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Abstract

In this paper, we propose a low complexity compression method to hyperspectral images using distributed source coding
(DSC). DCT was applied to the hyperspectral images. Set-partitioning-based approach was utilized to reorganize DCT
coefficients into wavelet like tree structure. Cellular automata (CA) for bits and bytes error correcting codes (ECC) to high
through put rate. The CA-based scheme can easily be extended for correcting more than two byte errors. Its performance is
comparable to that of the DSC scheme based on informed quantization at low bit rate.

Keywords: Index Terms—discrete cosine transform (DCT), distributed source coding (DSC), hyperspectral images. Cellular

automata (CA).

Introduction

Hyperspectral imaging, like other spectral imaging, collects and
processes information from across the electromagnetic
spectrum. Hyperspectral images are spectrally over determined;
they provide ample spectral information to identify and
distinguish between spectrally similar (but unique) materials.
Hyperspectral remote sensing is used in a wide array of
applications. It is used in agriculture, mineralogy, surveillance,
physics, chemical Imaging. Because an entire spectrum is
acquired at each point, the operator needs no prior knowledge of
the sample.

Hyper-spectral images consist of huge amount of data. This
paper presents compression technique developed specifically for
these images. This technique explores unique characteristics of
the hyper-spectral images and incorporates them into the
compression. The need for compression arises from the fact that
these images consist of a huge amount of data and the satellites
need to transmit them to the ground. The Terra satellite alone
generates approximately 918 giga bytes (GB) of data each day.

In general, there are two kinds of image compression: lossless
and lossy compression. Lossless compression is when the
original image and the decompressed image are the same. Lossy
compression is when there is difference between the original
image and the decompressed image. The efficiency of the
compression is usually measured by the compression ratio. Two
ways to measure the difference between the original image and
decompressed image, one is mean squared error (MSE), and the
other is peak signal to noise ratio (PSNR).

Compression of multispectral and hyperspectral images has
recently received a lot of attention'. Hyperspectral image
compression based on JPEG2000 with principal component
analysis (PCA) provides spectral decorrelation as well as
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spectral  dimensionality reduction. The rate distortion
performance is improved by this method. Hyperspectral image
compression based on 3D produce high compression ratio than
JPEG2000. The embedded coding of Set Partitioned Embedded
block (SPECK) algorithm is modified and extended to three
dimensions. The resultant algorithm, three-Dimensional Set
Partitioned Embedded blocks (3D-SPECK)®. Hyper spectral
image compression based on JPEG2000 and 3-D transform,
have excessive complexity. Hyper spectral image compression
requires low complexity encoder because it is usually completed
on board where the energy and memory are limited. Another
desirable feature for multispectral images compression is
progressive reconstruction. Such feature is very useful when
users are browsing the image data for specific applications®. We
can employ distributed source coding (DSC) principle to
compress them efficiently at a lower cost. Compared with
conventional source coding schemes, the DSC method can shift
the complexity from encoder to decoder.

We put forward a low-complexity DSC scheme for onboard
compression of hyper spectral images’. In particular, our
method is conducted in discrete cosine transform (DCT)
domain, rather than WT domain. The auxiliary reconstruction is
applied to improve the reconstruction quality at the decoder.
According to the characteristics of DSC, we make further use of
the side information to reconstruct DCT coefficients, reducing
the quantization errors. Furthermore, we use the Gray code for
the refinement bits of DCT coefficients which can significantly
and efficiently improve the correlation between the source and
the side information.

In this paper CA-based byte error correcting code has been
proposed for high through put. Design scheme for CA-based
byte error correcting code has been reported in a VLSI
architecture for cellular automata based Reed-Solomon decoder
This requires less hardware compared to the existing techniques
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used for RS code’. A design and implementation of CA-based
RS (32, 28) encoder and decoder has been presented in Design
and implementation of Rs (32, 28) encoder and decoder using
cellular automata. The design and implementation of an
improved double byte error correcting code using CA has been
proposed. It also reports the extension of the scheme to
detect/correct more than two byte errors. CA-based proposed
design requires much less hardware and power. Our proposed
scheme is suitable for codes having smaller number of error
correction capability and smaller data word length.

Methodology

From the survey of previous works, Hyperspectral image
compression of many algorithms, including those based on
JPEG2000 and 3-D transform, have excessive complexity. We
proposed; employ distributed source coding (DSC) principle to
compress them efficiently at a lower cost. Compared with
conventional source coding schemes, the DSC method can shift
the complexity from encoder to decoder.

