International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Structural characterization of kaolin from Djebel Debbagh Mine using Fourier Transform Infrared Spectroscopy (FTIR)

Author Affiliations

  • 1University of Tebessa, Mining and Geothechnolgy Department, Mining Laboratory, Algeria and University of Jijel, Process Engineering Department, LIME Laboratory, Algeria
  • 2University of Jijel, Process Engineering Department, LIME Laboratory, Algeria

Res. J. Material Sci., Volume 7, Issue (3), Pages 1-6, September,16 (2019)


The structural organization level of kaolinite is a useful parameter in the kaolin industry, the determination of the crystallinity index can somehow give an idea about the use of kaolin in a well-defined industry. Kaolinite has a number of structural defects, the abundance of which makes it possible to define a scale of crystallinity. Thus, well crystallized kaolinites, medium crystallized kaolinites and poorly crystallized kaolinites are distinguished. The objective of this study is to determine the crystallinity degree for three samples of kaolin (DD1, DD2 and DD3) selected from Djebel Debbagh mine, located in Eastern Algeria. In order to obtain the results envisaged; the three samples were analyzed by Fourier Transform Infra-Red (FTIR) method. According to the obtained results; the three kaolins have poor crystallinity, since the ratio PO is greater than 1 and the ratio P2 is less than 1,especially for DD2 and DD3 where a total absence of the 3652 and 3669cm-1 vibration bands was observed. Even the kaolin DD1 has two light shoulders at 3662 and 3633cm-1, this sample remains poorly crystallized. In this study; it can be seen that the kaolin samples have a halloysite which is causing eventually this poor crystallinity and a poorly crystallized kaolinite also indicates the presence simultaneously of kaolinite and halloysite (mixed kaolin).


  1. Brindley G.W., Chih-Chun Kao Harrison J.L., Lipsicas M. and Raythatha R. (1986)., Relation between structural disorder and other characteristics of kaolinites and dickites., Clays& Clay Min., 34(3), 239-249.
  2. Muller J.P. and Bocquier G. (1987)., Dissolution of kaolinites and accumulation of iron oxides in lateritic ferruginous modules: Mineralogical and microstructural transformations., Geoderma, 37(2), 113-136.
  3. Prost R., Dameme A., Huard E., Driard J. and Leydecker J.P. (1989)., Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600K., Clays & Clay Miner., 37(5), 464-468.
  4. Madejová J., Kraus I., Tunega D. and Šamajová E. (1997)., Fourier transform infrared spectroscopic characterization of kaolin group minerals from the main Slovak deposits., Geologica Carphatica – Series Clays, 6(1), 3-10.
  5. Tironia A., Trezzaa M.A., Irassara E.F. and Scianb A.N. (2012)., Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity., 11th International Congress on Metallurgy & Materials SAM/CONAMET, 18-21 October 2011, Rosario, Argentina, Procedia Materials Science 1- 343 – 350. doi: 10.1016/j.mspro.2012.06.046. 346.
  6. Heller-Kallai L. (2001)., Protonation–deprotonation of dioctahedralsmectites., App. Clay Sci., 20, 27-38.
  7. Ostroumov M.N., Lasnier B. and Lefrant S. (1995)., Spectrométrie infrarouge de réflexion des matériaux gemmes., Analusis, 23, 39-44.
  8. Ostroumov M., Lasnier B., Fritsch E. and Lefrant S. (2000)., Spectres diagnostiques de reflexion des mineraux dans le domaine infrarouge lointain., Revista Mexicana de Ciencias Geológicas, 17(2), 163-167.
  9. Ledoux R.L. and White J.L. (1964)., Infrared study of selective deuteration of kaolinite and halloysite at room temperature., Science, 145(3627), 47-49.
  10. Salerno P., Asenjo M.B. and Mendioroz S. (2001)., Influence of preparation method on thermal stability and acidity of Al–PILCs., Thermochimica Acta, 379(1-2), 101-109.
  11. Farmer V.C. (1974)., The Infrared Spectra of Minerals., Mineralogical Society, Monograph 4, London.
  12. Russel J.D. and Fraser A.R. (1996)., Infrared methods. Clay mineralogy: spectroscopic and chemical determinative methods / ed. par M. J. WILSON., London Chapman and Hall), 11-67.
  13. Madejova J. (2003)., FTIR Techniques in clay mineral studies., Vibrational Spectroscopy, 31(1), 1-10.
  14. Douglas M.R. (2001)., Characterization of Zeolites by Sorption Capacity Measurements., In Verified Synthesis of Zeolitic Materials, ed. Harry Robson, Elsevier Science, Amsterdam, 61-65. ISBN: 9780080543512
  15. Madejová J., Bujdák J., Janek M. and Komadel P. (1998)., Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(10), 1397-1406.
  16. Caillere S., Henin S. and Rautrureau M. (1982)., Minéralogie Des Argiles., I and II, Masson, Paris.
  17. Van Olphen H. and Fripiat J.J. (1979)., Data handbook for clay materials and other non-metallic minerals., Pergamon Press, Oxford.
  18. Delineau T., Allard T., Muller J.P., Barres O., Yvon J. and Cases J.M. (1994)., FTIR reflectance vs. EPR studies of structural iron in kaolinites., Clays and clay minerals, 42(3), 308-320.
  19. Cruz-Cumplido M., Sow C. and Fripiat J.J. (1982)., Infrared spectrum of hydroxyls, crystallinity and cohesion energy of kaolins., Bulletin of Mineralogy, 105, 493-498.
  20. WORRAL W.E. (1986)., Clays and Ceramic rawmaterials., Amsterdam:Elsevier, 239.
  21. Cases J.M., Lietard O., Yvon J. and Delon J.F. (1982)., Study of the crystallochemical, morphological and superficial properties of disordered kaolinites., Mineralogy Bulletin, 105(5), 439-457.
  22. Rozynek Z., Tomáš Z., Marián J., Mária Č. and Jon O.F. (2013)., Electric-field-induced structuring and rheological properties of kaolinite and halloysite., App. Clay Sci., 77-78, 1-9.
  23. Njopwouo D. (1984)., Minéralogie et physico-Chimie des argiles de Bomkoul et de Balengou (Cameroun) Utilisation dans la polymérisation du styrène et dans le renforcement di caoutchouc naturel., Thèse phD, Université de Yaoundé I °2, 306.
  24. Bich C., Ambroise J. and Péra J. (2009)., Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin., Applied Clay Science, 44(3-4), 194-200.
  25. Kakali G., Perraki T.H., Tsivilis S. and Badogiannis E. (2001)., Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity., Applied clay science, 20(1-2), 73-80.
  26. Joussein E., Petit S. and Churchman J. (2005)., Halloysite clay minerals, A review., clay min., 40, 383-426.