International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Current trends in enzymatic biosensors for pesticides determination

Author Affiliations

  • 1Department of Microbiology, IIMT University, Meerut, UP, 250001, India and Microbial Biosensors & Food Safety Laboratory, DM Division, ICAR-NDRI, Karnal 132001, Haryana, India
  • 2Microbial Biosensors & Food Safety Laboratory, DM Division, ICAR-NDRI, Karnal 132001, Haryana, India
  • 3Department of Biotechnology, MMDU, Mullana, Ambala, Haryana, 133207, India

Int. Res. J. Environment Sci., Volume 9, Issue (1), Pages 87-107, January,22 (2020)


Owing to the documentation of worldwide surveys of pesticides in different food products and high mortality rate associated with its exposure to environment and human, pesticides has become a serious public health concern. Maximum residual limits for pesticides as a legal requirement have been laid down by several regulatory bodies throughout the world. It is very important to quantify pesticide residues by using different analytical methods which are extremely susceptible and accurate due to the trace level of pesticides. Although conventional analytical methods, based on different chromatographic techniques like GC, HPLC coupled with mass selective detectors, fulfil these requirements. Despite, these have intrinsic demerits e.g. limited scope of application under field conditions, time-consuming, cost-effective and are not ease for the direct analysis of pesticides residue in real samples. To address this issue, development of biosensors as rapid alternative techniques for pesticides determination is predominant goal. Enzyme based biosensors has become very popular for their sensitivity and high efficient analysis of pesticides over few past decades. The present article mainly demonstrates the recent advancement in the development of enzymatic biosensors for pesticides determination. Enzyme based biosensors have been classified according to their catalytic and inhibition mechanism for sensing of pesticides. Their construction, mode of immobilization and analytical characteristics are discussed. Applications in the field of environmental safety, food safety and future prospects for development of more superior enzyme based sensing technologies for pesticides determination are also delineated.


  1. Aktar W., Sengupta D. and Chowdhury A. (2009)., Impact of pesticides use in agriculture: their benefits and hazards., Interdisciplinary toxicology, 2(1), 1-12.
  2. Stocka J., Tankiewicz M., Biziuk M. and Namiesnik J. (2011)., Green aspects of techniques for the determination of currently used pesticides in environmental samples., Int. J. Mol. Sci., 12, 7785-7805.
  3. Del Carlo M. and Compagnone D. (2010)., Recent strategies for the biological sensing of pesticides: from the design to the application in real samples., Bioanalytical Reviews, 1(2-4), 159-176.
  4. Andreu V. and Picó Y. (2012)., Determination of currently used pesticides in biota., Anal. Bioanal. Chem., 404, 2659-2681.
  5. Cortina P.M., Istamboulie G., Noguer T. and Marty J.L. (2010)., Intelligent and Biosensors., InTech, Croatia 205-216.
  6. Sassolas A., Simón B.P. and Marty J.L. (2012)., Biosensors for pesticide detection: New Trends., Am. J. Anal. Chem., 3, 210-232.
  7. Carlo M.D. and Compagnone D. (2008)., Recent advances in biosensor technology for food safety., Agro. Ind. hi-tech., 19, 32-35.
  8. Van Dorst B., Mehta J., Bekaert K., Rouah-Martin E., De Coen W., Dubruel P. and Robbens J. (2010)., Recent advances in recognition elements of food and environmental biosensors: a review., Biosensors and Bioelectronics, 26(4), 1178-1194.
  9. Mishra R.K., Deshpande K. and Bhand S. (2010)., A high-throughput enzyme assay for organophosphate residues in milk., Sensors., 10, 11274-11286.
  10. Liu S., Zheng Z. and Li X. (2013)., Advances in pesticide biosensors: current status, challenges, and future perspectives., Anal. Bioanal. Chem., 405, 63-90.
  11. Maloschik E., Ernst A., Hegedűs G., Darvas B. and Székács A. (2007)., Monitoring water-polluting pesticides in Hungary., Microchemical Journal, 85(1), 88-97.
  12. Kuster M., López D.A. and Barceló D. (2006)., Analysis of pesticides in water by liquid chromatography-tandem mass spectrometric techniques., Mass. Spectrom. Rev., 25, 900-916.
  13. Petropoulou S.S.E., Gikas E., Tsarbopoulos A. and Siskos P.A. (2006)., Gas chromatographic–tandem mass spectrometric method for the quantitation of carbofuran, carbaryl and their main metabolites in applicators′ urine., Journal of Chromatography A, 1108(1), 99-110.
