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Abstract 

In this work Eigen frequencies of a railway sleeper with ballast beneath having voids at different positions have been 

evaluated. Before this evaluation a previous work in this field has been validated by an MATLAB program. Then, by 

considering five different types of void positions (five different cases of supporting), which commonly happen in sleeper and 

ballast interaction, the results for these situations are discussed. In order to clearly understand and interpret the behavio

the flexural modes, the shapes of them, for a simple theoretical case, are presented. To find out the frequencies of the sleeper 

and to find out the variation of 1st mode and 2nd mode rigid

developed and through these programs frequencies 

calculated. The graphs generated show the variation of the frequencies for different void length
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Introduction 

Railway tracks get loaded, when trains pass over 
weight of the train, static load is applied, and due to the 
irregularities of the vehicle and the track, dynamic load is 
applied. These loads may harm track and can be a reason of 
everlasting settlement, and they can also cause ground vibration 
that can exasperate residents of nearby buildings. So, in order to 
deal with these types of complications, adequate knowledge 
about track dynamics and interface between vehicle and track is 
very important.  
 
The dynamic wheel/rail force of interaction depends
by dynamic properties of the train and deflection of the track 
due to the load of the train. Also, the irregular contact force then 
creates an increased loading and deterioration of the ballast bed 
below the sleeper. The sleeper conveys mainly th
forces to the ballast bed i.e. vertical, lateral, and longitudinal 
forces from the rail down. The outcome of unsupported sleeper 
will be rise of the variations of the dynamic interaction forces 
between train and track. 
 
Producing a prestressed concrete railway sleeper is a complex 
design task that requires in-depth knowledge in several areas. 
The load generated from the passing trains is strongly 
influenced by possible irregularities of the wheels or the rail and 
variations of the stiffness of the underlying ballast supporting 
the entire track structure. The contents of dynamic loads can be 
substantial and must be considered or at least noticed during the 
design process of a sleeper. Static design system for concrete 
sleeper can be used to design the sleepers for the maximum load 
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Eigen frequencies of a railway sleeper with ballast beneath having voids at different positions have been 

evaluated. Before this evaluation a previous work in this field has been validated by an MATLAB program. Then, by 

void positions (five different cases of supporting), which commonly happen in sleeper and 

ballast interaction, the results for these situations are discussed. In order to clearly understand and interpret the behavio

em, for a simple theoretical case, are presented. To find out the frequencies of the sleeper 

and to find out the variation of 1st mode and 2nd mode rigid-body frequencies different MATLAB programs have been 

developed and through these programs frequencies for different void configurations with different void length have been 

calculated. The graphs generated show the variation of the frequencies for different void length. 

Eigen frequencies, Railway sleeper, Ballast, MATLAB program. 

loaded, when trains pass over it. Due to the 
weight of the train, static load is applied, and due to the 
irregularities of the vehicle and the track, dynamic load is 
applied. These loads may harm track and can be a reason of 
everlasting settlement, and they can also cause ground vibration 

of nearby buildings. So, in order to 
of complications, adequate knowledge 

about track dynamics and interface between vehicle and track is 

The dynamic wheel/rail force of interaction depends governed 
by dynamic properties of the train and deflection of the track 

Also, the irregular contact force then 
creates an increased loading and deterioration of the ballast bed 

mainly three types of 
forces to the ballast bed i.e. vertical, lateral, and longitudinal 

from the rail down. The outcome of unsupported sleeper 
will be rise of the variations of the dynamic interaction forces 

concrete railway sleeper is a complex 
depth knowledge in several areas. 

The load generated from the passing trains is strongly 
influenced by possible irregularities of the wheels or the rail and 

the underlying ballast supporting 
the entire track structure. The contents of dynamic loads can be 
substantial and must be considered or at least noticed during the 
design process of a sleeper. Static design system for concrete 

n the sleepers for the maximum load 

reached during a train passage, but the effects of rapid shifts in 
the motion of the sleeper can only be treated by a dynamic 
design system. 
 
The railway sleepers, uniformly transfer and distribute loads 
from the rail foot to underlying ballast bed, supporting and 
holding the rails at the proper gauge by keeping anchorage for 
the rail fastening system by stabilizing rail inclination; and 
providing supports for rails; restraining longitudinal, lateral and 
vertical rail movements by embedding itself onto substructures. 
The main responsibility of a railway concrete sleeper is to 
allocate the loads of rolling stocks axle to the supporting 
formation and then, lastly to the foundation. When the train 
speeds are low to moderate, the axle load could be considered 
static or quasistatic. 
 
