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Abstract  

In this paper, we established Some Common Fixed Point Theorems for Random Operator in polish spaces, by using some 

new type of contractive condition. Our result is generalization of various known results.  
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Introduction 

Probabilistic functional analysis has emerged as one of the important mathematical disciplines in view of its role in analyzing 

Probabilistic models in the applied sciences. The study of fixed point of random operator forms a central topic in this area. 

Random fixed point theorem for contraction mappings in Polish spaces and random fixed point theorems are of fundamental 

importance in probabilistic functional analysis. There study was initiated by the Prague school of Probabilistics, in 1950, with their 

work of Spacek
1
 and Hans

2,3
. For example surveys are referring to Bharucha-Reid

4 
Itoh

5
 proved several random fixed point 

theorems and gave their applications to Random differential equations in Banach spaces. Random coincidence point theorems and 

random fixed point theorems are stochastic generalization of classical coincidence point theorems and classical fixed point 

theorems.  

 

Random fixed point theorems are stochastic generalization of classical fixed point theorems. Itoh
5
 extended several well known 

fixed point theorems, thereafter, various stochastic aspects of Schauder’s fixed point theorem have been studied by Sehgal and 

Singh
6
, Papageorgiou

7
, Lin

8
 and many authors. In a separable metric space, random fixed point theorems for contractive mappings 

were proved by Spacek 
1
, Hans

2,3
. Afterwards, Beg and Shahzad 

9
, Badshah and Sayyad studied the structure of common random 

fixed points and random coincidence points of a pair of compatible random operators and proved the random fixed point theorems 

for contraction random operators in Polish spaces. 

 

Preliminaries: In this section, we give some definitions which are useful to prove our results. 

 

Definition: 2.1: A metric space (X, d) is said to be a Polish Space, if it satisfying following conditions: i. X is complete, ii. X is 

separable, 

 

Before we describe our next hierarchy of set of reals of ever increasing complexity, we would like to consider a class of metric 

spaces under which we can unify 2ω,ωω, ℛ	and there products. This will be helpful in formulating this hierarchy  (as well as 

future ones) Recall that a metric space (X, d) is complete if whenever (x
: n ∈ ω) is a sequence of member of X, such that for 

every ϵ	 > 0	there is an N, such that m, n	 ≥ 	N implies d(x
, x�	) 	< 	ϵ, there is a single x	in	X such that lim
�ω x
 = 	x. It is easy 

to see that 2ω,ωω are polish space, So in fact is ω under the discrete topology, whose metric is given by letting d(x, y) 	= 	1 when x	 ≠ 	y and d(x, y) = 	0 when x	 = 	y. Let (X, d) be a Polish space that is a separable complete metric space and (Ω, q) be 

Measurable space. Let 2� be a family of all subsets of X and CB(X) denote the family of all nonempty bounded closed subsets of X. 
A mapping T:Ω → 2# is called measurable if for any open subset C of X, T$%(C) 	= {ω ∈ Ω: f(ω) ∩ 	C ≠ ϕ} 	 ∈ q. A mapping 

ξ:Ω → X is said to be measurable selector of a measurable mapping T:Ω → 2# , if ξ	is measurable and for any ω	 ∈ Ω, ξ(ω) ∈T(ω). A mapping f:Ω	 × X → X	is called random operator, if for any x ∈ X, f(∙, x) is measurable. A Mapping T:Ω × X → CB(X) is 

a random multivalued operator, if for every x ∈ X, T(∙, x) is measurable. A measurable mapping ξ:Ω → X is called random fixed 

point of a random multivalued operator T:Ω × X → CB(X)	(f:Ω × X → X) if for every ω ∈ Ω, ξ(ω) ∈ T(ω, ξ(ω)	)	, f(ω), ξ(ω) 	=
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	ξ(ω)).	Let T:Ω × X → CB(X) be a random operator and {ξ
} a sequence of measurable mappings, ξ
:Ω → X. The sequence {ξ
} is 

said to be asymptotically T-regular if d ,ξ
(ω), T/ω, ξ
(w)12 → 0. 
 

Main Results 

Theorem 3.1: Let X be a Polish space. Let T, S:Ω × X → CB(X) be two continuous random multivalued operators. If there exists 

measurable mappings 4, 5 ∶ 	7 → (0,1) such that, 

 α(ω)	H(S(ω, x), T(ω, y)	) ≤ β(ω)max ;d/x, S(ω, x)1, d/y, T(ω, y)1,d/y, S(ω, x)1, d/x, T(ω, y)1,d(x, y) <      3.1 (a)  

 

For each =, > ∈ ?	, @ ∈ 7 and 4, 5 ∈ AB with 4(@) > 1, 0 ≤ 5(@) < 4(@),, there exists a common random fixed point of C and D. (hence E represents the Hausdroff metric on FG(?) induced by the metric H)	 
 

Proof: Let ξI ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping ξ% ∶ Ω → X such that ξ%(ω) ∈S(ω, ξI(ω)) for each ω ∈ Ω.	then for each	ω ∈ Ω. 