  14. Campana A.L., Florez S.L., Noguera M.J., Fuentes O.P., Ruiz Puentes P., Cruz J.C. and Osma J.F. (2019)., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater., Biosensors, 9(1), 41.
  15. Bernal R.V., Miranda E.R. and Pérez G.H. and Soundararajan R.P. (2012)., Pesticides–Advances in Chemical and Botanical Pesticides., In Tech Rijeka Croatia, 329-356.
  16. Barhoumi H., Maaref A., Rammah M., Martelet C., Jaffrezic N., Mousty C., Vial S. and Forano C. (2006)., Urea biosensor based on Zn3Al-Urease layered double hydroxides nanohybrid coated on insulated silicon structures., Mater. Sci. Eng. C., 26, 328-333.
  17. Kumar J. and Melo J.S. (2017)., Overview on biosensors for detection of organophosphate pesticides., Curr. Trends Biomed. Eng. Biosci, 5, 555-663.
  18. Bucur B., Munteanu F.D., Marty J.L. and Vasilescu A. (2018)., Advances in enzyme-based biosensors for pesticide detection., Biosens., 8(2), 27.
  19. Hendji A.M.N., Renault N.J., Martelet C. and Clechet P. (1993)., Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases., Anal. Chim. Acta., 281, 3-11.
  20. Skladal P., Nunes G.S., Yamanaka H. and Ribeiro M.L. (1997)., Detection of carbamate pesticides in vegetable samples using cholinesterase based biosensors., Electroanalysis, 9, 1083-1087.
  21. Bucur B., Dondoi M., Danet A. and Marty J.L. (2005)., Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases., Anal. Chim. Acta., 539, 195-201.
  22. Sikora T., Istamboulie G., Jubete E., Ochoteco E., Marty J.L. and Noguer T. (2011)., Highly sensitive detection of organophosphate insecticides using biosensors based on genetically engineered acetylcholinesterase and Poly(3,4-Ethylenedioxythiophene)., J. Sens., 2011, 1-7.
  23. Arduini F., Amine A., Moscone D. and Palleschi G. (2010)., Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection., Microchim Acta, 170, 193-214.
  24. Mayes A.G. (2002)., Biomolecular Sensors., Taylor & Francis Inc, New York, 49-86.
  25. Sharma S.K., Sehgal N. and Kumar A. (2003)., Biomolecules for development of biosensors and their applications., Curr. App. Phy., 3, 307-316.
  26. Kuswandi B. and Mascini M. (2005)., Enzyme inhibition based biosensors for environmental monitoring., Current Enzyme Inhibition, 1(3), 207-221.
  27. Putzbach W. and Ronkainen N.J. (2013)., Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors., Sensors, 13, 4811-4840.
  28. Hosea N.A., Taylor P. and Berman H.A. (1995)., Specificity and orientation of trigonal carboxiesters and tetrahedral alkilphosphonyl esters in cholinesterases., Biochemistry, 34, 11528-11536.
  29. Weiner L., Shnyrov V.L., Konstantinovskii L., Roth E., Ashani Y. and Silman I. (2009)., Stabilization of torpedo californica acetylcholinesterase by reversible inhibitors., Biochemistry, 48(3), 563-574.
  30. Macdonald I.R., Martin E., Rosenberry T.L. and Darvesh S. (2012)., Probing the peripheral site of human butyrylcholinesterase., Biochemistry, 51(36), 7046-7053.
  31. Knaack V.Y., Zhou Abney C.W., Jacob J.T., Prezioso S.M., Hardy K., Lemire S.W., Thomas J. and Johnson R.C. (2012)., A high-throughput diagnostic method for measuring human exposure to organophosphorus nerve agents., Anal. Chem., 84, 9470-9477.
  32. Pohanka M. (2013)., Cholinesterases in biorecognition and biosensors construction: a review., Analytical letters, 46(12), 1849-1868.
  33. Bartolini M., Cavrini V. and Andrisano V. (2007)., Characterization of reversible and pseudo-irreversible acetylcholinesterase inhibitors by means of an immobilized enzyme reactor., J. Chromatogr. A., 1144, 102-110.
  34. Fernandez M., Pico Y. and Manes J. (2000)., Determination of carbamate residues in fruits and vegetables by matrix solid-phase dispersion and liquid chromatography–mass spectrometry., J. Chromatogr. A., 871, 43-56.