The performance of railway concrete sleepers is a fundamental 
concern when studying railway track dynamics
can be demonstrated in a variety of
frequency range of interest i. as a rigid body, ii
Bernoulli, iii. as a Rayleigh-Timoshenko beam, or iv
dimensional elastic body (at very high frequencies).
generated by vibrations of sleeper is
stiffness, mass, and distribution of mass of the sleeper itself and 
the impact of the surroundings. 
implanted in ballast, and in most of the cases small voids appear
between the ballast and sleepers. The effect of the ballast on the 
sleeper vibrations is in many cases modelled by a distributed 
spring stiffness acting along the sleeper. The impact of the part 
of the track assembly which is located over
be concise by distinct springs acting at the rail locations. These 
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Eigen frequencies of a railway sleeper with ballast beneath having voids at different positions have been 
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ballast interaction, the results for these situations are discussed. In order to clearly understand and interpret the behavior of 
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body frequencies different MATLAB programs have been 

for different void configurations with different void length have been 

reached during a train passage, but the effects of rapid shifts in 
the motion of the sleeper can only be treated by a dynamic 

The railway sleepers, uniformly transfer and distribute loads 
ot to underlying ballast bed, supporting and 

holding the rails at the proper gauge by keeping anchorage for 
the rail fastening system by stabilizing rail inclination; and 
providing supports for rails; restraining longitudinal, lateral and 

ements by embedding itself onto substructures. 
The main responsibility of a railway concrete sleeper is to 
allocate the loads of rolling stocks axle to the supporting 

to the foundation. When the train 
the axle load could be considered 

The performance of railway concrete sleepers is a fundamental 
when studying railway track dynamics1,2. The sleeper 

can be demonstrated in a variety of methods, based on the 
as a rigid body, ii. as a Euler-

Timoshenko beam, or iv. as a three-
dimensional elastic body (at very high frequencies). Frequency, 
generated by vibrations of sleeper is mostly affected by bending 

and distribution of mass of the sleeper itself and 
the impact of the surroundings. Maximum sleepers are 
implanted in ballast, and in most of the cases small voids appear 
between the ballast and sleepers. The effect of the ballast on the 

is in many cases modelled by a distributed 
spring stiffness acting along the sleeper. The impact of the part 

located over head the sleeper can 
be concise by distinct springs acting at the rail locations. These 
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springs are responsible for the rail pad stiffness and stiffness 
generated due to the rails and the remaining track assembly.  
 
Here, the railway concrete sleeper is supposed to be maintained 
by an elastic basis (a massless Winkler bed) acting along the 
complete span of the sleeper, or, in case of a gap between the 
sleeper and ballast, along part (or parts) of the sleeper. Thus, the 
sleeper is in contact with the ballast only along one or several 
sections of its full length. Two distinct springs are also there at 
the locations of the rails. Vibrations in the sleeper of the in situ 
sleeper are explored in this report work. Eigen frequencies and 
Eigen modes are also designed and deliberated. 
 
If the analysis of dynamic performance of a railway track is to 
be carried out at frequencies much lower than the first bending-
mode, Eigen frequency of a free-free sleeper, then in that case 
sleeper can, be assumed as a rigid body. The effect of the 
bending stiffness of the sleeper on the Eigen frequencies is then 
ignored. Then the sleeper vibrations will be affected only by the 
sleeper mass, its distribution, the foundation stiffness, and the 
rail pad and the stiffness of rail spring. Euler-Bernoulli beam 
theory of a beam on elastic foundation can be used at 
frequencies in the vicinity of the lowest two to three bending-
mode Eigen frequencies of the sleeper. Rayleigh-Timoshenko 
beam theory should be used at the third or upwards Eigen 
frequency. Then deformation due to shear and inertia in rotation 
of a beam lamina are considered. Lastly, at very high 
frequencies where the cross section of the sleeper does not 
remain plane during the vibration, then in that case a three-
dimensional model and the finite element method should be 
applied. (The Timoshenko beam theory assumes that a beam 
cross section remains plane during vibration, but a beam lamina 
will be sheared3. The cross section of the beam will not stay 
planeat very high frequencies and the Timoshenko theory 
cannot be used.) 
 
When the author, T. Dahlberg worked with topic “Modelling of 
the dynamic behavior of in situ concrete railway sleepers”, he 
came across with the work done by Kaewunruen S. and 
Remennikov a M in the topic “Investigation of free vibrations of 
voided concrete sleepers in railway track system”,3,4. Evidently 
he has found that, there are some suspicious results stated in the 
work of Kaewunruen S and Remennikov a M4. Kaewunruen S 
and Remennikov a M deals with the vibrations of a concrete 
sleeper either fully supported by the ballast, partly supported or 
not supported at all (in this last case the sleeper is hanging in the 
rails). Therefore, the re-analysis is carried out of Eigen 
frequencies of a free-free sleeper and a partially balanced in situ 
sleeper, interconnected to the rails through separate springs. 
Modes of vibrations are also discussed. Frequencies in the lower 
range only are observed, so the sleeper may be rigid or it may 
distort according to the Euler-Bernoulli beam theory. Solutions 
are obtained and compared analytically and using finite element 
methods. 
 
