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Abstract

In this work, we study a fourth-order boundary value problem problem with eigenparameter dependent boundary conditions
and transmission conditions at a interior point. A self-adjoint linear operator A is defined in a suitable Hilbert space H such
that the eigenvalues of such a problem coincide with those of A. We obtain asymptotic formulae for its eigenvalues and
fundamental solutions.
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Introduction

It is well-known that many topics in mathematical physics require the investigation of eigenvalues and eigenfunctions of Sturm-
Liouville type boundary value problems. In recent years, more and more researches are interested in the discontinuous Sturm-
Liouville problem'”. Various physics applications of this kind problem are found in many literatures, including some boundary
value problem with transmission conditions that arise in the theory of heat and mass transfer®® . The literature on such results is

voluminous' ! .

Fourth-order discontinuous boundary value problems with eigen-dependent boundary conditions and with two supplementary
transmission conditions at the point of discontinuity have been investigated'>"*. Note that discontinuous Sturm-Liouville problems
with eigen-dependent boundary conditions and with four supplementary transmission conditions at the points of discontinuity have
been investigated®.

In this study, we shall consider a fourth-order differential equation

Lu = (a(x)u"(x)) +g(x)u(x) = Au(x) (1.1)
on [ = [— 1,0)u (0, 1] , with boundary conditions at x =—1
Lu:=au(-1)+a,u”(-1)=0, (1.2)
Lu=u"(-1)=0, (1.3)

with the four transmission conditions at the points of discontinuity x =0,

L3u:=u(0+)—u(0—)=0, (1.4)
Lu=u(0+)-u’(0-)=0, (1.5)
Lu=u"(0+)-u"(0-)+A0u’(0-)=0, (1.6)
Lu=u"(0+)—u”(0-)+A8,u(0-)=0, (1.7)
and the eigen-dependent boundary conditions at x =1

Lu = ﬂu(l)+u"’(l)=0, 1.8)
Lu=u'(1)+u"(1)=0, 1.9
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where a(x)= a ,for xe [— 1,0) ., a(x)= a; ,for xe (0, 1] , a,>0 and a, >0 are given real numbers, g(x) isa
given real-valued function continuous in [— 1,0)u (0, l] and has a finite limit ¢(0t) =lim__ ., g(x) ; A is a complex

eigenvalue parameter; @;,8, (i =1,2) are real numbers and |0!1| + |0!2| #0, |51| + |52| #0.
Preliminaries
2 ) 1 0 — 1 g —
Firstly we define the inner productin L forevery f , g€ L (I) as, <f, g>1 = —4J- 1 fi8,dx+ —4.[0 1, 8,dx,
a, = a,

where f,(x) = f(x)‘ by fr(0=f (x)‘ (o] - Itis easy to sce that (22(1).[.]) is a Hilbert space. Now we define the inner
product in the direct sum of spaces L' (1)@ C®C®C, ®C; by,

[F.G] =(f.8), +(h.k)+{hy k) + (hy. ky) + (. k)

for, F =(f,h.hy,hy,h,).G =(g.k.ky. ks, k,)e P(I)®@COCOBC, ®C;.

Then Z =(L()@C@®C@®C 5 ®C,, [-]) is the direct sum of modified Krein spaces. A fundamental symmetry on the

Krein space is given by

J, 00

S O O O

0

0 0
1 0
0 sgn 4,
0 0

S O O O
S o O =

| sgn 0, |
where, J, : [*(I)— L*(I)
is defined by (J of )(x) = f(x) . We define a linear operator A in Z by the domain of definition

D(A) ={(f b by hyh)e 21 10 e AC,, (F1.0)). £ e AC,, ((0.1)). i=0.3,
Lf € (1) L f =0, k=14 by = f() by = £/, by ==8,£/0) h, = -8, £(O)}
AF = (1f . = £, = f70) f70+)-f70-) £70+)-r"0-))
F=(f., fO). f(1),=6,£(0). = &,1(0))e D(A)

Consequently, the considered problem (1.1)-(1.9) can be rewritten in operator form as

AF = AF,

i.e., the problem (1.1)-(1.9) can be considered as the eigenvalue problem for the operator A . Then, we can write the following
conclusions:

Theorem 2.1. The eigenvalues and eigenfunctions of the problem (1.1)-(1.9) are defined as the eigenvalues and the first

components of the corresponding eigenelements of the operator A respectively.

