
 Research Journal of Engineering Sciences ___ ISSN 2278 – 9472

 Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

 International Science Congress Association 1

VHDL Environment for Floating point Arithmetic Logic Unit - ALU Design

and Simulation

Shrivastava Purnima,

Tiwari Mukesh, Singh Jaikaran

and Rathore Sanjay

2Department of Electronics and communication, Shri Satya Sai Institute of technology and Science, Sehore, MP, INDIA

Available online at: www.isca.in
Received 31st May 2012, revised 23rd June 2012, accepted 7th July 2012

Abstract

VHDL environment for floating point arithmetic and logic unit design using pipelining is introduced; the novelty in the ALU

design. Pipeling provides a high performance ALU. Pipelining is used to execute multiple instructions simultaneously. In

top-down design approach, four arithmetic modules, addition, subtraction, multiplication and division are combined to form

a floating point ALU unit. Each module is divided into sub- modules. Two selection bits are combined to select a in the ALU

design are realized using VHDL, design functionalities are validated through VHDL simulation. Synthesis and simulation

result find out in the Xilinx12.1i platform.

Keywords: ALU-arithmetic logic unit, top-down design, validation, floating point, test-vector.

Introduction

Floating point describes a system for representing numbers that

would be too large or too small to be represented as integers.

Floating point representation is able to retain its resolution and

accuracy compared to fixed point representation. Numbers are

in general represented approximately to a fixed number of

significant digits and scaled using an exponent. The base for the

scaling is normally 2, 10 or 16. The typical number that can be

represented exactly is of the form: Significant digits ×

Base
exponent

 , S ×B
e

IEEE 754 standard
1
 for floating point representation in 1985.

Based on this standard, floating point representation for digital

system should be platform –independent and data are

interchanged freely among different digital systems. Arithmetic

logic unit (ALU) is a digital circuit that performs arithmetic and

logical operations. The ALU is a fundamental building block of

the central processing unit (CPU) of a computer. Inputs to the

ALU are the data to be operated on (called operands) and a code

from the control unit indicating which operation to perform. Its

output is the result of the computation.

In many designs the ALU also takes or generates as inputs or

outputs a set of condition codes from or to a status register.

These codes are used to indicate cases such as carry-in or carry-

out, overflow, divide-by-zero, etc. Floating point unit also

performs arithmetic operations between two values, but they do

so for numbers in floating point representation. And the ALU

with floating point operations is called a FPU.

Top-down approach (is also known as step-wise design) is

essentially the breaking down of a system to gain insight into its

compositional sub-systems. In a top-down approach an

overview of the system is formulated, specifying but not

detailing any first-level subsystems. Each subsystem is then

refined in yet greater detail, sometimes in many additional

subsystem levels, until the entire specification is reduced to base

elements. A top-down model is often specified with the

assistance of "black boxes", these make it easier to manipulate.

However, black boxes may fail to elucidate elementary

mechanisms or be detailed enough to realistically validate the

model
2
.

In order to stimulate a device off board, a series of logical

vectors must be applied to the device inputs. These vectors are

called test vectors and are mostly used to stimulate the design

inputs and check the outputs against the expected values.

A pipeline is a technique used in the design of computers and

other digital electronic devices to increase their instruction

throughput (the number of instructions that can be executed in a

unit of time). The fundamental idea is to split the processing of

a computer instruction into a series of independent steps, with

storage at the end of each step. This allows the computer's

control circuitry to issue instructions at the processing rate of

the slowest step, which is much faster than the time needed to

perform all steps at once. The term pipeline refers to the fact

that each step is carrying data at once (like water), and each step

is connected to the next (like the links of a pipe). The origin of

pipelining is thought to be the IBM stretch project.

Implementing pipeline requires various phases of floating point

operations be separated and be pipelined into sequential stages.

We propose VHDL environment for floating point ALU design

and simulation. To ease the description, verification, simulation

and hardware realization. VHDL is widely adopted standard and

has numerous capabilities that are suited for designs of this sort

.the use of VHDL for modeling is especially appealing since it

provides formal description of the system and allows the use of

specific description styles to cover the different abstraction

Research Journal of Engineering Sciences__ ISSN 2278 – 9472

Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

International Science Congress Association 2

levels (architectural, register, transfer and logic level) employed

in design
2
.