  35. Tsiplakou E., Anagnostopoulos C.J., Liapis K., Haroutounian S.A. and Zervas G. (2010)., Pesticides residues in milks and feedstuff of farm animals drawn from Greece., Chemosphere, 80(5), 504-512.
  36. Bucur B., Fournier D., Danet A. and Marty J.L. (2006)., Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection., Analytica Chimica Acta, 562(1), 115-121.
  37. Audrey S., Beatriz P.S. and Jean-Louis M. (2012)., Biosensors for pesticide detection: New Trends., Am. J. Anal. Chem., 3, 210-232.
  38. Ivanov A.N., Evtugyn G.A., Gyurcsányi R.E., Tóth K. and Budnikov H.C. (2000)., Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination., Anal. Chim. Acta., 404, 55-65.
  39. Andreou V.G. and Clonis Y.D. (2002)., A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol–gel entrapped bromcresol purple for in-field use., Biosens. Bioelectron., 17, 61-69.
  40. Wang K., Li H.N., Wu J., Ju C., Yan J.J., Liu Q. and Qiu B (2011)., TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor., Analyst, 136, 3349-3354.
  41. Villatte F., Bachman T.T., Hussein A.S. and Schmid R.D. (2001)., Acetylcholinesterase assay for rapid expression screening in liquid and solid media., Biotechniques, 30, 81-86.
  42. No H.Y., Kim Y.A., Lee Y.T. and Lee H.S. (2007)., Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides., Anal. Chim. Acta., 594, 37-43.
  43. Pohanka M., Hrabinova M., Fusek J., Hynek D., Adam V., Hubalek J. and Kizek R. (2012)., Electrochemical biosensor based on acetylcholinesterase and indoxylacetate for assay of neurotoxic compounds represented by paraoxon., Int. J. Electrochem. Sci., 7, 50-57.
  44. Meng X., Wei J., Ren X., Ren J. and Tang F. (2013)., A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme., Biosens. Bioelectron., 47, 402-407.
  45. Mashuni M., Syahrul M., Ahmad A. and Wahab A.W. (2010)., Determination of carbamate pesticides using a biosensor based on enzyme acetylcholinesterase and choline oxidase on platinum electrode., Indo. J. Chem., 10(3), 290-294.
  46. Kok F.N. and Hasirci V. (2004)., Determination of binary pesticide mixtures by an acetylcholinesterase–choline oxidase biosensor., Biosens. Bioelectron., 19, 661-665.
  47. Karousos N.G., Aouabdi S., Way S.A. and Reddy S.M. (2002)., Quartz crystal microbalance determination of organophosphorus and carbamate pesticides., Anal. Chim. Acta., 469, 189-196.
  48. Faxon J.D., Ghindilis A.L., Atanasov P. and Wilkins E. (1996)., Direct electron transfer based tri-enzyme electrode for monitoring of organophosphorus pesticides., Sens. Actuator. B., 36, 448-457.
  49. Zamorano J.P., Álvarez O.M., Montero P. and Guillén M.C.G. (2009)., Characterisation and tissue distribution of polyphenol oxidase of deepwater pink shrimp (Parapenaeuslongirostris)., Food. Chem., 112, 104-111.
  50. Mayer A.M. (2006)., Polyphenol oxidases in plants and fungi: going places?., Phytochemistry., 67(21), 2318-2331.
  51. Orlando F.F. and Cruz V.I.D. (2002)., Analytical use of vegetal tissue and crude extract as enzymatic source., Quim Nova, 25, 455-464.
  52. Vigyazo L.V. (1981)., Polyphenol oxidase and peroxidase in fruits and vegetables., Crit. Rev. Food Sci. Nutr., 15, 49-127.
  53. Hedenmo M., Narváez A., Domínguez E. and Katakis I. (1997)., Improved mediated tyrosinase amperometric enzyme electrodes., J. Electroanal. Chem., 425, 1-11.
  54. Campanella L., Beone T., Sammartino M.P. and Tomassetti M. (1993)., Analysis of L-dopa in pharmaceutical preparations and of total phenols content in urine by means of an enzyme—amperometric sensor., J. Pharm. Biomed. Anal., 11, 1099-1104.
  55. Nistor C., Emneus J., Gortona L. and Ciucu A. (1999)., Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds., Anal. Chim. Acta., 387, 309-326.
  56. Chang S.C., Rawson K. and McNeil C.J. (2002)., Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols., Biosens. Bioelectron., 17, 1015-1023.