To validate the dynamic models of the sleeper, comparison is 

done between calculated values of Eigen frequencies of a free-
free sleeper with measured values. Measured values of Eigen 
frequencies of a free-free sleeper can be obtained as Ågård L, 
has explained in his work5. Measurements were done at the 
Technical Research Institute of Sweden, SP. These 
measurements are sometimes measured to when Eigen 
frequencies of concrete railway sleepers are deliberated4,6,7. 
Comparison is done between the calculated values of Eigen 
frequencies of a free concrete railway sleeper which is used in 
Sweden and the measured values6,8. Calculations were 
completed using both E-B (Euler- Bernoulli) and R-T 
(Rayleigh-Timoshenko) beam theory, and it is seen that the E-B 
theory gives suitable outcomes only for the lowest two or three 
Eigen frequencies of the sleeper. Eigen frequencies of an in-situ 
sleeper, considered as a beam on an elastic basis and elastically 
connected to the rails, were presented. 
 
In the work reported here, solutions will be done analytically 
and with the help of finite element methods for a vibrating beam 
on an elastic foundation, and also elastically connected to the 
rails, will be presented. The beam is divided into two or more 
areas that have consistent properties and the distinctive parts 
could possibly be bolstered by the elastic foundation. (i.e. the 
ballast). The elastic links to the rails are situated at the rail 
locations. 
 
The sleeper considered by Dahlberg and Nielsen is a standard 
gauge sleeper generally used by Swedish railways6. Its natural 
frequencies were established by applying several theories such 
as Euler-Bernoulli, Timoshenko and Rayleigh-Timoshenko. 
Also comparisons between the calculated values and the 
measured ones were performed by Dahlberg and Nielsen6. 
 
Mathematical Modeling 

In order to formulate a mathematical model for the evaluation of 
Eigen frequencies of a railway sleeper following mentioned 
beam theories can be adopted with different boundary 
conditions satisfying various contact types between railway 
sleeper and ballast. Only Euler–Bernoulli (E–B) beam theory 
can be used to calculate the lowest few (two or three) Eigen 
frequencies, because a concrete sleeper is relatively small and 
stubby. If track dynamics is examined at higher frequencies, it 
becomes essential to use the Rayleigh–Timoshenko (R–T) beam 
theory. 
 
The theory of Timoshenko's theory beams institutes an 
improvement of the Euler-Bernoulli theory; in which it 
integrates shear deformation effects9. In this section a sleeper is 
considered to be a Rayleigh-Timoshenko beam, in that the two 
effects, i.e. shear of a beam lamina due to shear force and 
impact of rotator inertia, are included in the Rayleigh-
Timoshenko theory, but these effects are omitted in the Euler-
Bernoulli beam theory. In particular, the first effect which is 
related to the shear force was recommended by the 
Ukrainian/Russian-born scientist Stephen Timoshenko in the 
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beginning of the 20th century and the second effect, the impact 
of rotary inertia, was first studied by Rayleigh.
 
In Rayleigh-Timoshenko beam theory the total deflection of the 
beam is divided into two parts: one depends on the bending of 
the beam and the other part depends on shear deformation of the 
beam. A beam lamina, with shear force and bending moment 
plus the corresponding deformations, is demonstrated in Figure
12. 
 
The relevant deformation to the bending moment M (x, t) is here 
indicated by wM (x, t) and the other part which is related to the 
shear force T (x, t) is denoted wS (x, t) 2.  
 
The following formula shows relation between these terms
 ���, �� � ����, �� 	 	����, ��	        
 
The deflection due to the bending moment can be given by use 
of the rotation angle. In this case the relation between deflection 
and rotation angle is 
 

���, �� � 	 
����,��
� 	        
 

 

Figure-1 

A beam lamina: load q (x, t), deflection w (x, t)

(x, t) and shear angle w´S (x, t), bending moment 

rotation angle ψ (x, t). The elastic foundation influences the 

beam with a force kbedw(x, t) per unit length.
 

The relationships between the bending moment M (x, t) and 
second derivative of the deflection wM (x, t) or the first 
derivative of the angle Ψ (x, t), and, furthermore, t
between equivalent deformation and the shear force T (x, t) can 
be expressed as follows: 
 

���, �� � 	���
�����,��
�� �	���
���,��
� 				      

 
And 
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Here EI is bending stiffness of the beam, E is Young’s modulus, 
I is second moment of the cross-sectional area A, G is shear 
modulus which can be calculated from the modulus of elasticity 
E and the Poisson ratio υ, the factor 
Timoshenko shear factor, that depends on the form of the cross 
section and the Poisson ratio υ. The value of factor 
from the work of author Ågård L5.By considering the forces in 
vertical direction, the equilibrium equation of the given lam
becomes: 
 

� 
����,��

��  	
!��,��
� � "��, ��  �#$%

 
Here m (kg/m) is mass per unit length of the beam and q (x, t) is 
distributed load (N/m). The elastic foundation is assumed to 
give a counteracting force (per unit len
to the deflection w(tot); the proportionality constant is k
 
Also, the rotational equilibrium equation of the beam lamina 
(per unit length) can be written:  
 

&��,��

� 	 ���, ��  	'( 
����,��
�� � 0		

 
where, ρ(kg/m3) is density, giving mass distribution m = 
Therefore, ρI is inertia of mass (per unit length) of the beam. 
The second moment of area I can be expressed I= Ar
(m2) is area of cross-sectional and r is the radius of gyration 
with respect to the y-direction. Thus, 
ρI=mr2. 
 
