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Abstract  

In this paper we prove some fixed point and common fixed point theorems for fuzzy mappings in complete metric space which 

also include rational expression as a contraction. AMS Subject Classification: 54H25, 47 H10 
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Introduction 

In 1965 Zadeh
1
 introduce the concept of fuzzy sets. After that so many works have been done in fuzzy sets. In 1981 Heilpern

2
 

define fuzzy mappings are use of fuzzy mappings he proved fixed point theorem which is a fuzzy analogue of the fixed point 

theorem for multi valued mappings of Nadler
3 
, Vijayraju and Marudai

4
 generalized the results of  Bose and Mukherjee

,
s

5
 for fuzzy 

mappings. So many authors Marudai and Srinivasan
6
, Bose and Sahani

7
, Butnariu

8,9,10
, Chang and Huang

11
, Chang

12
, Chitra

13
, Som 

and Mukharjee
14

 studied fixed point theorems for fuzzy mappings. Lee, Cho, Lee and Kim
15

 obtained a common fixed point 

theorem for a sequence of fuzzy mappings satisfying certain conditions, which is generalization of the second theorem of Bose and 

Sahini
7
. 

 

More recently Vijayraju and Mohanraj
16

 obtained some fixed point theorems for contractive type fuzzy mappings which are 

generalization of Beg and Azam
17

. Fuzzy extension of Kirk and Downing
18

 and its prove analogue to the proof of Park and 

Jeong
19

. In the present paper we are proving some fixed point and common fixed point theorems in fuzzy mappings containing the 

rational expressions.  

 

Preliminaries 

We need following definitions and assumptions: 

 
Definition 2.1 Let X be any metric linear space and d be any metric on X. A fuzzy set in X is a function with domain X and values 

in [0,1]. If A is a fuzzy set and x ε X, the function value A(x) is called the grade of membership of x in A. The collection of all 

fuzzy sets in X is denoted by ₣(x). 

 

Let A ∈ ₣(x).and α ϵ [0,1].The set α –level set of A, denoted by Aα 

Aα  = { x: A(x) ≥ α } if α ∈[0,1], 

( )
-

0 { : 0}, whenever B is clouser of BA x A x
−−−−−−−

= >  

Now we distinguish from the collection ₣(x) a sub collection of approximate quantities, denoted W(x). 

 

Definition 2.2 A fuzzy subset A of X is an approximate quantity i ff its α-level set is a compact subset (non fuzzy) of X for each α 

ϵ [0, 1], and 1)(sup =xA
Xx ε

 

When A ϵ W(x) and A(x0) =1 for some x0 ϵ W(x), we will identify A with an approximation of x0. Then we shall define a distance 

between two approximate quantities. 

 

Definition 2.3 Let A, B ϵ W(x), α ϵ [0,1], define 

( )( , ) inf , , ( , ) ( , ), ( , ) sup ( , )
,

p A B d x y D A B dist A B d A B D A B
x A y B

α α α α αε ε αα α
= = =  

Where dist. Is Hausdorff distance. The function pα is called α-spaces, and a distance between A and B. It is easy to see that pα is 

non decreasing function of α. We shall also define an order of the family W(x), which characterizes accuracy of a given quantity. 
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Definition 2.4 Let A, B ϵ W(x). An approximate quantity A is more accurate then B, denoted by A ⊂ B, iff A(x) ≤ B(x), for each x ϵ X. 

 

Definition 2.5 Let X be an arbitrary set and Y be any metric linear space. F is called a fuzzy mapping iff F is mapping from the set 

X into W(Y), ie , F(x)ϵW(Y) for each x ϵ X 

 

A fuzzy mapping F is a fuzzy subset on X x Y with membership function F(x,y).The function value F(x,y) is grade of membership 

of y in F(x). 

Let A ϵ F(X), B ϵ F(Y) the fuzzy set F
-1

(B) in F(X), is defined as XxwhereB(y))y)(F(x,sup(B)(x)F
Yεy

1 ∈∩=−  

First of all we shall give here the basic properties of α-space and α-distance between some approximate quantities. 

 

Lemma 2.1: Let x ε X,A ε W(X),and {x} be a fuzzy set with membership function equal a characteristic function of set {x}. If {x} 

is subset of a then pα(x,A) =0 for each αϵ[0,1]. 