Material and Methods

The main objective of this paper is to describes the

implementation of pipelining in design the floating -Point ALU

using VHDL. The sub objectives are to design a 16-bit floating

point ALU operating on the IEEE 754 standard. Floating point

representations, supporting the four basic arithmetic operations;

addition, subtraction, multiplication and division. Second sub

objective is to model the behavior of the ALU design using

VHDL.

Specifications for a 16-bit floating-point ALU design- i. Input A

and B and output result are 16-bit binary floating point. ii.

Operands A and B operate as follows: A (operation) B=results,

operation can be addition (+), subtraction (-), multiplication (*),

division (/). iii. ‘Selection’ a 2-bit input signal that selects ALU

operation and operate as shown in table-1. iv. Status a 4-bit

output signal work as a flag an microprocessor. v. Clock pulse is

only provided to the module which is selected using demux. vi.

Concurrent processes are used to allow processes to run in

parallel.

Table-1

Select ALU operation

Selection Operation

00 Addition

01 Summation

10 Multiplication

11 Division

Table-2

Select Status

Output Status

0000 Normal operation

0001 Overflow

0010 Underflow

0100 Result zero

1000 Divide by zero

Figure-1

Top level view of the ALU design

ALU is separated into smaller modules: addition, subtraction,

multiplication and division, demux and mux. Each arithmetic

module is further divided into smaller modules the top level

view of figure 1 shows the top level view of the ALU. It consist

of four functional arithmetic modules, three demultiplexes and

two multiplexers. The demuxs and muxes are used to route

input operands and the clock signal to the correct functional

modules. They also route outputs and status signals based on the

selector pins
3
.

After a module completes its task, outputs and status signals are

sent to the muxes where they multiplexes with other outputs

from corresponding modules to produce output result selector

pins are routed to these muxes such that only the output from

currently operating functional module is sent to the output port.

Clock is specifically routed rather then tied permanently to each

module since only the selected functional modules need clock

signals. This provides power savings since the clock is supplied

to the required modules only and avoid invalid results at the

output since the clock is used as a trigger in every process
4
.

Pipelining floating point addition module: Addition module

has two 16 bit inputs and one16 bit output selection input is

used to enable or disable the module this module is further

divided into 4 sub modules zero check, align, add_ sub and

normalize module.

Figure-3

Pipeline floating point addition

Zero check module: This module detect zero operands early in

the operation and based on the detection result it has two status

signals. This eliminates the need of sub sequent processes to

check for the presence of zero operands table 1 summarize the

algorithm.

Table-3

Setting Zero Check Bit

I/P b Zero_a1 Zero_b1

0 1 1

NZ 1 0

0 0 1

NZ 0

Align module: In this module operations are perform based on

status signal from previous stage zero operands are checked in

the align module as well this module introduces implied into the

operands shown in table 4.

Research Journal of Engineering Sciences__ ISSN 2278 – 9472

Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

International Science Congress Association 3

Table-4

Setting of Implied Bit

Zero_a1 xor

zero_b1

a_sign Implied bit

for a

Implied

bit for

b

0 X(do’t care) 0 0

1 1 0 1

1 0 1 0

Add_ sub module: This module performs actual addition and

subtraction of operands. Firstly operands are checked via the

status signals are carried out results are automatically obtained

if either of the operand are zero shown in table 3 normalization

is needed if no calculation are done here the operation is done

based on the science and the relative magnitude of mantissa i.e.

summaries in table 5 status signal is set to one is indicate the

need of normalization by the next stage
5
.

Table-5

check for add_sub module

Zero_a2

&zero_b2

Zero_a1 xor

zero_b1

Zero_a2 Result

0 0 X Perform add_sub

0 1 1 b stage2

0 1 0 a stage2

1 X X 0

Table-6

Add_Sub Operation

Operation a_sign xor

b_sign

a>b Result Sign

a+b 0 X a+b +ve

(-a)+(-b) 0 X a+b -ve

a+(-b) 1 Yes a-b +ve

a+(-b) 1 No b-a -ve

(-a)+b 1 Yes a-b -ve

(-a)+b 1 No b-a +ve

Normalize module: Input is normalize and packed into the

IEEE 754 floating point representation if the normalize status

signal is set normalization is perform otherwise MSB is

dropped.