First, the bending moment M (x, t) and shear force T (x, t) are 
eliminated from the above equations (5.a, b). For this purpose, 
the T(tot) value from (4) should be inserted into (5a). It 
 

� 
����,��

��  ��� �
����,��
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���,��
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  (6a) 
 

*( 
����,��
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���,��
�  	���, �
 
Differential equations (6a, 6b) together with the boundary and 
initial conditions present the solution of the vibration problem 
of a beam described by Rayleigh
when the beam is loaded with a distributed load q(tot).
 

Now, eliminate ψ from (6.a,b). Solve for 

into (6.b). It gives (with w(tot) written in short term as w as well 
as q (x, t) is written q only) 
 

*( 
+�
�+  	��	,-./,01
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��  	���,01
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� ���,��

�  ���, ��3              (4) 

Here EI is bending stiffness of the beam, E is Young’s modulus, 
sectional area A, G is shear 

modulus which can be calculated from the modulus of elasticity 
, the factor κ is a constant, the 

Timoshenko shear factor, that depends on the form of the cross 
υ. The value of factor κ is taken 

.By considering the forces in 
vertical direction, the equilibrium equation of the given lamina 

#$%���, ��	            (5a) 

Here m (kg/m) is mass per unit length of the beam and q (x, t) is 
distributed load (N/m). The elastic foundation is assumed to 
give a counteracting force (per unit length) that is proportional 
to the deflection w(tot); the proportionality constant is kbed. 

Also, the rotational equilibrium equation of the beam lamina 

	               (5b) 

(kg/m3) is density, giving mass distribution m = ρA. 
I is inertia of mass (per unit length) of the beam. 

The second moment of area I can be expressed I= Ar2 where A 
sectional and r is the radius of gyration 
direction. Thus, ρI can also be written 

First, the bending moment M (x, t) and shear force T (x, t) are 
eliminated from the above equations (5.a, b). For this purpose, 
the T(tot) value from (4) should be inserted into (5a). It gives 

� �3 � "��, ��  	�#$%���, ��		 

��3  	'( 
����,��
�� 	� 		0		  (6b) 

Differential equations (6a, 6b) together with the boundary and 
al conditions present the solution of the vibration problem 

of a beam described by Rayleigh-Timoshenko beam theory 
when the beam is loaded with a distributed load q(tot). 

 from (6.a,b). Solve for 
4ψ
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This equation is the differential equation which, together with 
boundary conditions and initial conditions, determines the beam 
deflection w(tot) according to the Rayleigh-Timoshenko beam 
theory. Here w(tot) includes both the effects of bending 
deformation and shear deformation. By eliminating w(tot) from 
(6a, 6b) and obtains a differential equation. 
 

*( 
+�
�+  	��	,-./,01

��

��  	���,01


+�

��
��  	'( 
+�


��
�� 		�2�,01

+�

�+ 	

�	 
��
�� 		2�	,-./,01

��

�� 		�#$%� � 			
6
�		              (8) 

 
It is worth noting that the form of the left hand side in (7) and in 
(8) are equal, only w and ψ are switched. Because of this the 
homogeneous solutions of w(tot) and ψ(tot) are equal. However, 
the particular solutions are difference in these equations. 
 
Equations (7 and 8) have homogenous solutions w (x, t) and ψ 
(x, t) which contains four integration constants each. These 
eight constants are not independent from each other; 
consequently, a total of four independent constants only are 
obtained. These are determined by boundary conditions. 
Boundary conditions are different from those one gets at the 
technical beam theory. Some of the boundary conditions that 
can be stated for a beam of length L (for the coordinate x for 0 
≤x ≤L) are as follows. 
 
Boundary Conditions: Sleeper or Beam with both end 
restricted. For this type of boundary condition, deflection and 
the rotation are zero at both ends, giving 
 w�0, t� � 0	and	Ψ�0, t� � 0		; 		w�L, t� � 0and	Ψ�x, t� � 0   (9) 
 
Note that w’ (0, t) and w’ (L, t) are not zero. This is because 
w(tot) contains the shear angle and this angle needs not be zero 
at the beam end even if the beam is clamped. 
 