Theorem 2.2. The operator A s self-adjoint in Krein space Z.

Fundamental Solutions

Lemma 3.1. Let the real-valued function q(x) be continuous in [— 1, 1] and fl (/1) (i =1, 4) are given entire functions.

Then for any A€ C the equation, (a(x)u”(x))” +g(xX)u(x) = /11/[()6), xel

has a unique solution U = u(x,l) such that
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u(-1)=f,(A) u )= £,() " 1)= £,(2) w”(-1)= £,(2)
lor )= £,() v )= () 1= 7,(2) w” ()= £, (1))
and for each X € [— 1, 1] , u(x,l) is an entire function of A .
Let ¢, (x,A) be the solution of Eq. (1.1) on [— 1,0) which satisfies the initial conditions

¢, (-)=a,, ¢,(-1)=9¢,(-1)=0, ¢, (-1)=-a,.

By virtue of Lemma 3.1, after defining this solution, we may define the solution ¢, (x, /1) of Eq. (1.1) on (0, 1] by means of the
solution @, (x, /1) by the initial conditions
91, (0 ) =9y (0)’ ¢1,2 (0 ) = ¢1,1 (0)’ ¢12 (0) = ¢1”1 (0)_ /151¢1,1 (0)’ ¢12 (0 ) = ¢11 (0)_ 46,0, (0 ) (3.1

After defining this solution, we may define the solution ¢21(x, /1) of equation (1.1) on [— 1,0) which satisfies the initial
conditions

¢21(_l):0’ ¢;1(_1):ﬂ2’ ¢21 (_1):—,31, ¢21 (_1)20' (3.2)

After defining this solution, we may define the solution @,, (x, /1) of Eq. (1.1) on (0, 1] by means of the solution @,, (x, /1) by
the initial conditions

92, (0)=6,,(0), 92, (0)=6,,(0), 95, (0)=9,,(0)= 16,4,,(0).4,, (0) = 9,,(0) = 26,45, (0). (3.3)

Analogically we shall define the solutions ¥, (x, /1) and %, (x, /1) by the initial conditions

2 () ==L 2 (1) = 20 (1) = 0. 2 () = 4, 20, (0) = 25 (0), 2, (0) = 71 (0), (3.4)
20 (0)= 202 (0)+ 28,215 (0), 27, (0) = 272 (0)+ 26,7,, (0).

Moreover, we shall define the solutions J}/,, (x, ﬂ,) and JY,, (x, ﬂ) by the initial conditions

X (1)=0, 2, (1)=-1 75, (1)= 4, 2, (1)=0. 7, (0)= 7, (0). 7, (0) = x5, (0). (3.5)

2, (0)=x,,(0)+ 28,7, (0), 7, (0)=x,,(0)+ A5,7,,(0).
Let us consider the Wronskians

¢11(x’/1) ¢21(x’/1) Zn(x’/l) /’(21(35’/1
W (/1) _ ¢11 (x’/l) ¢21 (x’/l) /1/11 (x’/l) /1/21 (x’/1
1 ¢11(x’/1) ¢21(x’/1) Zn(x’/l) /’(21(35’/1
6. (x2) ¢,(x4) 2 A) g (x2
and
¢12(x’/1) ¢22(x’ /1) Zm(x’/l) /1’22(35’/1
W (/1) _ ¢12 (x’/l) ¢22(x’ /1) Zn (x’/l) Z%’z(x’/i
’ ¢12(x’/1) ¢22(x’/1) Zm(x’/l) /1’22(75’/1 ’

$: (6 2) 0,06 2) 206 2) (x4
which are independent of X and entire functions. This sort of calculation gives VVl(/i) =W, (/1) . Now we may introduce in

consideration the characteristic function W(/i) as W(/i) =W, (/1) .

Theorem 3.2. The eigenvalues of the problem (1.1)-(1.9) are the zeros of the function W(l) .
Proof. Let W(A)=0 . Then the functions &, (x,A), 0, (x,A) and X (x,A), Ko (x,A) are linearly dependent, i.e.,
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ki@, (x’ /1) +ky, (x, /1) +k (x’ /1) +k X (x, /1) =0
for some k, #0 or k, #0 or k; #0 or k, #0 . From this, it follows that k3;(11(x,/1)+ kX (x,/i) satisfies the
boundary conditions (1.2)-(1.3). Therefore

{k3l’11(x’/1)+k4;(21(x’/1)’ X€ [_LO)
k3Z12(x’/1)+k4;(22(x’/1)’ Xe (0’1]

is an eigenfunction of the problem (1.1)-(1.9) corresponding to eigenvalue A.