Pipeline floating point subtraction module: Subtraction

module has two 16-bits inputs and one 16-bit output. Selection

input is used to enable/ disable the entity depend on the

operation. This module is divided further into four sub-modules:

zero-check, align, add sub and normalize module. The

subtraction algorithm differs only in the add_sub module where

the subtraction operator change the sign of the result. The

reaming three modules are similar to those in the addition

module table 7 and table 8 summarizes the operation.

Table-7

Checks for Add_Sub Module
Zero_a2

&zero_b2

Zero_a2

xor

zero_b2

Zero_a2 b_

sign

Result sign

0 0 X X Perform

add_sub

NA

0 1 1 0 b_stage2 b_sign=1

0 1 1 1 b_stage2 b_sign=0

0 1 0 X a_stage2 a_sign

1 X X X 0 NA

Table-8

Add_Sub Operation and Sign Fixing

Operation a_sign xor

b_sign

a>b Result sign

(-a)-b 1 X a+b -ve

a-(-b) 1 X a+b +ve

(-a)-(-b) 0 Yes a-b -ve

(-a)-(-b) 0 No b-a +ve

a-b 1 Yes a-b +ve

a-b 1 No b-a -ve

Pipelined floating point multiplication module:

Multiplication entity has three 16-bit inputs and two 16-bit

outputs. Selection input is used to enable/disable the entity.

Multiplication module is divided into check-zero, check-sign,

add-exponent and normalize–and-concatenate all modules,

which are executed concurrently. Status signal indicates special

result cases such as overflow, underflow and result zero, in this

project pipelined floating point multiplication is divided in to

three stages (figure-4). Stage 1 checks whether the operand is

zero and report the result accordingly
6
. Stage 2 determines the

product sign, add exponents and multiply.

Figure-4

Pipeline structure of multiplication module

Check-zero module: Initially two operands are checked to

determine whether they contain a zero. If one of the operand is

zero, the zero_flag is set to 1. The output results zero. If neither

of them is zero then the inputs with IEEE 754 format is

unpacked and assigned to the check sign, add exponent and

multiply mantissa modules, the mantissa is packed with hidden

bit 1.

Research Journal of Engineering Sciences__ ISSN 2278 – 9472

Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

International Science Congress Association 4

Add exponent module: The module is activated if the zero flag

is set. Else zero is passed to the next stage and exp_flag is set to

0, two extra bit are added the exponent indicating overflow and

underflow.

Multiply mantissa module: In this stage zero_flag is checked

first. If the zero_flag is set to 0, then no calculation and

normalization is performed. The mant_flag is set to 0 if both the

operands are nonzero after the multiplication is done mant_flag

is set to 1 to indicate that this operation is executed.

Check sign module: This module determines the product sign

of two operands .the product is positive, when the two operands

have the same sign; otherwise it is negative. The sign bit are

compared using XOR circuit. The sign_flag is set to 1

Normalize and concatenate module: This module checks the

overflow and underflow occurs if the 9
th

 bit is 12. Overeflow

occurs if the 8
th

 bit is 1. If exp_flag, sign_flag and mant_flag are

set, the normalization is carried out. Otherwise, 16-zero bits are

assigned to the result. During the normalization operation, the

mantissa MSB is 1, hence no, normalization is needed. The

hidden bit is dropped and the reaming bit is packed and assigned

to the output port. Normalization module set the mantissa MSB

to 1. The current mantissa is shifted left until 1 is encountered

foe each shift the exponent is decreased by 1, if the mantissa

MSB is 1, normalization is completed and first bit is the implied

bit dropped. The remaining bits are packed and assigned to the

output port. The final normalization product with the correct

biased exponent is concatenated with product sign
7
.

Pipelined floating point division module: Division entity has

three 16-bit inputs and two 16-bit outputs. Selection input is

used to enable or disable the entity. Division module is divided

into six modules: check zero, align, dividend check sign,

subtract exponent, divide mantissa and normalize concatenate

modules. Each module is executed concurrently. Status

indicates the special cases such as overflow, underflow, and

result zero and divides by zero. Figure 5 shows the pipeline

structure of the division module.

Figure-5

Pipeline structure of the division module

Check-zero module: Initially two operands are checked to

determine whether they contain a zero. If one of the operand is

zero, the zero_flag is set to 1. The output results zero. If neither

of them is zero then the inputs with IEEE 754 format is

unpacked and assigned to the check sign, add exponent and

multiply mantissa modules, the mantissa is packed with hidden

bit 1.