Sleeper or Beam with one end restricted and other end simply 
supported. 
 w�0, t� � 0	and	Ψ�0, t� � 0			              (10) 
 
and 

��?, �� � 0		@AB	��?, �� � 	 *( 
��C,��
� 	� 		0		            (11) 

 
These conditions are because of the simply supported end of the 
beam 
 

Both end simply supported: As mentioned at the preceding 
boundary condition, when the beam is simply supported at one 
end, this end has zero deflection and zero moment at that end. It 
gives 
 

��0, �� � 0		@AB	��0, �� � 	 *( 
���,��
� 	� 		0		            (12) 

 

��?, �� � 0		@AB	���, �� � 	 *( D���, ��D� 	� 		0		 

One end restricted and other end free: From the previous 
boundary conditions, it is clear that at the clamped end 
deflection and angle of rotation are zero. Thus at x=0 
 ��0, �� � 0						@AB				��0, �� � 0			             (13) 
 
The other end is in this case assumed to be free. When a beam is 
free at one end the moments and shear forces should be zero on 
that end. Therefore, the following relation holds at x=L 
 

��?, �� � 	 *( 
��C,��
� 	� 		0			              (14) 

 
And 

��?, �� � 		��� ED��?, ��D�  	��?, ��F 
 
By applying the condition in Equation (3.6b) above, the 
following equation can be obtained: 
 

��?, �� � 	 *( 
����,��
�� 	 	'( 
����,��
�� 	� 		0		             (15) 

 
Both ends free: Moments and shear forces are zero in the case 
that the beam ends are free. This give 
 
��0, �� � 	 *( 
��G,��
� 	� 0		@AB	��0, �� � ��� �
��G,��
� 	 	��0, ��3         (16) 
 
Same condition is true for the second end of the beam, at x=L, 
 
��?, �� � 	 *( 
��C,��
� 	� 0		@AB	��?, �� � ��� �
��C,��
� 	 	��?, ��3	        (17) 
 
Which is the same condition as used before. 
 
In a last step of a Free-Free beam, instead of obtaining 
expression (15), the Equations (3) and (4) can be combined to 
give 
 

��?, �� � 	
&��,��
� 	 	'(	 
����,��
�� �	 *(	 
����,��
�� 	 	'( 
����,��
�� 	      (18) 
 
This expression can be convenient in the case that E-B beam 
theory is preferred as a limiting case of the R-T theory, i.e., in 
condition κGA→∞ (18) should be considered in the calculation. 
 
Prescribed quantities of beam length: If a prescribed 
displacement, for instance -, is given for the beam at any beam 
end, then ��∗, �� � 	I		                (19) 
 
Where the * is the coordinate of the beam end, i.e. 0 or L.  
 

A prescribed rotation angle, for instance *, is given at the beam 
end. Then 
 ��∗, �� � 	J		                (20) 
Where the * can be 0 or L. 
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In this case there is a prescribed moment such as M0 (positive) 
which can be applied at the beam end (‘*’ represents 0 or L)
 

��∗, �� � 	 *(	 
��∗,��
� � 	�G			                           
 

A prescribed shear force such as P0 (positive) can be applied at 
a beam end (* is 0 or L). 
 

��∗, �� � ��� �
��∗,��
�  	��∗, ��3 	� 	KG			   

 
In the case studied here the sleeper can be considered as a Free
Free beam and the boundary conditions should be consid
discussed above. 
 

Results and Discussion 

An analytical solution of a vibrating beam on an elastic 
foundation, and elastically connected to the rails, has been 
presented in the work of T. Dahlberg 2. Eigen frequencies are 
calculated by using R–T beam theory for a beam on an elastic 
foundation. The beam is separated into three sections that have 
piecewise constant properties, with the central section of the 
beam being slightly thinner as compared to t
Each one of the three parts may or may not be supported by the 
elastic foundation. The elastic connections to the rails are 
positioned at the two connections of the three sleeper sections. 
In his work T. Dahlberg has examined free vibra
beam on elastic foundation. Therefore, the value of q (x, t) is put 
as 0 into equations (7 and 8) 
 
In the present work a MATLAB program has been generated to 
calculate the Eigen Frequencies of a sleeper as per the 
mathematical analysis done by T. Dahlberg in his work. In his 
work T. Dahlberg only considered a free
condition to calculate the Eigen Frequencies. But in the present 
work more boundary conditions have been studied 
mathematically which has been discussed later.
 
After execution of the MATLAB program we get the following 
Eigen frequencies for Mode-1, Mode-2 and Mode
a railway sleeper with free-free boundary condition. The 
vibrations are in Cps or Hz. 
eigenfreq1 = 132.4221 
eigenfreq2 = 338.5644 
eigenfreq3 = 644.3510 
 

These Eigen frequencies have been compared with the 
frequencies calculated by T. Dahlberg in his work 
experimentally7.  
 

So it is concluded that the above MATLAB program generates 
the satisfactory result in calculating Eigen 
railway sleeper with free-free boundary conditions.
 