Now we let u(x) be any eigenfunction corresponding to eigenvalue A , but W(/l) #0 . Then the functions @,, @,
Xi1» X, would be linearly independent on (0,11 Therefore u(x) may be represented as

u(x)z {C1¢11(x,/1)+cz¢21 (x,ﬂ,)+c3,?j“(x,ﬂ,)+c4,1’21 (x,ﬂ), X € [_ 1,0)
csPp, (x’ﬂ')+cs¢2z (x’ﬂ’)+c72/12 (x»l)"'csZzz (x’ﬂ')’ X e (O’l]’

where at least one of the constants €1, €2, €3, C4, C5, C6, €7 and C8 isnot zero. Considering the equations
L,(u(x)=0, v=1,8 3.6)

as a system of linear equations of the variables €1, €2, €3, C4, C5, Cg, C7, C8 and taking (3.1)-(3.5) into account,
it follows that the determinant of this system is

0 0 Ly, Ly 0 0 0 0
0 0 L2 LyXy 0 0 0 0
0 0 0 0 Ly, Li¢y 0 0
0 0 0 0 L9, L9y 0 0

_¢12(O) _¢22(0) _112(0) _;{22(0) ¢12(0) ¢22(0) 112(0) 122(0)

_¢1,2(O) _¢2,2(0) _;(1,2(0) —,’{;2(0) ¢1,2(0) ¢22(0) ;(1,2(0) 1;2(0)

=0.(0) =¢,0) -2.0) -2,0) ¢.0) ¢,0) x.0) z..0)

=0,0) -9,0) -7,0) -2,0) ¢,0) ¢,0) 2,0) x,(0)
=-w(@) =o.

Therefore, the system (3.6) has only the trivial solution ¢; =0 (i = 1,8) . Thus we get a contradiction, which completes the

proof.

Asymptotic formulae for eigenvalues and fundamental solutions
We start by proving some lemmas.

Lemma 4.1. Let ¢(x,/1) be the solution of Eq. (1.1) defined in Section 3, and let A = S4, S =0 +it . Then the following

integral equations hold for k = @ :

' ' Sodt 3N gk e
g (rd) = B o D) @) 47 s () (“_“_j d__
d 2 dx a, 2s” dx a, 4 4s dx .1
3N g% s 3 4k . _ e e
+(%+ c:-lsaf dek e “ +2a;3 J'_ldxk (slns(xa y)_e a4 @ ]q(y)¢“(y,/1)dy.
(0200 @0 sx (40,00 @6i(0)) b s
T (X, 4)= - —cos—+ — |x——sin
dx 2 2s dx a, 2s 2 X a,
+ 2B (0) n a2¢1)2 (O) n a22¢1”2 (O) + a§¢1”2) (0) y d* % @, (0) B a2¢1'2 (0) a22¢1”2 (0) ~ a§¢1"2' (0) d* = 42)
2 3 et + 2 3 €
4 4s 4s 4s dx 4 4s 4s 4s dx

S oedb (L s(x—y o) _stey)
+ a2J. [sm ( )—e “ +e JQ()’)¢12(3”/1)dy‘

25 0 dx*
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k k +1 ko s(as) ko ()
d_k¢21(x’ﬂ)=ﬂdkSiHS(x )+ﬂdkeal _ﬂdke !
dx 2s dx a, 4s dx 4s dx

“4.3)
al pod* [ os(x-y) e e
el Mo [Sm o e e ()8, (y,4)dy.