 
Lemma 2.2 pα (x, A) ≤ d(x,y) + pα(y,A) for any x,y ϵX . 

 

Lemma 2.3 If {x0} is subset of A, then pα(x0,B) ≤ Dα(A,B) for each B ϵ W(X). 

 

Lemma 2.4
20

 : Let (X,d) be a complete metric space , T be a fuzzy mapping from X into W(X) and x0ϵX , then there exists x1 ϵ X 

such that {x1}  ⊂   T{x0}  

 

Lemma 2.5
15

 Let A, B, ϵ W(X).then for each {x}  ⊂  A, there exists {y}  ⊂  B such that D ({x}, {y}) ≤ D (A, B) 

Let X be a non empty set and I = [0,1].A fuzzy set of X is an element of I
x
 .For A,B ∈  I

x
 we denote A ⊆  B if and only if A(x) ≤ 

B(x) for each x ϵX. 

 

Definition (2.6)
3
. An intuitionist fuzzy set (i-fuzzy set) a of X is an object having the form

21
, AAA= , where A

1
, A

2
 ε  I

x
 and    

A
1
(x) +A

2
(x)  ≤ 1 for each x ε  X. We denote by IFS(X) the family of all i-fuzzy sets of X. 

 

Definition (2.7) 
6
 Let xα be a fuzzy point of X. We will say that  αα xx −1,  is an i-fuzzy point of x and it will be denoted by 

[xα]. In particular [x] = }{1},{ xx −  will be called an i- point of X. 

 

Definition (2.8) 
3
 Let A, B ε  IFS(X). Then A ⊂  B if and only if A

1
 ⊂ B

1 
and B

2 ⊂  A
2  

 

Remark 2.1 Notice [xα] ⊂  A if and only if x0 ⊂  A
1
  

Let (X,d) be a metric space. The α- level set of A is denoted by  

{ } ] ] ( ) BsetfuzzynonofclouserthedenotesBWhereoxAxAandifxAxA )(},:{01,0)(:
−−−−−−−−

=∈≥= �ααα Heilpern[10] called a fuzzy 

mapping from the set of X into a family W(X) ⊂  I
x
 defined as A ∈ W(X) if and only if Aα is compact and convex in X for each α 

∈ ( 0, 1] and  

 

Sup {Ax: x ∈ X} = 1. In this context we give the following definitions. 

 

Definition (2.9)
10

 Let X be a metric space and α ϵ [0,1]. Consider the following family 

{ }andconvexcompactnonempty,isαA:
x

IA(X)αW ∈=  

 

Now we define the family if i-fuzzy sets of X as follows: 

{ } (X)αΦW(X),Iαthatclearisit,(X)αW
1

A:IFS(X)A(X)αΦ ⊂∈∈∈= . 

 

Definition (2.10)
6
 : Let xα be a fuzzy point of X. we will say that xα is a fixed fuzzy point of the fuzzy mapping F over X if xα ⊂

F(x) ( i.e. the fixed degree of x is at least α). In particular and according to
2
, if {x} ⊂  F(x),we say that x is a fixed point of F.  
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Main Results 

Theorem 3.1: (X, d) be a complete metric space. Let F be continuous fuzzy mapping from X into Wα(X) satisfying the following 

condition: There exists K ϵ (0,1]  such that   

( )( ) , ( ) ( ( , ) ) , , ,

( , ) ( , )
( , ) , ( , ) , ( , ) , ( , ) , ,

1 ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )
,

1 ( , ) ( , ) 1 ( , ) ( , )

D F x F y K M x y F o r a l l x y X w i t h x y a n d

d x y p x F y
d x y p x F x p y F y p x F y

d x y p x F y
M x y

p x F x p x F y p y F y p x F y

p x F x p x F y p y F y p x F y

α

α
α α α

α

α α α α

α α α α

ε

φ

≤ ≠

+ 
 + 

=  
+ +

 + +




Then there exists x ϵ X such that xα is a fixed fuzzy point of F iff x0 ,x1 ϵX such that x1ϵF(x0)α  with ∞∑
∞

=
≺)

1
,

0
(

1
xxd

n

n
k  for 

αϵ(0,1]. In particular if α = 1 then x is a fixed point of F.  