Next five more boundary conditions have been considered along 
with voids in the ballast to calculate Eigen Frequencies of the 

___________________________________________________

Association       

In this case there is a prescribed moment such as M0 (positive) 
which can be applied at the beam end (‘*’ represents 0 or L) 

                        (21) 

orce such as P0 (positive) can be applied at 

           (22) 

In the case studied here the sleeper can be considered as a Free-
Free beam and the boundary conditions should be considered as 

An analytical solution of a vibrating beam on an elastic 
foundation, and elastically connected to the rails, has been 

. Eigen frequencies are 
T beam theory for a beam on an elastic 

foundation. The beam is separated into three sections that have 
piecewise constant properties, with the central section of the 
beam being slightly thinner as compared to that of outer parts. 
Each one of the three parts may or may not be supported by the 
elastic foundation. The elastic connections to the rails are 

of the three sleeper sections. 
In his work T. Dahlberg has examined free vibration of an R–T 
beam on elastic foundation. Therefore, the value of q (x, t) is put 

In the present work a MATLAB program has been generated to 
calculate the Eigen Frequencies of a sleeper as per the 

by T. Dahlberg in his work. In his 
work T. Dahlberg only considered a free-free boundary 
condition to calculate the Eigen Frequencies. But in the present 
work more boundary conditions have been studied 
mathematically which has been discussed later. 

After execution of the MATLAB program we get the following 
2 and Mode-3 vibration of 

free boundary condition. The units of 

frequencies have been compared with the Eigen 
frequencies calculated by T. Dahlberg in his work 

So it is concluded that the above MATLAB program generates 
 Frequencies of a 

free boundary conditions. 

Next five more boundary conditions have been considered along 
with voids in the ballast to calculate Eigen Frequencies of the 

railway sleeper. This consideration creates a very nearly 
situation of a railway sleeper. 
 

Table-1

Comparison of frequencies

Mode of 

Vibration 

Eigen frequency 

calculated 

experimentally 
2
 

Mode 1 131 Hz 

Mode 2 333 Hz 

Mode 3 627 Hz 

Figure-

Sleeper/ballast contact patterns, (a) central void, (b) single 

hanging, (c) double hanging, (d) triple hanging, and (e) side

central voids

 
Single Hanging: In this section, vibration frequencies of a 
sleeper under conditions called ‘single hanging’ are evaluated. 
By ‘single hanging’ is here meant that one part at the end of the 
sleeper is hanging. To start with the sleeper is fully supported by 
the ballast along its full length. After that the contact length 
between sleeper and ballast diminishes by steps of five percent 
of the sleeper length until all support from the ballast is 
removed and the sleeper is free (then only hanging in the rails). 
 

Figure-

Rigid-body modelling of semi supported railway sleeper
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railway sleeper. This consideration creates a very nearly real 

1 

Comparison of frequencies 

Eigen 

frequency 

calculated in 

this work. 

% age 

error 

132.4221 Hz 1.05% 

338.5644 Hz 1.67% 

644.3510 Hz 2.76 % 

-2 

Sleeper/ballast contact patterns, (a) central void, (b) single 

hanging, (c) double hanging, (d) triple hanging, and (e) side-

central voids 

In this section, vibration frequencies of a 
sleeper under conditions called ‘single hanging’ are evaluated. 
By ‘single hanging’ is here meant that one part at the end of the 
sleeper is hanging. To start with the sleeper is fully supported by 

ong its full length. After that the contact length 
between sleeper and ballast diminishes by steps of five percent 
of the sleeper length until all support from the ballast is 
removed and the sleeper is free (then only hanging in the rails).  

 
-3 

body modelling of semi supported railway sleeper 
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The center of mass of the sleeper translates a distance p (m) 
upwards and rotates an angle q (rad) counter clockwise. The 
equations of motion become (coordinate x = 0 at sleeper mass 
center) 

�LM 		 	N ���L 	 �"�B� 	 2�PL � 0
Q
�Q
�RS

              (23) 

T"M 	 	���L 	 �"��B�	 	 		2�PL	 � 		0 
 
Here ‘b’ is the distance (in the x direction) between the center of 
the sleeper and the rail position (thus 2b between the rails). In 
this study the center to center distance between the rails is 
assumed to be 1500mm and the length of the sleeper is 2500mm 
so that b is 750mm. Also ‘J’ is mass moment of inertia (in 
rotation) 
 

T	 � 	 T6 	� 	&C�UV 				               (24) 
 
Other notations are the same as before. After integration and 
some simplification one obtains 
 

�LM 		���?  @�L 		�� 12 @�?  @�" 	 2�PL	 � 0 

T"M 	 	�� U
V @�?  @�L 		�� U

UV X?Y  3?V@ 	 6?@V  4@Y]" 	2�P^V" � 0                 (25) 
 
For further simplification the following definitions are 
introduced 
?U � ?  @						?V � U

V@�?  @�?Y � U
UV X?Y  3?V@ 	 6?@V  4@Y]	          (26) 

 
The following equation gives the final relation for the Eigen 
Frequencies: 
 

_U,VV � ` a1 ∓ c1  	 �,d� �CeCf�	C���RV,g,d�CfR	Ce#��RS,g�#��h&i�&,dCfR	i,dCeRV&,g#�RVi,g	�� j					    (27) 

 
Study the cases a= 0, a= 0.1L, a= 0.2L and so on. 
 