  57. Kulys J. and Schmid R.D. (1990)., A sensitive enzyme electrode for phenol monitoring., Anal. Lett., 23, 589-597.
  58. Védrine C., Fabiano S. and Minh C.T. (2003)., Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support., Talanta, 59, 535-544.
  59. Sánchez F.G., Diaz A.N., Peinado M.C.R. and Belledone C. (2003)., Free and sol–gel immobilized alkaline phosphatase-based biosensor for the determination of pesticides and inorganic compounds., Anal. Chim. Acta., 484, 45-51.
  60. Shyuan L.K., Heng L.Y., Ahmad M., Aziz S.A. and Ishak Z. (2008)., Evaluation of pesticide and heavy metal toxicity using immobilized enzyme alkaline phosphatase with an electrochemical biosensor., Asian J. Biochem., 3(6), 359-365.
  61. Ayyagari M.S., Kanitekar S., Pande R., Marx K.A., Kumar J., Tripathy S.K., Akkara J. and Kaplan D.L. (1995)., Chemiluminescence-based inhibition kinetics of alkaline phosphatase in the development of a pesticide biosensor., Biotechnol. Progr., 11(6), 699-703.
  62. Mazzei F., Botrè F., Montilla S., Pilloton R., Podestà E. and Botrè C. (2004)., Alkaline phosphatase inhibition based electrochemical sensors for the detection of pesticides., J. Electroanal. Chem., 574, 95-100.
  63. Samphao A., Suebsanoh P., Wongsa Y., Pekec B., Jitchareon J. and Kalcher K. (2013)., Alkaline phosphatase inhibition-based amperometric biosensor for the detection of carbofuran., Int. J. Electrochem. Sci., 8, 3254-3264.
  64. Mazzei F., Botre F. and Botre C. (1996)., Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides., Anal. Chim. Acta., 336, 67-75.
  65. Gouda M.D., Thakur M.S. and Karanth N.G. (1997)., A dual enzyme amperometric biosensor for monitoring organophosphorous pesticides., Biotechnology techniques, 11(9), 653-655.
  66. Noguer T. and Marty J.L. (1997)., High sensitive bienzymic sensor for the detection of dithiocarbamate fungicides., Anal. Chim. Acta., 347, 63-70.
  67. Marty J.L., Mionetto N., Nogure T., Ortega F. and Roux C. (1993)., Enzyme sensors for the detection of pesticides., Biosens. Bioelectron., 8(6), 273-280.
  68. Noguer T., Gradinaru A., Ciucu A. and Marty J.L. (1999)., A new disposable biosensor for the accurate and sensitive detection of ethylenebis (dithiocarbamate) fungicides., Anal. Lett., 32, 1723-1738.
  69. Bornscheuer U.T. (2002)., Microbial carboxyl esterases: classi¢cation, properties and application in biocatalysis., FEMS. Microbiol. Rev., 26, 73-81.
  70. Capinera J.L. (2008)., Encyclopedia of Entomology., 2nd Edition, Springer USA 2008, 2054-2060.
  71. Walz I. and Schwack W. (2007)., Cutinase inhibition by means of insecticidal organophosphates and carbamates., Eur. Food Res. Technol., 225, 593-601.
  72. Akkad R. and Schwack W. (2010)., Multi-enzyme inhibition assay for the detection of insecticidal organophosphates and carbamates by high- performance thin-layer chromatography applied to determine enzyme inhibition factors and residues in juice and water samples., J. Chromatogr. B., 878, 1337-1345.
  73. Marty J.L., Mionetto N., Nogure T., Ortega F. and Roux C. (1993)., Enzyme sensors for the detection of pesticides., Biosens. Bioelectron., 8, 273-280.
  74. Seki A.F., Ortega F.J. and Marty L. (1996)., Enzyme sensor for the detection of herbicides inhibiting acetolactate synthase., Anal. Lett., 29, 1259-1271.
  75. Moccelini S.K., Vieira I.C., Lima F., Lucca B.G., Barbosa A.M.J. and Ferreira V.S. (2010)., Determination of thiodicarb using a biosensor based on alfalfa sprout peroxidase immobilized in self-assembled monolayers., Talanta, 82, 164-170.
  76. Gallo M.A. and Lawryk N.J. (1991)., Handbook of Pesticide Toxicology., Classes of Pesticides, Academic Press, New York, 917-1123.
  77. Rekha K., