Fixed Point Results on Fuzzy Mappings for Rational Expressions

Garg Surendra Kumar and Shukla Manoj Kumar

Department of Mathematics, Govt. Model Science College, Jabalpur, MP, INDIA

Available online at: www.isca.in

Received 26th March 2013, revised 8th April 2013, accepted 22nd April 2013

Abstract

In this paper we prove some fixed point and common fixed point theorems for fuzzy mappings in complete metric space which also include rational expression as a contraction. AMS Subject Classification: 54H25, 47 H10

Keywords: complete metric space, fuzzy mappings, fixed point, common fixed point.

Introduction

In 1965 Zadeh¹ introduce the concept of fuzzy sets. After that so many works have been done in fuzzy sets. In 1981 Heilpern² define fuzzy mappings are use of fuzzy mappings he proved fixed point theorem which is a fuzzy analogue of the fixed point theorem for multi valued mappings of Nadler³, Vijayraju and Marudai⁴ generalized the results of Bose and Mukherjee's⁵ for fuzzy mappings. So many authors Marudai and Srinivasan⁶, Bose and Sahani⁷, Butnariu^{8,9,10}, Chang and Huang¹¹, Chang¹², Chitra¹³, Som and Mukharjee¹⁴ studied fixed point theorems for fuzzy mappings. Lee, Cho, Lee and Kim¹⁵ obtained a common fixed point theorem for a sequence of fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and Sahini⁷.

More recently Vijayraju and Mohanraj¹⁶ obtained some fixed point theorems for contractive type fuzzy mappings which are generalization of Beg and Azam¹⁷. Fuzzy extension of Kirk and Downing¹⁸ and its prove analogue to the proof of Park and Jeong¹⁹. In the present paper we are proving some fixed point and common fixed point theorems in fuzzy mappings containing the rational expressions.

Preliminaries

We need following definitions and assumptions:

Definition 2.1 Let X be any metric linear space and d be any metric on X. A fuzzy set in X is a function with domain X and values in [0,1]. If A is a fuzzy set and x ε X, the function value A(x) is called the grade of membership of x in A. The collection of all fuzzy sets in X is denoted by F(x).

Let $A \in F(x)$ and $\alpha \in [0,1]$. The set α –level set of A, denoted by A_{α}

$$A_{\alpha} = \{ x: A(x) \ge \alpha \} \text{ if } \alpha \in [0,1],$$

$$A_0 = \{x : A(x) > 0\}$$
, whenever B is clouser of B

Now we distinguish from the collection F(x) a sub collection of approximate quantities, denoted W(x).

Definition 2.2 A fuzzy subset A of X is an approximate quantity i ff its α-level set is a compact subset (non fuzzy) of X for each α $\in [0, 1]$, and $\sup_{X \in X} A(x) = 1$

When $A \in W(x)$ and $A(x_0) = 1$ for some $x_0 \in W(x)$, we will identify A with an approximation of x_0 . Then we shall define a distance between two approximate quantities.

Definition 2.3 Let A, B \in W(x), $\alpha \in [0,1]$, define

$$p_{\alpha}(A,B) = \inf_{x \in A_{\alpha}, y \in B_{\alpha}} d(x,y), D_{\alpha}(A,B) = dist(A_{\alpha}, B_{\alpha}), d(A,B) = \sup_{\alpha} D_{\alpha}(A,B)$$

Where dist. Is Hausdorff distance. The function p_{α} is called α -spaces, and a distance between A and B. It is easy to see that p_{α} is non decreasing function of α . We shall also define an order of the family W(x), which characterizes accuracy of a given quantity.

Vol. 1(4), 1-5, May (2013)

Definition 2.4 Let A, B \in W(x). An approximate quantity A is more accurate then B, denoted by $A \subseteq B$, iff $A(x) \le B(x)$, for each $x \in X$.

Definition 2.5 Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping iff F is mapping from the set X into W(Y), ie, $F(x) \in W(Y)$ for each $x \in X$

A fuzzy mapping F is a fuzzy subset on X x Y with membership function F(x,y). The function value F(x,y) is grade of membership of y in F(x).

Let $A \in F(X)$, $B \in F(Y)$ the fuzzy set $F^{-1}(B)$ in F(X), is defined as $F^{-1}(B)(x) = \sup_{y \in Y} (F(x, y) \cap B(y))$ where $x \in X$

First of all we shall give here the basic properties of α -space and α -distance between some approximate quantities.

Lemma 2.1: Let $x \in X$, $A \in W(X)$, and $\{x\}$ be a fuzzy set with membership function equal a characteristic function of set $\{x\}$. If $\{x\}$ is subset of a then $p_{\alpha}(x,A) = 0$ for each $\alpha \in [0,1]$.

Lemma 2.2 $p_{\alpha}(x, A) \le d(x,y) + p_{\alpha}(y,A)$ for any $x, y \in X$.

Lemma 2.3 If $\{x_0\}$ is subset of A, then $p_\alpha(x_0,B) \le D_\alpha(A,B)$ for each $B \in W(X)$.

Lemma 2.4²⁰: Let (X,d) be a complete metric space , T be a fuzzy mapping from X into W(X) and $x_0 \in X$, then there exists $x_1 \in X$ such that $\{x_1\} \subset T\{x_0\}$

Lemma 2.5¹⁵ Let A, B, ϵ W(X).then for each $\{x\} \subset A$, there exists $\{y\} \subset B$ such that D $(\{x\}, \{y\}) \leq D$ (A, B) Let X be a non empty set and I = [0,1]. A fuzzy set of X is an element of I^x . For $A,B \in I^x$ we denote $A \subseteq B$ if and only if $A(x) \leq B(x)$ for each $x \in X$.

Definition (2.6)³. An intuitionist fuzzy set (i-fuzzy set) a of X is an object having the form $A = \langle A^1, A^2 \rangle$, where $A^1, A^2 \mathcal{E}$ I^x and $A^1(x) + A^2(x) \leq 1$ for each $x \mathcal{E}$ X. We denote by IFS(X) the family of all i-fuzzy sets of X.

Definition (2.7) ⁶ Let x_{α} be a fuzzy point of X. We will say that $\langle x_{\alpha}, 1-x_{\alpha} \rangle$ is an i-fuzzy point of x and it will be denoted by $[x_{\alpha}]$. In particular $[x] = \langle \{x\}, 1-\{x\} \rangle$ will be called an i- point of X.

Definition (2.8) 3 Let A, B \mathcal{E} IFS(X). Then A \subset B if and only if $A^1 \subset B^1$ and $B^2 \subset A^2$

Remark 2.1 Notice $[x_{\alpha}] \subset A$ if and only if $x_0 \subset A^1$ Let (X,d) be a metric space. The α - level set of A is denoted by $A_{\alpha} = \{x : A(x) \ge \alpha\}$ if $\alpha \in [0,1]$ and $A_0 = \{x : A(x) > \alpha\}$, Where B denotes the clouser of B Heilpern $A_{\alpha} = \{x : A(x) \ge \alpha\}$ into a family $A_{\alpha} = \{x : A(x) \ge \alpha\}$ into a family $A_{\alpha} = \{x : A(x) \ge \alpha\}$ defined as $A \in A$ is compact and convex in A for each A is A in A is compact and convex in A for each A is A in A is compact and convex in A for each A is A in A is compact and convex in A for each A is A in A in A is compact and convex in A for each A is A in A

Sup $\{Ax: x \in X\} = 1$. In this context we give the following definitions.

Definition (2.9)¹⁰ Let X be a metric space and $\alpha \in [0,1]$. Consider the following family $W_{\alpha}(X) = \{A \in I^X : A_{\alpha} \text{ is nonempty } \mathcal{C} \text{ompactand } \text{convex} \}$

Now we define the family if i-fuzzy sets of X as follows: $\Phi_{\alpha}(X) = \left\{ A \in IFS(X) : A^1 \in W_{\alpha}(X) \right\}, \text{it is clear that } \alpha \in I, \ W(X) \subset \Phi_{\alpha}(X) \ .$

Definition (2.10)⁶: Let x_{α} be a fuzzy point of X. we will say that x_{α} is a fixed fuzzy point of the fuzzy mapping F over X if $x_{\alpha} \subset F(x)$ (i.e. the fixed degree of x is at least α). In particular and according to², if $\{x\} \subset F(x)$, we say that x is a fixed point of F.

Main Results

Theorem 3.1: (X, d) be a complete metric space. Let F be continuous fuzzy mapping from X into $W_{\alpha}(X)$ satisfying the following condition: There exists $K \in (0,1]$ such that

$$D_{\alpha}(F(x), F(y)) \leq K(M(x, y)), For all x, y \in X \text{ with } x \neq y, \text{ and } f(x, y) \in X$$

condition: There exists
$$K \in (0,1]$$
 such that $D_{\alpha}(F(x), F(y)) \leq K(M(x, y))$, $F \text{ or all } x, y \in X \text{ with } x \neq y, \text{ and}$
$$M(x, y) = \phi \begin{cases} d(x, y), p_{\alpha}(x, Fx), p_{\alpha}(y, Fy), p_{\alpha}(x, Fy), \frac{d(x, y) + p_{\alpha}(x, Fy)}{1 + d(x, y) p_{\alpha}(x, Fy)}, \frac{p_{\alpha}(y, Fy) + p_{\alpha}(x, Fy)}{1 + p_{\alpha}(x, Fx) p_{\alpha}(x, Fy)}, \frac{p_{\alpha}(y, Fy) + p_{\alpha}(x, Fy)}{1 + p_{\alpha}(y, Fy) p_{\alpha}(x, Fy)} \end{cases}$$

Then there exists $x \in X$ such that x_{α} is a fixed fuzzy point of F iff x_0 , $x_1 \in X$ such that $x_1 \in F(x_0)_{\alpha}$ with $\sum_{n=1}^{\infty} k^n d(x_0, x_1) \prec \infty$ for $\alpha \in (0,1]$. In particular if $\alpha = 1$ then x is a fixed point of F.

Proof: If there exists $x \in X$ such that x_{α} is fixed fuzzy point of F, i.e. $x_{\alpha} \subset F(x)$ then $\sum_{n=1}^{\infty} k^n d(x,x) = 0$. Let $x_0 \in K$ and suppose

that there exists $x_1 \in (F(x_0))_\alpha$ such that $\sum_{n=1}^\infty k^n d(x_0,x_1) \prec \infty$. Since $(F(x_1))_\alpha$ is a nonempty compact subset of X, then there exists $x_2 = \sum_{n=1}^\infty k^n d(x_n,x_n)$

$$\subset (F(x_1))_{\alpha}$$
, such that : $d(x_1, x_2) = p_{\alpha}(x_1, F(x_1)) \le D_{\alpha}(F(x_0), F(x_1))$

By induction we construct a sequence $\{x_n\}$ in X such that $x_n \subset (F(x_{n-1}))_\alpha$, and $d(x_n,x_{n+1}) \leq D_\alpha(F(x_n),F(x_{n-1}))$. Since K is given to be the non-decreasing, so $d(x_n, x_{n+1}) \le K\{M(x, y)\}$