. 0 24" (0 . (0 357 (0 .
d_k¢22 (x,ﬂ) _ ¢22( )_ a2¢222( ) d . Cosﬂ+ a2¢22( )_ a2¢222( ) v d . sinﬂ
dx 2 2s X a, 2s 2s° X a,
[ 22(0), 00, (0), ai¢:,(0) , @30, (0)) d* = (02(0) @5 (0), ai¢n(0) aif(0))d* = @4

4 4s 45° 45° dx* 4 4s 45° 45° dx*

3 gk _ G)  _stmy)
+a2 d [Sins(x y)—e”2 +e © jCI()’)%z()’,ﬂ)dy‘

3 k
25 Y 0dx a,

Proof. Regard ¢11 (x, ﬂ,) as the solution of the following non-homogeneous Cauchy problem:

~(a(x)g (x)) +5°0,,(x) = q(x)g, (. ),
P (_ 1’/1) =1, ¢11 (_ 1’/1) =0,
6(-1.4)=0, ¢, (-1.4)=0.
Using the method of constant changing, ¢11 (x, ﬂ) satisfies

3 3 s (x+1)
¢“(x,l)=ﬂcos s(x+1)+ a1a31 sin s(x+1)+ &——a‘a; e Y
2 a, 2s a, 4 4s

3 _s(x+) 3 X _ s(x-y) _sle=y)
+[ﬁ+%]e a4 4 (sinm—e T 4e U Jq(y)@l(y,ﬂ)dy.

4 45’ 257 a,
Then differentiating it with respect to X , we have (4.1). The proof for (4.2), (4.3) and (4.4) is similar.

Lemma 4.2. Let A= S4, S =0 +it . Then the following asymptotic formulae hold for k = @ :

k k +1 kg s s )
d_k¢11(x’/l)=&dkcoss(x )+&dk(e a4 @ )+0(|s|kle“‘ j 4.5)
dx 2 dx a, 4 dx

k 2 25 ’ 0 k 3 5 0 k 2 25 ’ 0 k N .
d_k‘/’lz(x,ﬂ): 45709, (0) d p cos X L2F 0, (0) 4 - sin X _ 427 £, (0) 4 A (e“z +e “2)
dx 2 dx a, 2 dx a, 4 dx (4.6)
— a;sé‘zfn(O) ;kk (e“’;—e_“’;)+0(esk(w)).

X

dk a dk .S (.x + 1) a dk w _“(:“) k=2 ‘V‘("iﬂ
g O ()= s T (e e j+0(|s| ¢ )
1

International Science Congress Association 27



Research Journal of Mathematical and Statistical Sciences

Vol. 1(1), 23-32, February (2013) Res. J. Mathematical & Statistical Sci.
d* a’s*6.0. (0) d* sx aso. 0) ¢  sx a’s°60. (0) d* { = =
k¢22(x,/1): 2 1¢21( ) _cos— + 2 2¢21( ) _sin—— 2 1¢21( ) k(e“2+e az)

dx 2 dx a, 2 dx a, 4 dx

3 k

a S§ 0 d s _s k=1 axtay
_ 2 2¢21( ) - (eaz —e @ )+0(€ ‘ ( ajay )j'
4 dx

Each of these asymptotic formulae holds uniformly for X as |ﬁ| —> 0o,

gl
Proof. Let F), (x, /1) =e W &, (x, /1). It is easy to see that F; (x, /1) is bounded. Therefore @, (x, /1) = O(e). Substituting
itinto (4.1) and differentiating it with respect to X for k = m, we obtain (4.5). According to transmission conditions
(1.4)-(1.7) as |ﬂ| —> 00, we get

¢12(0):¢11(O)’ ¢1,2(0):¢1,1(O)’ ¢1”2(O):_S4 1¢1,1(0)9 ¢1”2,(O):_S4 2¢11(0)-
Substituting these asymptotic formulae into (4.2) for k =0, we obtain
2 2 ’ 3 2.2 ! 3

d, (x,/i) _ &S5 6,9, (O)Cosﬂ+ a,so,¢;, (0) sin&— a,s 0,0, (0) (e% n e*%)_ a,so,¢;, (O) (eﬁ _ *7)

2 a, 2 a, 4 4 4.7

3 e - sy sty o (@xtar
| [sin—s(x D ]q(ym(y,z)dyw(e ),
25770 a,

ajx+ay

, and denoting, F|, (x, ﬂ) = (| |_3 * ‘( o )j 9, (X,ﬂ).

Denoting M :=max E[0,1]|Flz X, /M from the last formula, it follows that
3|, 6| . |, 6, |
2

T

3 (e

Multiplying through by |S|

M (1)<

I q(y)dy + M,

for some M, >0 . From this, it follows that M(2)=0(1) as |ﬂ| — 0,50

¢ 0 |3 ls| “LI:i’ )
12

Substituting this back into the integral on the right side of (4.7 ) yields (4.6) for k =0 . The other cases may be considered
analogically.
Similarly one can establish the following lemma. for (x, /1) (i =1,2,j=1, 2).