Add exponent module: The module is activated if the zero flag

is set. Else zero is passed to the next stage and exp_flag is set to

0, two extra bit are added the exponent indicating overflow and

underflow.

Multiply mantissa module: In this stage zero_flag is checked

first. If the zero_flag is set to 0, then no calculation and

normalization is performed. The mant_flag is set to 0 if both the

operands are nonzero after the multiplication is done mant_flag

is set to 1 to indicate that this operation is executed.

Check sign module: This module determines the product sign

of two operands. The product is positive, when the two operands

have the same sign; otherwise it is negative. The sign bit are

compared using XOR circuit. The sign_flag is set to 1.

Align dividend module: This module compares both mantissas.

If mant_a is greater than or equal to the msant_b then the

mant_a must be aligned for every bit right shift of the mant_a

mantissa, the mant_a exponent is then increased by 1. This

increase may result in an exponent overflow, in this case an

overflow flag is set. Otherwise, the process continues with the

parallel operation of exponent subtraction and mantissa division.

Align_flag is set to 1
7
.

Subtract exponent module: This module is activated if the

zero flag is set. If not, zero value is passed to the next stage and

exp_flag is set to 0. Two extra bits are added to the exponent to

indicate overflow. Here two exponents are subtracted. The bias

is added back. After this the exp_flag is set to 1.

Divide mantissa module: In this stage, align flag is checked

first. If align flag is 0 then no mantissa division is performed

mant_flag is set to 0.if both operand are not zero, mant_a is

divided by mant_b. In division algorithm, comparison between

two mantissa is done by subtracting the two values and checking

the output sign.

Results and Discussion

Design is verified through simulation, which is done in a bottom

–up fashion. Small modules are simulated in separate test

benches before they are integrated and tested as a whole
8

Figure-6

RTL view of align operation

Research Journal of Engineering Sciences__ ISSN 2278 – 9472

Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

International Science Congress Association 5

Figure-7

Simulation Result of Align

Figure-8

RTL of Demux

Figure-9

Waveform of demux

Figure-10

RTL view of Multiplexer

Figure-11

Simulation result of Mux

Figure-12

RTL of Division

Figure-13

Simulation result of division

Conclusion

By simulation with various test vectors the proposed approach

of pipeline floating point ALU design using VHDL is

successfully designed, tested and implemented currently, we are

conducting further research that consider the further reduction in

the hardware complexity in terms of synthesis and fully

download the code into Altera FLEXIOK:EPFIOKIOLC,FPGA

chip on LC -84 package for hardware
9,10

.

Research Journal of Engineering Sciences__ ISSN 2278 – 9472

Vol. 1(2), 1-6, August (2012) Res. J. Engineering Sci.

International Science Congress Association 6

References

1. ANSIWEE std 754-1985, IEEE standard for binary

Floating-point arithmetic, IEEE New York (1985)

2. Daumas M. and Finot C., Division of Floating point

Expansions with an application to the computation a

Determinant, journal Universal computer Science, 5, (2000)

3. AMD athlon processor technical brief, Advance Micro

DevicesInc, Publication no.22054, Rev.D,Dec (1999)

4. Chen S., Mulgeew B. and Grant P.M., A Clustering

technique for digital communications Channel equalization

using radial basis function Networks, IEEETran. Neural

Networks, 4, 570-578 (1993)

5. Pipeline Floating Point ALU Design using VHDL Mamu

Bin Ibne Reaz, MEEE, Md. Shabiul Islam, MEEE, Mohd.

S. Sulaiman, MEEE, Multimedia University, ICSE2002

Proc. (2002)

6. Floating Point-www.wikipedia.com (2012)

7. Proc Design Trade-Offs in Floating-Point Unit,

Implementation for Embedded and Processing-In-Memory

System, Taek-Jun Kwon, Jeff Sondeen, Jeff Draper SC

Information Sciences Institute,4676 Admiralty Way Marina

del Rey, CA 90292 U.S.A. (2005)

8. Floating Point ALU with parallel paths,Kennth Y.Ng,

Saratoga kallif,518452,may (1990)

9. VHDL Tutorial,Peter J. Ashenden EDA Consultant,

Ashenden Designs Pty. Ltd.,www.ashenden.com. © 2004

by Elsevier Science (USA)

10. Arithmetic and logic design, Wikipedia (2012)