α(ω)H JS ,ω, ξI(ω)2 , T ,ω, ξ%(ω)2K ≤ β(ω)max
LMN
MOd JξI(ω), S ,ω, ξI(ω)2K , d Jξ%(ω), T ,ω, ξ%(ω)2K ,d Jξ%(ω), S ,ω, ξI(ω)2K , d JξI(ω), T ,ω, ξ%(ω)2K ,d ,ξI(ω), ξ%(ω)2 PMQ

MR
  

Further there exists a measurable mapping ST ∶ 7 → ? such that for all ω ∈ Ω, ξT(ω) ∈ T ,ω, ξ%(ω)2 and  

 α(ω)d ,ξ%(ω), ξT(ω)2 ≤ β(ω)max ; d ,ξI(ω), ξ%(ω)2 , d ,ξ%(ω), ξT(ω)2 ,0, d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2<  

 

There are four cases:  

Case – 1: if we take max; d ,ξI(ω), ξ%(ω)2 , d ,ξ%(ω), ξT(ω)2 ,0, d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2< = 0 then  

  α(ω)	d ,ξ%(ω), ξT(ω)2 ≤ 0	 
Which is contradiction. 

Case – 2: if we take max; d ,ξI(ω), ξ%(ω)2 , d ,ξ%(ω), ξT(ω)2 ,0, d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2< = d ,ξI(ω), ξ%(ω)2 then 

  α(ω)	d ,ξ%(ω), ξT(ω)2 ≤ β(ω)d ,ξI(ω), ξ%(ω)2	 
 

Case – 3: if we take max; d ,ξI(ω), ξ%(ω)2 , d ,ξ%(ω), ξT(ω)2 ,0, d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2< = d ,ξ%(ω), ξT(ω)2 then 

  α(ω)	d ,ξ%(ω), ξT(ω)2 ≤ β(ω)d ,ξ%(ω), ξT(ω)2	 
   d ,ξ%(ω), ξT(ω)2 ≤ β(ω)

α(ω)	 d ,ξ%(ω), ξT(ω)2.  

Which is contradiction  

Case – 4: if we take max; d ,ξI(ω), ξ%(ω)2 , d ,ξ%(ω), ξT(ω)2 ,0, d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2< = d ,ξI(ω), ξ%(ω)2 + d ,ξ%(ω), ξT(ω)2 then 

  (α(ω) − 1)	d ,ξ%(ω), ξT(ω)2 ≤ β(ω)d ,ξI(ω), ξ%(ω)2	 
    d ,ξ%(ω), ξT(ω)2 ≤ β(ω)(α(ω)$%)	 d ,ξI(ω), ξ%(ω)2.  
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From the above four cases, we have, max W β(ω)(α(ω)$%)	 , β(ω)α(ω)	X 	= 	k then d ,ξ%(ω), ξT(ω)2 ≤ k	d ,ξI(ω), ξ%(ω)2  

 

By Beg and Shahzad, we obtain a measurable mapping SZ ∶ 	7 → ? such that for all ω ∈ Ω, ξZ(ω) ∈ S ,ω, ξT(ω)2 and  

  α(ω)d ,ξT(ω), ξZ(ω)2 ≤ β(ω)max ; d ,ξ%(ω), ξT(ω)2 , d ,ξT(ω), ξZ(ω)2 ,0, d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2<  

 

There are four cases:  

Case – 1: if we take max; d ,ξ%(ω), ξT(ω)2 , d ,ξT(ω), ξZ(ω)2 ,0, d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2< = 0 then  

  α(ω)	d ,ξT(ω), ξZ(ω)2 ≤ 0	 
 

Which is contradiction. 