Lemma 4.3. Let A=s' , sS=0+it . Then the following asymptotic formulae hold for k=0,3:
d* a’s*o y.,(0) 4* sx  a,so. 0) d* . sx a’s’0x,(0)d" [ > =
k,{“(x,/'i)=— 1 1/1’12( ) _cos - + 1 2;(12( ) _sin -+ 1 12’12( ) . e 4 @
dx 2 dx a, 2 dx a, 4 dx

|| G~ aaX
K+l eM a

3 ) 0 k Sx s
+alszx12()dk[€ul_ea,J+0 |S
4 dx

d* a’s d* s(x=1) a’sd, d*
— x,A)=—=2 sin +-1—2 e
dx* % (x.4) 2 dxt a, 4 dx*
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d* a’s’0 1, (0) d*  sx a’s8,x,(0) d° . sx a’s’6x,(0) 4F [ T

kZZl(x’/i):_ 1 1/’(22( ) _cos = + 1 2/1/22( ) _sin =+ 1 1/1/22( ) y e e @
dx 2 dx a, 2 dx a, 4 dx

3 SX X a;—a, X

a S5 0 dk a0 “a M[ aa J

il 2/1/22( ) . e —e 9 |10 |s|k+2 ¢ .
4 dx
s(x-1) s(x-1) I-x

d* a’s*> d* . s(x=1) a’s*> d'| =, — K ‘S‘(T]
_kZZZ(x’/i):_ : % S ( )+ : k Pome 7 0 | |+le ’
dx 2 dx a, 4 dx

where k = m Each of these asymptotic formulae holds uniformly for X.

Theorem 4.4. Let A =5s", §S=0+it . Then the characteristic functions VVl(/l) (i =1, 2) have the following asymptotic

formulae:
a455 o Sl2 s(eiﬁ-{-eﬁ) s s s 1 QM(M)
W (1)=-—122—2+cos ———— (e “‘+e“')cos—+0 |s|"" et
16 a, a,
4 12 S e_“i‘+eil
a§§a’s ( ) _s s Ky 2 0011;112
W, (A)=——2122"| 2+cos (e "2+e“2)cos—+0 |s] A
16 Cll az

Proof. Substituting the asymptotic equalities % y A (—1, /1) and % e (—1, /1) into the representation of W, (ﬂ,) , we get

a, 0 /’{11(_1’2’) /’{21(_1’/1)
‘/Vl(/l)= 0 1 /1’1”1(_1’2') /'{%1(_1’/1)
0 0 /1’11(_1’2') /’{21(_1’/1)
- 0 /’{11(_1’2’) /’{21(_1’/1)
a 0 cos~ e —e"
5550 0 1 —a—slsma—‘1 a—i(—e_“i‘—e“i‘)
a K . ,
— L0 (1 (0) 2 0) 2 (0) 7 (0)) |
0O O —2—2cosa—5[ Zz(e“'—e"')
—o, 0 —5sint ;—i( e eﬁ)
1 0 sin+ e 4o

0 0 ZLcos= s(—e_7'+e7‘)
1 1

aj+ay
- s s +OUﬂBJ%WJj=Q
0 -1 —%siny s (e“‘+e“‘)

a

3. —ar o
0 0 —4sing s3(—e "'+e“‘)
1

Analogically, we can obtain the asymptotic formulae of W, (/7,) .
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Corollary 4.5. The real eigenvalues of the problem (1.1)-(1.9) are bounded below.

Proof. Putting s? =it? (t > 0) in the above formulas, it follows that , W(— t* ) —>00aSt —> oo,
Therefore, W(l) #0 for A negative and sufficiently large in modulus.

Now we can obtain the asymptotic approximation formulae for the eigenvalues of the considered problem (1.1)-(1.9).
Since the eigenvalues coincide with the zeros of the entire function W(/l) , it follows that they have no finite limit. Moreover, we

know from Corollary 4.5 that all real eigenvalues are bounded below. Hence, we may renumber them as A, <A <A, <--- |

listed according to their multiplicity.

