)® _ Fuzrs(®) t(F, (p) Wurza)®) t(F, ( )))))
& ’ A(Sx2n,T7) p)= t(Fa(z,z)(p))’ Fa(Tz,Tz)(p)’ «(zT7) Pl t(Fa(z,Tz)(p))’ (z77) p
Thus we have Tz = z.Hence Tz = z = Bz.
By combining the above results, we have Sz = Az = Tz = Bz = z. Thatis zis a common fixed point of S, T, A and B.
For uniqueness, let w (w # z) be another common fixed point of S,T, A and B and § = 1, then by (1.4.), we write
F, 52)(P) t(Fo(Bw,Tw) (p) t(Fo(Bw,Sz) (Bp))
F. k zr( A(4z57) ) ,t(F ,——BwSH P ¢ (F, 2—
SZ’TW( P) t(Fo(az,Bw)(P1)+Fa(sz,Bw)(02)) " t(Fu(sz,Bw)@1)+Fo(sz,Tw)(P2)) ( u(AZ’BW)(p) t(Fo(sz,Bw) (@) ( u(AZ’TW)(( ﬁ)p)))))
Fy(Az,52)(P)  FoBw,rw)(®) t(Fo(Bw,5z)(BP))
= ) )] t F . t F
<Fa(Az,SZ)(p) FoBw,Tw)(®) ( u(AZ’BW)(p) t(Fo(sz,Bw) @) ( u(AZ’TW)(p)))))

Fo(z,2)(P) Foww)(®)
Fo(z,2)(P) ’ Fo(ww)®) ’

=t (1' t ( 1' t(Fa(z,w) (p)! 1' t(Fa(z,w) (p)))))

= F a(z,w) (P)
Thus we have z = w. This completes the proof of the theorem.

t(Fow,z) (Bp))
t(Fo(zw) ®)

It follows that Fy(,,y (kp) = ¢ ( t(Fozwy(P) Lt (Fuw (2 — ﬁ)p)))))

Corollary 1.2: Let (X, Fa, t) be a complete Menger space where A is continuous and t (p,p) = p forallp € [0,1]. Let T and S be
mappings from X into itself such that
1.2.1. ST = TS weakly commuting

1.2.2. There exists a number k € (0,1) such that F,sy 1y (kp) = t(

t(Fa(Sx,y) (p)) ’ t(Fa(x,Ty) ((2 B) p))))

forall x,y € X, € (0,2)andp > 0; p; + p, = p Then S and T have a unique common fixed point in X.
Proof: Put A = B = Iin the proof of theorem 1.1.1.

Fo(x,5%)(P) Fo(y,Ty)(P)
Faexy) (P +Fosxy)(P2) " Foxy)P1)+FaTy)(P2)’

t(Fu(x,y) (p):

Corollary 1.3: Let (X, F,,t) be a complete Menger space where t is continuous and t (p,p) = p for all p € [0,1]. Let B and S be
mappings from X into itself such that
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1.3.1. SX) € B(X)
1.3.2. The pair (S, B) is weakly compatible
1.3.3. There exists a number k € (0,1) such that
Foxsx (P) Foy,sy) (P)
Fo(sxsy)(kp) = t(F i ( ;—l)—()F 5 ( ( ;’ y)F oL
a(Bx,By)\P1 a(Sx,By)\P a(Bx,Sy) (P1) T Fosx By (P

t(Fu(By,Sx) (Bp))
t(Fu(Sx,By) (p)) '

€(Facpry) (P), tFuprsy (2 = PP))))

forallx,y € X,B € (0,2) and p > 0; p; + p, = p. Then S and B have a unique common fixed point in X.
Proof: Put T = Sand A = B in the proof of theorem 1.1.

Conclusion

Clearly (X, Fa, A) be a complete Fuzzy Menger space where t is continuous and t (p,p) = p forall p € [0,1].
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