Case – 2: if we take max; d ,ξ%(ω), ξT(ω)2 , d ,ξZ(ω), ξZ(ω)2 ,0, d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2< = d ,ξ%(ω), ξT(ω)2 then 

  α(ω)	d ,ξT(ω), ξZ(ω)2 ≤ β(ω)d ,ξ%(ω), ξT(ω)2	 
 

Case – 3: if we take max; d ,ξ%(ω), ξT(ω)2 , d ,ξT(ω), ξZ(ω)2 ,0, d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2< = d ,ξT(ω), ξZ(ω)2 then 

  α(ω)	d ,ξT(ω), ξZ(ω)2 ≤ β(ω)d ,ξT(ω), ξZ(ω)2	 
   d ,ξT(ω), ξZ(ω)2 ≤ β(ω)

α(ω)	d ,ξT(ω), ξZ(ω)2.  

Which is contradiction  

Case – 4: if we take max; d ,ξ%(ω), ξT(ω)2 , d ,ξT(ω), ξZ(ω)2 ,0, d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2< = d ,ξ%(ω), ξT(ω)2 + d ,ξT(ω), ξZ(ω)2 then 

   (α(ω) − 1)	d ,ξT(ω), ξZ(ω)2 ≤ β(ω)d ,ξ%(ω), ξT(ω)2	 
   d ,ξT(ω), ξZ(ω)2 ≤ β(ω)(α(ω)$%)	 d ,ξ%(ω), ξT(ω)2.  

 

From the above four cases, we have, max W β(ω)(α(ω)$%)	 , β(ω)α(ω)	X 	= 	k then  

  d ,ξT(ω), ξZ(ω)2 ≤ k	d ,ξ%(ω), ξT(ω)2  

 

 

Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping S[: 7 → ? suct that for \ > 0 and 

for any ω ∈ Ω, 
 ξT
B%(ω) ∈ S ,ω, ξ	T
(ω)2 , and ξT
BT(ω) ∈ T ,ω, ξ	T
B%(ω)2 

 

This gives, d ,ξ
(ω), ξ
B%(ω)2 ≤ kd ,ξ
$%(ω), ξ
(ω)2 ≤ ⋯……… ≤	k
d ,ξI(ω), ξ%(ω)2  

 

 

For any	_, \ ∈ `	such that	_ > \, also by using triangular inequality we have d ,ξ
(ω), ξ�(ω)2 ≤ ab%$a d ,ξI(ω), ξ%(ω)2  
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Which tends to zero as \ → ∞. It follows that cξ
(ω)d is a Cauchy sequence and there exists a measurable mapping S ∶ 7 → ? 

such that ξ
(ω) → ξ(ω) for each	ω ∈ Ω. It implies that	ξT
B%(ω) → 	ξ(ω). Thus we have for any ω ∈ Ω, 

  d ,ξ(ω), S/ω, ξ(ω)12 ≤ d ,ξ(ω), ξT
BT(ω)2 + 	d Jξ(ω), S ,ω, ξT
BT(ω)2K  

  d ,ξ(ω), S/ω, ξ(ω)12 ≤ d ,ξ(ω), ξT
BT(ω)2 + 	H JT ,ω, ξT
B%(ω)2 , S ,ω, ξT
BT(ω)2K  

 

Therefore, α(ω)d ,ξ(ω), S/ω, ξ(ω)12 ≤ d ,ξ(ω), ξT
BT(ω)2 +	   
 β(ω)max

LMN
MOd JξT
BT(ω), S ,ω, ξT
BT(ω)2K , d JξT
B%(ω), T ,ω, ξT
B%(ω)2K ,d JξT
B%(ω), S ,ω, ξT
BT(ω)2K , d JξT
BT(ω), T ,ω, ξT
B%(ω)2K ,d Jξ(ω), ,ω, ξT
B%(ω)2K PMQ

MR
   

 

Taking as	\ → ∞, we have  α(ω)d ,ξ(ω), S/ω, ξ(ω)12 ≤ 	β(ω)d ,ξ(ω), S/ω, ξ(ω)12  

 

Which contradiction, hence ξ(ω) = S(ω, ξ(ω)	) for all ω ∈ Ω. 

Similarly, for any	ω ∈ Ω, d ,ξ(ω), S/ω, ξ(ω)12 ≤ d ,ξ(ω), ξT
B%(ω)2 + 	H JS ,ω, ξT
(ω)2 , T ,ω, ξT
B%(ω)2K  

Hence ξ(ω) = T(ω, ξ(ω)	)	for	all	ω ∈ Ω. 
It is easy to see that, ξ(ω) is common fixed point for C	and	D	in ?. 

 

Uniqueness: 

 Let us assume that, ξ
∗(ω) is another fixed point of C and D in ?, different from ξ(ω), then we have d/ξ(ω), ξ∗(ω)1 ≤ d Jξ(ω), S ,ω, ξT
(ω)2K + H JS ,ω, ξT
(ω)2 , T ,ω, ξT
B%(ω)2K +	d JT ,ω, ξT
B%(ω)2 , ξ∗(ω)K	 

By using 3.1(a) and \ → ∞ we have, d/ξ(ω), ξ∗(ω)1 ≤ 0  

Which contradiction, 

So we have, ξ(ω) is unique common fixed point of C and D in ?. 
 