In the case that a=0 one obtains 

?U � ?															?V � 0								?Y � U
UV X?Y]			             (28) 

 
Following are the 1st and 2nd mode of rigid body frequencies 
for different position of voids generated from a MATLAB 
program. 
 
Figure-4 depicts the behavior of the modes during various 
amount of the voided part for the ‘Single hanging’ condition. It 
is seen that the rigid-body frequencies decreased by increasing 
the unsupported part. The final values of these frequencies are 
around 70 percent of the initial values. Therefore, these changes 
are important. The situations for the first and last points are 
explained above (the modes are uncoupled). 
 
Central Void: Now changing the expression of L1, L2 and L3 
as mentioned in Equation 26 to the following we get Eigen 

Frequencies by substituting new values of L1, L2 and L3 in 
Equation 27. 
 

Table-2 

Rigid Body Frequencies for Single Hanging configuration 

a/L 

Mode 1 rigid body 

frequency 

(Hz) 

Mode 2 rigid body 

frequency 

(Hz) 

0 81.9208e+000 83.5794e+000 

0.05 79.2099e+000 82.5464e+000 

0.1 75.9169e+000 82.4917e+000 

0.15 72.9573e+000 82.4886e+000 

0.2 70.3656e+000 82.4837e+000 

0.25 68.1334e+000 82.4591e+000 

0.3 66.2409e+000 82.4000e+000 

0.35 64.6622e+000 82.2907e+000 

0.4 63.3669e+000 82.1124e+000 

0.45 62.3221e+000 81.8431e+000 

0.5 61.4942e+000 81.4566e+000 

0.55 60.8496e+000 80.9222e+000 

0.6 60.3566e+000 80.2040e+000 

0.65 59.9862e+000 79.2598e+000 

0.7 59.7121e+000 78.0401e+000 

0.75 59.5115e+000 76.4863e+000 

0.8 59.3642e+000 74.5281e+000 

0.85 59.2522e+000 72.0795e+000 

0.9 59.1563e+000 69.0339e+000 

0.95 59.0391e+000 65.2662e+000 

1 58.5764e+000 60.8744e+000 

 
New expressions for L1, L2 and L3 are LU � L  β�l  a� 
 LV � 0               (29) 
 

LY � 1
12 × �?Y  @Y� 
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Figure-4 

Normalized Eigen Frequencies of single hanging sleeper 
 

Table-3 

Rigid Body Frequencies for Central Void configuration 

a/L 

Mode 1 rigid body 

frequency 

(Hz) 

Mode 2 rigid body 

frequency 

(Hz) 

0 81.9208e+000 83.5794e+000 

0.05 80.9137e+000 83.5769e+000 

0.1 79.8939e+000 83.5597e+000 

0.15 78.8609e+000 83.5131e+000 

0.2 77.8142e+000 83.4222e+000 

0.25 76.7532e+000 83.2722e+000 

0.3 75.6774e+000 83.0479e+000 

0.35 74.5860e+000 82.7338e+000 

0.4 73.4785e+000 82.3140e+000 

0.45 72.3540e+000 81.7719e+000 

0.5 71.2117e+000 81.0897e+000 

0.55 70.0508e+000 80.2486e+000 

0.6 68.8703e+000 79.2280e+000 

0.65 67.6693e+000 78.0051e+000 

0.7 66.4465e+000 76.5541e+000 

0.75 65.2008e+000 74.8454e+000 

0.8 63.9309e+000 72.8440e+000 

0.85 62.6352e+000 70.5074e+000 

0.9 61.3121e+000 67.7829e+000 

0.95 59.9599e+000 64.6024e+000 

1 58.5764e+000 60.8744e+000 

 
Figure-5 

Normalized Eigen Frequencies of sleeper having central 

void 

 

Double Hanging: Now expression of L1, L2 and L3 as 
mentioned in Equation 26 will be changed as per bellow for the 
‘Double Hanging’ condition of a railway sleeper and a 
MATLAB program has been written below to evaluate the 
frequencies of the sleeper under this condition and also a graph 
has been generated to depict the change in frequencies with void 
positions. 
 