Theorem 4.7. The eigenvalues ﬂn = s: , n=0,1,2,... of the problem (1.1)-(1.9) have the following asymptotic formulae for
n— oo

ram a171'(2n—1)+0(l) A = a27z'(2n+1)+0(lj
2 n) V" 2 n)

n

Proof. By applying the well-known Rouché's theorem, which asserts that if f(s) and g(s) are analytic inside and on a closed

contour C | and | g(sl < | f (s)| on C . then f(s) and f(s)+g(s) have the same number zeros inside C provided that

each zero is counted according to their multiplicity, we can obtain these conclusions.

Theorem 4.8. The residual spectrum of the operator A s empty, i.e., O, (A) =.

Proof. It sufficies to prove that if ¥ is not an eigenvalue of A, then (A -A )_1 is dense in Z. Therefore we examine the
equation (A=Y )Y =Fe Z, where F = (f,fl,fz,f3,f4 ).

Since 7/ is not an eigenvalue of (1.1)-(1.9) » we have

7/u 9 #0,

, oy ( 9 #0,

u”(0+)—u ( )+ p8u (0-)=f, %0, (4.8)
or, u”(0+)—u”(0=)+p8,u(0-) =%, 0. (4.9)

For convenience, we assume that the (4.8) or (4.9) be true.
Consider the initial-value problem

Ly-yy=f.,xel,

ay(-1) + a,y"(-1) =0

y'(-1)=0,

y(0+)—y(0—)=0, (4.10)
y'(0+)-y"(0-)=0,

Y (0+)=y"(0-)+ 18,y (0-) = £,

Y (04)=y"(0-)+18,y(0-) = f,.

Let u(x) be the solution of the equation
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Lu—m =0 satisfying
u(-)=a,,u’(-1)=Lu"(-1)=0,u”(-1)=-¢,

1°

u(0+)—u(0—) =O,u’(0+)—u’(0—) = 0,u”(0+)—u”(0—)+ 751u’(0—) =

In fact

where U, (x)
014”1(4) +Q(x)u1 =My, X€ [_1’0)’
ul(_l) =0,, ul(_l) =1,

u (-1)=0, u, (-1)=-a,

is the unique solution of the initial-value problem

i, (x) is the unique solution of the problem
“ 4 q(x)u, = yu,,xe (0,1]

u, (0+)—u, (0-)=0,

u, (0+)—u, (0-)=0,

u} (0+) =uf (0-)+8u; (0-) = £,
u(0+)—u,” (0=)+y5,u (0-) =",

4
—a, u,

Let

a)l(x), Xe [— 1,0),
olx)=

, (x), Xe (0,1]
be a solution of L& —pW = f satisfying
aw(-1)+a,w” (-1)=0,w"(-1) =0,
w(0+)=w(0-)=0,w"(0+)-w'(0-) =0,

w (0+)=w" (0=)+ 38w (0=) =, w” (04)=w”(0=) + W,w(0-) =f,.

Then (4.10) has the general solution

du, + w, xe[—l,O)
y(x)= (4.11)
du, +o,, xe(0,1],
where de C .
Since ¥ isnot an eigenvalue of (1.1) - (1.9) , we have
(1) +u, (1) %0 (4.12)
or
(1) +u, (1) # 0. (4.13)

The second component of (A - }/)Y = F involves the equation
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u”(0+)—u”(0-)+ y0,u(0-)= £..
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Y ()+yy(1)=h (4.14)

Substituting (4.11) into (4.14) , we get

e 0+ 70, (0)= = @ (1) -y, 1),

In view of (4.12) , we know that d is a unique solution.

The third component of (A - }/)Y = F involves the equation

Y1)+ (1)=—k. (4.15)

Substituting (4.11) into (4.15) , we get, d(u2 (1)+ n, (1)) =—k— 0);(1)— Yo, (1). In view of (4.13) , we know that d is
a unique solution. Thus if ¥is not an eigenvalue of (1.1)—(1.9), d is uniquely solvable. Hence Y is uniquely determined.

The above arguments show that (A - 71)_1 is defined on all of Z. So V€& O, (A) ,ie., O, (A) =J.

Conclusion

In this work firstly we constructed operator formulation of the given boundary value problem with eigenparameter-dependent
boundary conditions. And then we obtained asymptotic formulas for eigenvalues and fundamental solutions. Finally, we
investigated the spectrum.
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