Corollary 3.2:- Let ? be a Polish space. Let Ci, Dj: 7 × ? → FG(?) be two continuous random multivalued operators. If there 

exists measurable mappings 4, 5 ∶ 	7 → (0,1) such that, 

 α(ω)	H/S(ω, x), T(ω, y)1 ≤ β(ω)max ;d/x, S(ω, x)1, d/y, T(ω, y)1,d/y, S(ω, x)1, d/x, T(ω, y)1,d(x, y) <      3.2(a) 

 

For each =, > ∈ ?	, @ ∈ 7 and 4, 5 ∈ AB with 4(@) > 1, 0 ≤ 5(@) < 4(@),, there exists a common random fixed point of C and D. (hence E represents the Hausdroff metric on FG(?) induced by the metric H)	 
 

Proof: From the theorem 3.1, and on taking k = l = 1 it is immediate to see that, the corollary is true. If not then we choose a 

ξI ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping ξ% ∶ Ω → X such that ξ%(ω) ∈ S(ω, ξI(ω)) for 

each ω ∈ Ω.	then for each	ω ∈ Ω, and by using 3.2(a) the result is follows. 

 

Now our next result is generalization of our previous theorem 3.1, in fact we prove the following theorem. 

 

Theorem 3.3: Let X be a Polish space. Let D, C: 7 × ? → FG(?) be two continuous random multivalued operators. If there exists 

measurable mappings 4, 5 ∶ 	7 → (0,1) such that, 

 α(ω)HT/S(ω, x), T(ω, y)1 ≤ β(ω)min mmaxcdT/x, S(ω, x)1, dT/y, T(ω, y)1d ,	maxcdT/y, S(ω, x)1, dT/x, T(ω, y)1dn     3.3(a) 
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For each =, > ∈ ?	, @ ∈ 7 and 4, 5 ∈ AB with 4(@) > 1, 0 ≤ 5(@) < 4(@),, there exists a common random fixed point of C and D. (hence E represents the Hausdroff metric on FG(?) induced by the metric H) 

 

Proof: Let ξI ∶ Ω → X be an arbitrary measurable mapping and choose a measurable mapping ξ% ∶ Ω → X such that ξ%(ω) ∈S(ω, ξI(ω)) for each ω ∈ Ω.	then for each	ω ∈ Ω. 

α(ω)HT JS ,ω, ξI(ω)2 , T ,ω, ξ%(ω)2K ≤ β(ω)min omax WdT JξI(ω), S ,ω, ξI(ω)2K , dT Jξ%(ω), T ,ω, ξ%(ω)2KX ,	max WdT Jξ%(ω), S ,ω, ξI(ω)2K , dT JξI(ω), T ,ω, ξ%(ω)2KXp 

Further there exists a measurable mapping ST ∶ 7 → ? such that for all ω ∈ Ω, ξT(ω) ∈ T ,ω, ξ%(ω)2 and  

 α(ω)dT ,ξ%(ω), ξT(ω)2 ≤ 	β(ω)min ;max WdT ,ξI(ω), ξ%(ω)2 , dT ,ξ%(ω), ξT(ω)2X ,	max WdT ,ξ%(ω), ξ%(ω)2 , dT ,ξI(ω), ξT(ω)2X< 

 dT ,ξ%(ω), ξT(ω)2 ≤ 	 /α(ω) + 	β(ω)1dT ,ξI(ω), ξ%(ω)2  

 

Let q = 	 (4(@) + 	5(@)	)This gives dT ,ξ%(ω), ξT(ω)2 ≤ k	dT ,ξI(ω), ξ%(ω)2  

 

By Beg and Shahzad, we obtain a measurable mapping SZ ∶ 	7 → ? such that for all ω ∈ Ω, ξZ(ω) ∈ S ,ω, ξT(ω)2 and by using 3.3	(a), we have dT ,ξT(ω), ξZ(ω)2 ≤ k	dT ,ξ%(ω), ξT(ω)2 ≤ kTdT ,ξI(ω), ξ%(ω)2  

 