$$= K \phi \begin{cases} d(x_{n}, x_{n-1}), p_{\alpha}(x_{n}, F(x_{n}), p_{\alpha}(x_{n-1}, F(x_{n-1})), p_{\alpha}(x_{n}, F(x_{n-1})), \\ \frac{d(x_{n}, x_{n-1}) + p_{\alpha}(x_{n}, F(x_{n-1}))}{1 + d(x_{n}, x_{n-1}) p_{\alpha}(x_{n}, F(x_{n-1}))}, \frac{p_{\alpha}(x_{n}, F(x_{n}) + p_{\alpha}(x_{n}, F(x_{n-1}))}{1 + p_{\alpha}(x_{n}, F(x_{n})) p_{\alpha}(x_{n}, F(x_{n-1}))}, \\ \frac{p_{\alpha}(x_{n-1}, F(x_{n-1})) + p_{\alpha}(x_{n}, F(x_{n-1}))}{1 + p_{\alpha}(x_{n-1}, F(x_{n-1})) p_{\alpha}(x_{n}, F(x_{n-1}))} \end{cases}$$

$$= K \phi \begin{cases} d(x_{n}, x_{n-1}), d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), \frac{d(x_{n}, x_{n-1}) + d(x_{n}, (x_{n}))}{1 + d(x_{n}, x_{n-1}) d(x_{n}, (x_{n}))}, \\ \frac{d(x_{n}, x_{n+1}) + (x_{n}, x_{n})}{1 + d(x_{n}, x_{n-1}) d(x_{n}, x_{n})}, \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n})}{1 + d(x_{n-1}, x_{n}) d(x_{n}, x_{n})} \end{cases}$$

$$= K \phi \begin{cases} d(x_{n}, x_{n-1}), d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}) + d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n-1})}{1}, \frac{d(x_{n}, x_{n+1}), (x_{n-1}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n}), d(x_{n}, x_{n-1}), \\ \frac{d(x_{n}, x_{n}, x_{n}), d(x_{n}, x_{n}$$

Since $\sum_{n=1}^{\infty} k^n d(x_0, x_1) \prec \infty$ it follows that there exists u such that $d(x_n, x_{n+m}) < u \in X$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in X and X is complete therefore $\{x_n\}$ converges to $x \in X$. By the help of lemma 2.1 and 2.2 we have

$$p_{\alpha}(x,F(x)) \leq d(x,x_{n}) + p_{\alpha}(x_{n},F(x)) \leq d(x,x_{n}) + D_{\alpha}(F(x_{n-1}),F(x)) \leq d(x,x_{n}) + K \, d(x_{n-1},x)$$

Consequently, $p_{\alpha}(x, F(x)) = 0$, and by lemma 2.1 $x_{\alpha} \subset F(x)$ Clearly x_{α} is a fixed fuzzy point of the fuzzy mapping F over X. In particular if $\alpha = 1$ then x is a fixed point of F. Now we will generalize this theorem for common fixed point.

Theorem 3.2: Let (X, d) be a complete metric space. Let T and S be continuous fuzzy mappings from X into $W_{\alpha}(X)$ and F: $X \rightarrow$ $W_{\alpha}(X)$ be a mapping such that

$$I . F(X) \subset S(X) \cap T(X)$$

II $\{S, F\}$ and $\{T, F\}$ are R – weakly commuting mappings.

III $D_{\alpha}(Fx, Fy) \le K[M(x, y)] \ \forall x, y \in X$ with $x \ne y$, where M(x, y) is defined as

$$M(x,y) = K \phi \left\{ \begin{aligned} &D_{\alpha}(Sx,Ty), D_{\alpha}(Sx,Fx), D_{\alpha}(Ty,Fy), D_{\alpha}(Fx,Ty), \\ &D_{\alpha}(Sx,Ty) + D_{\alpha}(Fx,Ty), \\ &\frac{D_{\alpha}(Sx,Ty) + D_{\alpha}(Fx,Ty)}{1 + D_{\alpha}(Sx,Ty) D_{\alpha}(Fx,Ty)}, \frac{D_{\alpha}(Sx,Fx) + D_{\alpha}(Fx,Ty)}{1 + D_{\alpha}(Sx,Fx) D_{\alpha}(Fx,Ty)} \end{aligned} \right\}$$