 

Proof: If there exists x ϵX such that xα is fixed fuzzy point of F, i.e. xα ⊂  F(x) then 0),(
1

=∑
∞

=
xxd

n

n
k . Let x0 ϵ K and suppose 

that there exists x1 ϵ (F(x0))α such that ∞∑
∞

=
≺)

1
,

0
(

1
xxd

n

n
k . Since (F(x1))α  is a nonempty compact subset of X, then there exists x2 

⊂  (F(x1))α, such that : )(),(())(,(),( 101121 xFxFDxFxpxxd αα ≤=  

By induction we construct a sequence {xn} in X such that xn ⊂  (F(xn-1))α, and ).
1

(),(()
1

,(
−

≤
+ n

xFnxFD
n

xnxd α Since K is 

given to be the non-decreasing, so { }),()
1

,( yxMK
n

xnxd ≤
+

   

( ) ( )1 1 1 1

1 1 1

1 1 1

1 1 1

1

( , ) , ( , ( ) , ( , ) , ( , ) ,

( , ) ( , ( ) ( , ( ) ( , ( )
, ,

1 ( , ) ( , ( ) ) 1 ( , ( ) ( , ( )

( , ( ) ) ( , ( )

1 ( , (

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n

n

d x x p x F x p x F x p x F x

d x x p x F x p x F x p x F x
K

d x x p x F x p x F x p x F x

p x F x p x F x

p x F x

α α α

α α α

α α α

α α

α

φ

− − − −

− − −

− − −

− − −

−

+ +
=

+ +

+

+ 1 1) ( , ( )
n n n

p x F xα− −

 
 
 
 
 
 
 
 
 

 

1
1 1 1

1

1 1

1 1

( , ) ( , ( )
( , ) , ( , ) , ( , ) , ( , ) , ,

1 ( , ) ( , ( ) )

( , ) ( , ) ( , ) ( , )
,

1 ( , ) ( , ) 1 ( , ) ( , )

n n n n
n n n n n n n n

n n n n

n n n n n n n n

n n n n n n n n

d x x d x x
d x x d x x x x d x x

d x x d x x
K

d x x x x d x x d x x

d x x d x x d x x d x x

φ

−
− + −

−

+ −

+ −

+ 
 + 

=  
+ + 

 + + 

 

1 1 1 1

1 1 1

( , ) , ( , ) , ( , ) , ( , ) , ( , ) ,

( , ) ( , ) ( , )
, ,

1 1 1

n n n n n n n n n n

n n n n n n

d x x d x x x x d x x d x x

K d x x d x x d x xφ
− + − −

− + −

 
 

=  
  

 

{ }1( , )
n n

K d x x −=  

( )[ ] ( ) )
1

,
0

(..........)
2

,
1

()
2

(,
1

()
1

(,
1

(( xxd
n

K
n

x
n

xKdK
n

xF
n

xFDK
n

xF
n

xdpK
−−

≤
−−

≤
−−

= αα   

)1,0(
1

........)1,0(),1(........)1,(),( xxd
mn

Kxxd
n

Kmnx
mn

xd
n

xnxdmnxnxd
−+

++≤+−++++≤+⇒  

 ∑
−+=

=

=
1

10 ),(
mnk

nk

k
xxdK  

Since  ∞∑
∞

=

≺),( 10

1

xxdk
n

n
 it follows that there exists u such that d(xn, xn+m ) < u ϵX. Therefore the sequence {xn} is a Cauchy 

sequence in X and X is complete therefore {xn} converges to x ϵ X. By the help of lemma 2.1 and 2.2 we have 
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),
1

(),())(),
1

((),())(,(),())(,( x
n

xdKnxxdxF
n

xFDnxxdxFnxpnxxdxFxp
−

+≤
−

+≤+≤ ααα  

( )Consequently, , ( ) 0, 2.1 ( )p x F x and by lemma x F xα α= ⊂  Clearly xα is a fixed fuzzy point of the fuzzy mapping F over 

X. In particular if α = 1 then x is a fixed point of F. Now we will generalize this theorem for common fixed point. 

 

Theorem 3.2: Let (X, d) be a complete metric space. Let T and S be continuous fuzzy mappings from X into Wα (X) and F: X→ 

Wα (X) be a mapping such that 

{ } { }

[ ] asdefinedisyxMwhereyxwithXyxyxMKFyFxDIII

mappingscommutingweaklyRareFTandFSII

XTXSXFI

),(,,),(),(

.,,

)()()(.