New expressions for L1, L2 and L3 for this condition are LU � L  β�l  a� 
LV � mβ

V × LV  LV × β  aV 	 L × an
2  

LY �
op?2  q × ?r

Y  p ?2 	 @r
Ys

3  

 

 
Figure-6 

Normalized Eigen Frequencies of a double-hanging sleeper  
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Table-4 

Rigid Body Frequencies for Double Hanging configuration 

a/L 

Mode 1 rigid body 

frequency 

(Hz) 

Mode 2 rigid body 

frequency 

(Hz) 

0 61.4942e+000 81.4566e+000 

0.05 61.2681e+000 77.8108e+000 

0.1 61.0731e+000 74.5555e+000 

0.15 60.9147e+000 71.6709e+000 

0.2 60.7970e+000 69.1287e+000 

0.25 60.7220e+000 66.8930e+000 

0.3 60.6870e+000 64.9222e+000 

0.35 60.6809e+000 63.1741e+000 

0.4 60.6523e+000 61.6383e+000 

0.45 59.9451e+000 60.9024e+000 

0.5 58.5764e+000 60.8744e+000 

0.55 57.1554e+000 60.8647e+000 

0.6 55.6578e+000 60.8112e+000 

0.65 54.0117e+000 60.6908e+000 

0.7 52.1231e+000 60.4909e+000 

0.75 49.8688e+000 60.2084e+000 

0.8 47.0836e+000 59.8486e+000 

0.85 43.5340e+000 59.4243e+000 

0.9 38.8590e+000 58.9517e+000 

0.95 32.3942e+000 58.4473e+000 

1 22.3990e+000 57.9254e+000 

 
Side Central: For this condition expression of L1, L2 and L3 
will be changed as per bellow in Equation 24. For the ‘Double 
Hanging’ condition of a railway sleeper a MATLAB program 
has been written below to evaluate the frequencies of the sleeper 
and also a graph has been generated to depict the change in 
frequencies with void positions. 
 
New expressions for L1, L2 and L3 for this condition are LU � L  β�l  a� 

LV �	@2 × �?  @� 
 

LY �
tp q × ?2r

Y  p ?2 	 @r
Y  pq × ?2r

Yu
3  

 
Table-5 

Rigid Body Frequencies for Side Central configuration 

a/L 
Mode 1 rigid body 

frequency(Hz) 

Mode 2 rigid body 

frequency(Hz) 

0 71.2117e+000 81.0897e+000 

0.05 69.6439e+000 78.6636e+000 

0.1 67.3256e+000 77.3669e+000 

0.15 64.6596e+000 76.7879e+000 

0.2 61.9985e+000 76.5583e+000 

0.25 59.5115e+000 76.4863e+000 

0.3 57.2641e+000 76.4759e+000 

0.35 55.2749e+000 76.4706e+000 

0.4 53.5395e+000 76.4293e+000 

0.45 52.0413e+000 76.3161e+000 

0.5 50.7573e+000 76.0955e+000 

0.55 49.6604e+000 75.7300e+000 

0.6 48.7223e+000 75.1788e+000 

0.65 47.9138e+000 74.3965e+000 

0.7 47.2053e+000 73.3318e+000 

0.75 46.5665e+000 71.9266e+000 

0.8 45.9631e+000 70.1145e+000 

0.85 45.3517e+000 67.8205e+000 

0.9 44.6638e+000 64.9646e+000 

0.95 43.7650e+000 61.4820e+000 

1 42.3236e+000 57.4083e+000 

 
Figure-7 shows the 1st mode and 2nd mode rigid-body 
frequencies of a railway sleeper with for different positions of 
void and for different length of void. 
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Figure-7 

Normalized Eigen Frequencies of a sleeper with side central 

void 

 

Conclusion 

In MATLAB and by mathematical analysis, detailed study of 
Eigen frequencies, Eigen modes and vibration, of an in-situ 
concrete railway sleeper have been carried out. The sleeper can 
be modelled in either of the ways i.e. as an elastic body or as a 
rigid body. Two discrete springs are used to link sleeper with 
the rail and it is supported by a constantly distributed spring 
modelling the ballast. In between sleeper and the ballast, 
pockets in the form of voids may appear Five patterns of 
irregularities have been taken into account and estimated. Also a 
comparison between in situ sleeper with rail stiffness and in situ 
sleeper without rail stiffness has been made. 
 
In the symmetric cases the rigid-body modes are pure 
translation or rotation. Once the model is not symmetric the first 
and second rigid-body modes are combination of rotation and 
translation. When the mode is pure translation the center of 
oscillation is at infinity and for pure rotation the center of 
oscillation coincides with the mass center of the beam. 
 
The following conclusions from this report can be drawn: The 
foundation stiffness effects the two rigid-body Eigen 
frequencies the maximum (decreasing up to 70 percent of its 
initial value when the foundation stiffness is removed). The 
higher Eigen frequencies are more or less unaffected by the 
foundation stiffness. The rate of Eigen frequency reducing for 
bending modes is directly related to the place of the pocketing 
(the voiding). If the voiding part is placed under the high 
amplitude section of the bending mode, it decreases the Eigen 
frequency a lot, and vice versa. The fifth bending mode stays 
the same during the voiding of ballast. The impact of rail pad 
(and rail) stiffness on the sleeper rigid-body Eigen frequencies 
is considerable, but for the bending-mode Eigen Frequencies 
this influence is negligible. 
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