Where K is non decreasing function such that $K:[0,\infty)\to[0,\infty)$

K(0) = 0 and $K(t) < t \ \forall t \in (0, \infty)$, $\alpha \in (0, 1]$ and then $\exists x \in X$ such that x_{α} is common fixed fuzzy point of S, T and F if and only if $x_0, x_1 = 0$.

$$\in X \text{ such that } \sum_{n=1}^{\infty} K^n d(x_0, x_1) \prec \infty.$$

In perticular if $\alpha=1$, then x is common fixed point of S, T and F.

Proof: Let for $x_0 \in X$ there exists x_1 and x_2 such that $x_1 \in (S(x_1))_{\alpha} \subset (F(x_0))_{\alpha}$ and $x_2 \in (T(x_2))_{\alpha} \subset (F(x_1))_{\alpha}$. By induction one can

$$x_{2n+1} \in \left(Sx_{2n+1}\right)_{\alpha} \subset \left(F(x_{2n})_{\alpha}.And \ x_{2n+2} \in \left(Tx_{2n+2}\right)_{\alpha} \subset \left(F(x_{2n+1})_{\alpha}\right).$$

Since K is given to be non-decreasing. So $d(x_n, x_{n+1}) \le D_{\alpha}(F(x_{n-1}), F(x_n)) \le K.M(x_{n-1}, x_n)$

$$=K \phi \left\{ \begin{aligned} &D_{\alpha}(Sx_{n-1},Tx_{n}), D_{\alpha}(Sx_{n-1},Fx_{n-1}), D_{\alpha}(Tx_{n},Fx_{n}), D_{\alpha}(Fx_{n-1},Tx_{n}), \\ &D_{\alpha}(Sx_{n-1},Tx_{n}) + D_{\alpha}(Fx_{n-1},Tx_{n}), \\ &\frac{D_{\alpha}(Sx_{n-1},Tx_{n}) + D_{\alpha}(Fx_{n-1},Tx_{n})}{1 + D_{\alpha}(Sx_{n-1},Tx_{n}) D_{\alpha}(Fx_{n-1},Tx_{n})}, \\ &\frac{D_{\alpha}(Sx_{n-1},Fx_{n-1}) + D_{\alpha}(Fx_{n-1},Tx_{n})}{1 + D_{\alpha}(Sx_{n-1},Fx_{n-1}) D_{\alpha}(Fx_{n-1},Tx_{n})} \right\} \\ & \left\{ d(x_{n-1},x_{n}), d(x_{n},x_{n}), d(x_{n},x_{n+1}), d(x_{n},x_{n}), \\ & \left\{ d(x_{n-1},x_{n}), d(x_{n},x_{n}), d(x_{n},x_{n}),$$

$$= K \phi \left\{ \frac{d(x_{n-1}, x_n), d(x_n, x_n), d(x_n, x_{n+1}), d(x_n, x_n),}{d(x_{n-1}, x_n) + (x_n, x_n)}, \frac{d(x_{n-1}, x_n) + d(x_n, x_n)}{1 + (x_{n-1}, x_n)(x_n, x_n)} \right\}$$

$$= K\left\{d(x_n, x_{n-1})\right\}$$

$$\begin{split} &\text{Therefore } \ d(x_n, x_{n+1}) \leq K d(x_{n-1}, x_n) = K D_{\alpha} \Big(F(x_{n-2}), F(x_{n-1}) \Big) \leq K^2 d(x_{n-1}, x_{n-2}) \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+1}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) \leq d(x_n, x_{n+m}) + \dots \\ & \Rightarrow d(x_n, x_{n+m}) + \dots \\ &$$

Since $\sum_{n=1}^{\infty} k^n d(x_0, x_1) \prec \infty$ it follows that there exists u such that $d(x_n, x_{n+m}) < u \in X$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, $\{x_n\}$ converges to $x \in X$ and $(Sx_{2n+1})_{\alpha}$, (Tx_{2n+2}) also converges on X.