≠∈∀≤

−

⊂

α

∩

 

( , ) , ( , ) , ( , ) , ( , ) ,

( , ) ( , ) ( , ) ( , ) ( , )
,

1 ( , ) ( , ) 1 ( , ) ( , )

D S x T y D S x F x D T y F y D F x T y

M x y K D S x T y D F x T y D S x F x D F x T y

D S x T y D F x T y D S x F x D F x T y

α α α α

α α α α

α α α α

φ

 
 

= + + 
 + + 

 

[ ) [ )

( )

F.andTS,ofpointfixedcommonisxthen1,αifperticulerIn

.
1n

)
1

x,
0

d(x
n

KthatsuchX

1
x,

0
xifonlyandifFandTS,ofpointfuzzyfixedcommonisαxthatsuchXx thenand 1] 0, ( α,0,ttK(t)and0K(0)

,0,0,:KthatsuchfunctiondecreasingnonisKWhere

=

∑
∞

=
∞∈

∈∃∈∞∈∀=

∞→∞

≺

≺

  

 
Proof: Let for x0 ϵ X there exists x1 and x2 such that x1 ϵ (S(x1))α  ⊂  (F(x0))α and x2 ϵ (T(x2))α  ⊂  (F(x1))α  .By induction one can 

construct a sequence { xn } in X such that 

( ) ( ) ( ) ( ) .12(2222.2(1212 αααα +⊂+∈+⊂+∈+ n
xF

n
Tx

n
xAnd

n
xF

n
Sx

n
x  

 

Since K is given to be non-decreasing. So ),
1

(.))(),
1

(()
1

,( nx
n

xMKnxF
n

xFD
n

xnxd −≤−≤+ α   

1 1 1 1

1 1 1 1 1

1 1 1 1 1

( , ), ( , ), ( , ), ( , ),

( , ) ( , ) ( , ) ( , )
,

1 ( , ) ( , ) 1 ( , ) ( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

D Sx Tx D Sx Fx D Tx Fx D Fx Tx

K D Sx Tx D Fx Tx D Sx Fx D Fx Tx

D Sx Tx D Fx Tx D Sx Fx D Fx Tx

α α α α

α α α α

α α α α

φ

− − − −

− − − − −

− − − − −

 
 

= + + 
 + + 

 

1 1

1 1

1 1

( , ), ( , ), ( , ), ( , ),

( , ) ( , ) ( , ) ( , )
,

1 ( , ) ( , ) 1 ( , )( , )

n n n n n n n n

n n n n n n n n

n n n n n n n n

d x x d x x d x x d x x

K d x x x x d x x d x x

d x x d x x x x x x

φ

− +

− −

− −

 
 

= + + 
 + + 

 

{ }1( , )
n n

K d x x −=  

 

( ) )
1

,
0

(................).........
2

,
1

(
2

)
1

(),
2

(),
1

()
1

,(Therefore xxd
n

K
n

x
n

xdK
n

xF
n

xFKDnx
n

xKd
n

xnxd ≺
−−

≤
−−

=
−

≤
+ α  

)
1

,
0

(
1

..........)
1

,
0

(),
1

(........)
1

,(),( xxd
mn

Kxxd
n

Kmnx
mn

xd
n

xnxdmnxnxd
−+

++≤+−+
++

+
≤+⇒  ∑

−+=

=
=

1
)

1
,

0
(

mnk

nj
xxd

j
K  

 

Since  ∞∑
∞

=
≺)

1
,

0
(

1
xxd

n

n
k  it follows that there exists u such that d(xn, xn+m ) < u ϵ X. Therefore the sequence {xn} is a Cauchy 

sequence in X. Since X is complete, {xn} converges to x ϵ X and ( ) ( )2212 , ++ nn TxSx
α

 also converges on X.  
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{ } { }

( )

Since S, F and T, F areR weakly commuting mappings.So p (x, F(x)) d(x, x ) p (x , F(x)) d(x, x ) D (F(x ), F(x)) d(x, x )α n α n n α nn 1

Kd(x , x)Consequently, , ( ) 0, 2.1 ( )
n 1

p x F x andby lemma x F xα α

− ≤ + ≤ + ≤ +
−

= ⊂
−

  

Conclusion 

Clearly xα is a common fixed fuzzy point of the fuzzy mapping F, S and T over X. In particular if α = 1 then x is a common fixed 

point of F, S and T.  
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