Similarly, proceeding the same way, by induction, we get a sequence of measurable mapping ξ
:Ω → X suct that for \ > 0 and for 

any ω ∈ Ω, 
 ξT
B%(ω) ∈ S ,ω, ξ	T
(ω)2 , and ξT
BT(ω) ∈ T ,ω, ξ	T
B%(ω)2 

This gives, dT ,ξ
(ω), ξ
B%(ω)2 ≤ kdT ,ξ
$%(ω), ξ
(ω)2 ≤ ⋯……… ≤	k
dT ,ξI(ω), ξ%(ω)2  

 

For any	_, \ ∈ `	such	that	_ > \, also by using triangular inequality we have 

  dT ,ξ
(ω), ξ�(ω)2 ≤ ab%$a dT ,ξI(ω), ξ%(ω)2  

 

Which tends to zero as \ → ∞. It follows that cξ
(ω)d is a Cauchy sequence and there exists a measurable mapping ξ ∶ Ω → X 

such that ξ
(ω) → ξ(ω) for each	ω ∈ Ω. It implies that 	ξT
B%(ω) → 	ξ(ω). Thus we have for any ω ∈ Ω, 

  dT ,ξ(ω), S/ω, ξ(ω)12 ≤ dT ,ξ(ω), ξT
BT(ω)2 +	dT Jξ(ω), S ,ω, ξT
BT(ω)2K  

  dT ,ξ(ω), S/ω, ξ(ω)12 ≤ dT ,ξ(ω), ξT
BT(ω)2 +	HT JT ,ω, ξT
B%(ω)2 , S ,ω, ξT
BT(ω)2K  

 

Therefore, by using 3.3(a) we have dT ,ξ(ω), S/ω, ξ(ω)12 ≤ (α(ω) + 	β(ω)	)	dT ,ξ(ω), S/ω, ξ(ω)12  

 

Which contradiction, hence ξ(ω) = S(ω, ξ(ω)	) for all ω ∈ Ω. 

Similarly, for any	ω ∈ Ω, dT ,ξ(ω), S/ω, ξ(ω)12 ≤ dT ,ξ(ω), ξT
B%(ω)2 +	HT JS ,ω, ξT
(ω)2 , T ,ω, ξT
B%(ω)2K  

Hence ξ(ω) = T(ω, ξ(ω)	)	for	all	ω ∈ Ω. 
It is easy to see that, ξ(ω) is common fixed point for S	and	T	in ?. 

 

Uniqueness 

Let us assume that, ξ
∗(ω) is another fixed point of C	and D in ?, different from ξ(ω), then we have dT/ξ(ω), ξ∗(ω)1 ≤ dT Jξ(ω), S ,ω, ξT
(ω)2K + HT JS ,ω, ξT
(ω)2 , T ,ω, ξT
B%(ω)2K +	dT JT ,ω, ξT
B%(ω)2 , ξ∗(ω)K	 

By using 3.3(a) and \ → ∞ we have, dT/ξ(ω), ξ∗(ω)1 ≤ 0  



Research Journal of Mathematical and Statistical Sciences ___________________________________________ ISSN 2320–6047 

Vol. 1(10), 13-18, November (2013)        Res. J. Mathematical and Statistical Sci. 

International Science Congress Association   18 

 

Which contradiction, 

So we have, ξ(ω) is unique common fixed point of C and D in ?. 
 

Corollary 3.4 Let ? be a Polish space. Let Ci, Dj ∶ 7 × ? → FG(?) be two continuous random multivalued operators. If there 

exists measurable mappings 4, 5 ∶ 	7 → (0,1) such that, 

 α(ω)HT/S(ω, x), T(ω, y)1 ≤ β(ω)min mmaxcdT/x, S(ω, x)1, dT/y, T(ω, y)1d ,	maxcdT/y, S(ω, x)1, dT/x, T(ω, y)1dn     3.4(a)  

 

For each =, > ∈ ?	, @ ∈ 7 and 4, 5 ∈ AB with 4(@) > 1, 0 ≤ 5(@) < 4(@), there exists a common random fixed point of C and D. (hence E represents the Hausdroff metric on FG(?) induced by the metric H) 

 

Proof: - From the theorem 3.3, and on taking k = l = 1 it is immediate to see that, the corollary is true. If not then we choose a 

ξI:Ω → X be an arbitrary measurable mapping and choose a measurable mapping ξ% ∶ Ω → X such that ξ%(ω) ∈ S(ω, ξI(ω)) for 

each ω ∈ Ω.	then for each	ω ∈ Ω, and by using 3.3(a) the result is follows. 

 

Conclusion 

In this article we prove Some Common Fixed Point Theorems for Random Operator in polish spaces, by using some new type of 

contractive condition. In fact our main result is more general then other previous known results..  
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