Distributed Source Coding (DSC): Source coding is a way to
remove the uncontrolled redundancy occurring in the original
information source so as to reduce the bandwidth of signal for it
to be accommodated in the channel. For example, we hardly see
the difference of consecutive frames in a slowly varying video
sequence. Therefore, we can predict most pixels in the next frame
by observing the first frame, such that the most pixels in next
frame are redundant which can be removed hence compress the
source. Source coding can be either lossless or lossy. Lossless
source coding is the compression of a signal where the
decompression gives back to the original signal. Slepian-Wolf
coding is a case of lossless coding®. Lossy source coding achieves
greater compression by throwing away some information of the
signal that doesn't matter. Wyner-Ziv coding is a case of lossy
coding. The problem of source coding becomes significantly
more interesting and challenging in network. Several new
scenarios arise: i. Different parts of the source information may
be available to separate encoding terminals that cannot cooperate.
ii. Decoders may have access to additional side information about
the source information or they may only obtain a part of the
description provided by the encoders.

Source coding with side information known as distributed
source coding. Distributed source coding of correlated sources
refers to the compression of the outputs of two or more
physically separated correlated sources which do not
communicate with each other (hence distributed coding). These
sources send their compressed outputs to a central point (e.g.,
the base station) for joint decoding Distributed source coding is
a new coding paradigm based on two information theoretic
results: Slepian-Wolf and Wyner-Ziv theorems.

According to the Slepian-Wolf Theorem, the achievable lossless

compression rate of two independent sources X1 and X2 are same
even they encoded separately but decoding jointly. The theorem
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was extended to the lossy case by Wyner-Ziv, while the input
source X1 is lossy encoded, the second source X 2 called Side
Info is available lossless at the decoder. The rate distortion
function of X1 is same even the Side Information is known only
at the decoder. However in the case of both X 1 and X 2 are lossy
encoded, the rate distortion limits have not been solved yet.

X1 ENCODER 1 >
X JOINT X
DECODER
X2 ENCODER 2 >
Figure-1
Distributed source coding with separated encoding and joint
decoding

The image should be divided into two sources X1, X2 which are
encoded separately. The low-pass component of the discrete
wavelet composition of the image is used as X2. For XI, a
modulo based binning that has error correcting capabilities on
edge boundaries is used. Instead of classical source encoding of
X1, the pixel values are grouped into bins based on a modulo
operation, and decoder finds the value of the syndrome that is
closest to the X2.

Consider the figure-1. The input of the true data X, which are
X1 and X2 respectively. After the separately encoding of the
two noisy observations, the central receiver decodes the two
sources jointly. The inputs are encoded with R1 and R2 such
that the total rate should satisfy the conditions R1 _ H(X1jX2),
R2 _ H(X2jX1) and R1 +R2 _ H(X1;X2), where H(XijXj) is the
conditional entropy of Xi given Xj and H(X1;X2) is the joint
entropy of X1 and X2.

DSC widely used in hyper spectral imaging, wireless hearing
aids, biometrics, image encryption, cognitive radio spectrum
sensing.

Block Diagram: Figure 2. Shows the proposed architecture. We
divide the hyperspectral images into several groups. Each group
has a key band which is compressed directly by the modified
EZDCT. The key band has relative high quality. All the other
bands are compressed based on DSC.

The reference band Xi-1 is transmitted by means of the modified
EZDCT. In the EZDCT, we employ zero tree quantizer in
SPIHT algorithm and SPIHT coder rather than EZW coder.
Employ zero tree quantizer in SPIHT algorithm and SPIHT
coder rather than EZW coder. As a result, its reconstructed
image Yi-1 is generated and offered at the decoder side.
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DSC-based coding architecture for hyperspectral images in DCT domain

Here we use CA (Cellular Automata), through this we can get
the improved through put, latency (4846, 266) and area. By this
we can reduce the number of iterations. The design and
implementation of an improved double byte error correcting
code using CA has been proposed. It also reports the extension
of the scheme to detect/correct more than two byte errors.

CA Based Error Correcting Code: Cellular automata (CA)
established novelty for bits and bytes error correcting codes
(ECC). The code is very much suited from VLSI design
viewpoint and requires significantly less hardware and power
for decoding compared to the existing techniques employed for
Reed-Solomon (RS) Codes. Also it has been shown that the
CA-based scheme can easily be extended for correcting more
than two byte errors.