Since $\{S,F\}$ and $\{T,F\}$ are R — weakly commuting mappings. So $p_{\alpha}(x,F(x)) \le d(x,x_n) + p_{\alpha}(x_n,F(x)) \le d(x,x_n) + D_{\alpha}(F(x_{n-1}),F(x)) \le d(x,x_n) + D_{\alpha}(F(x_{n-1}),F(x)$

Conclusion

Clearly x_{α} is a common fixed fuzzy point of the fuzzy mapping F, S and T over X. In particular if $\alpha = 1$ then x is a common fixed point of F, S and T.

References

- 1. Zadeh L.A., Probability measures of fuzzy events, J. Math. Anal. Appl., 23, 421-427 (1968)
- 2. Heilpern S., Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83, 566-569 (1981)
- 3. Nadler S.B., Multi valued contraction mappings, *Pacific J. Math.*, 30, 475-488, (1969)
- 4. Vijayraju P. and Marudai M., Fixed point theorems for fuzzy mappings, fuzzy Sets and Systems, 135(3), 401-408 (2003)
- 5. Bose R.K. and Mukherjee R.N., Common fixed points of multi valued mappings, *Tamkang*, *J. Math. Soc.*, 215, 241-251 (1976)
- **6.** Marudai M. and Srinivasan P. S., Some remarks on Heilperns, generalization of Nadlers, Fixed point theorems, *J. Fuzzy Math*, **12(1)**, 137-145 (**2004**)
- 7. Bose R.K and Sahani D., Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21, 53-58 (1987)
- 8. Butnariu D., Fixed points for Fuzzy mappings, Fuzzy Sets and Systems, 7, 191-207 (1982)
- 9. Butnariu D., A Fixed point theorem and applications to Fuzzy games, Revue Roumaine Math, *Pure Appl.*, **24(10)**, 1424-1432 (1979)
- 10. Butnariu D., An existence theorem for possible solutions of a two-person Fuzzy game, *Bull. Math. Soc.Sci. Math., R.S. Roumaine*, 23(71) (1), 29-35 (1979)
- 11. Chang S.S. and Huang N.J., Fixed point theorems for generalized fuzzy mappings, *Acta of Engineering Math*, 2, 135-137 (1984)
- 12. Chang S.S., Fixed point theorems for fuzzy mappings, Kexue Tongbao, 14, 833-836 (1984)
- **13.** Chitra A., A note on the fixed points of fuzzy maps on partially ordered topological spaces, *Fuzzy Sets and Systems* **19,** 305-308 (**1986**)
- 14. Som T. and Mukherjee R.N., Some fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 33, 213-219 (1989)
- 15. Lee B.S. and Cho S.J., Lee G.M. and Kim D.S., Generlized common fixed point theorems for a sequence of fuzzy mappings, *Internat. J. Math & Math. Sci.*, 17(3) 437-440 (1994)
- **16.** Vijayaraju P. and Mohanraj R., Fixed point theorems for Fuzzy mappings, *The Journal of fuzzy Mathematics* **15(1)**, 43-51 **(2007)**
- 17. Beg I. and Azam A., Fixed points of asymptotically regular multivalued mappings *J. Austral.Math.Soc.*(series-A), 53, 313-326 (1992)
- **18.** Kirk W.A. and Downing D., fixed point theorems for set-valued mappings in metric and Banach spaces, *Math. Japonica*, **22**, 99-112 (**1977**)
- 19. Park J.Y. and Jeong J.U., Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 87, 111-116 (1997)
- 20. Lee B.S. and Cho. S.J., Common fixed point theorems for sequence of fuzzy mappings, Fuzzy Sets and Systems, (1993)