Complexity of RS encoder and decoder increases with the error
correcting capability of the codes. Hence many researchers have
put their effort to minimize the complexity of RS codec. A high
speed systolic architecture for decoding RS code using
Berlekamp—-Massey (BM) algorithm has been published. RS
decoding scheme proposed in “High-speed architectures for
Reed-Solomon decoder,” and high-speed pipelined degree
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computation less modified Euclidean algorithm architecture for
Reed- Solomon decoders,” are more general in the sense that
any arbitrary number of errors can be corrected. But both the
schemes require complex modules. VLSI system designer
always prefers to have simple, regular, modular, and cascadable
structure with local interconnection for reliable and high speed
operation of the circuit. It has been found that these parameters
are supported by local neighborhood CA. CA-based byte error
correcting code has been proposed. The proposed design of CA
requires less hardware compared to the existing techniques used
for RS code. An improved double byte error correcting code
using CA has been proposed.

C.A Encoder: In encoder, check byte Cb is generated by
running the CA for N cycles while sequentially feeding the N
information bytes using the expression.

Cp = T°Dyn_y @ T*P[Dy_,] @ ... ® T*M[Dy]
where O<=b<=3 and T is the characteristic matrix of a 8-cell
maximum length CA. The block diagram of CA-based (255,

251) encoder is shown in Fig.3.The four check bytes
C0,C1,C2,C3 are generated by running CA-I, CA-T2 , CA-
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TA3CA-Tfor 251 clock cycles, while sequentially feeding 251
information bytes (starting from DO up to D250). In the encoder
block diagram CA-I is a 8-bit uniform CA with rule. 204 and
CA-T”b is a 8-bit CA with characteristic matrix T"b, where
(0<=b<=3).

Data 8 bits L ’Bo
Input CA-1 | = .
F - D
"JCA -T L[:\ N-1
F Y Ahl r Co
o CA-T? || > .
r
Clock Jea10] G
AT
CA-Load
Reset R
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Figure-3
C-A based encoder

C.A Decoder: The decoder consists of four modules: syndrome
generator, error location identification block, error magnitude
computation block, and error correction block. The syndrome
corresponding to the b ™ check byte Sb is

S, =C,DC, 0<b<3

Where Cb is the bth received check byte and C’b is the bth
check byte recomputed from the received information bytes.
The architecture of syndrome generator is similar to that of the
encoder. In syndrome generator, CA-I, CA-T , CA-T*2, CA-
T"3are allowed to run for 251 clock cycles to compute check
bytes C’0,C’1,C’2,C’3. These are XOR-ed with the received
check bytes CO, C1, C2, and C3 respectively, to generate the
syndrome bytes SO, S1, S2, S3. Generated four syndromes are
stored in four registers, which will be used to locate and correct
the errors. Suppose Ek and Et are the errors in kth and Ith
information bytes, then the corresponding syndrome equations
are

Sp = T"O[E] @ T"V[E)]

Where 0<=b<=3,i+k=N, and j+I=N. From the four syndrome
equations, error locations k=N-I, and 1=N-j are determined using
the following equations:

T'[S2] @ S3=T*(T’[S,] ® S1)

T[5,] @ S5 = (T*[S0] @ S2)

Results and Discussion

We have input hyperspectral image. The input image is divided
into two parts of process in encoder side. First DCT
compression is applied to the image. DCT separates images into
parts of different frequencies where less important frequencies
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are discarded through quantization and important frequencies
are used to retrieve the image during decompression. Then
SPIHT process is applied to the image.

The Cellular Automata (CA) is applied to image for error
correcting process. CA based scheme can easily be extended for
correcting more than two bytes error. The input image is
displayed in below with file size in terms of Kbytes.

Original Image

File Size: 1054734
Figure-4
Input image

After CA encoder the image is get into CA decoder. Then

SPIHT decoder and Inv DCT process applied to the image. The
output compressed image is displayed in below with file size.

Comprassion image

File Size: 73483

Figure-5
QOutput image

The following table shows the MSE (Minimum Square Error)
and PSNR (Peak Signal to Noise Ratio) status.

Table-1
MSE and PSNR
MSE 5.1733 4.5645 1.3011
PSNR 40.9931 41.5368 46.9878
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Conclusion

We have proposed a DCT-based CA - DSC scheme for
hyperspectral images with lower complexity. Due to the
auxiliary reconstruction and the modification of transform, our
proposal is very competitive, compared with other CA — DSC
based coding methods for hyperspectral images. Also, our
scheme has the characteristics of ROI coding and progressive
image coding. Therefore, the low-complexity CA - DSC based
scheme with auxiliary reconstruction is feasible for
hyperspectral image compression.. In future the novel algorithm
has to reduce the power consumption by as much as without
performance loss, while the degradation in clock speed is
negligible, and also this concept can be with implementation on
our field-programmable gate-array (FPGA)-based prototyping
platform.
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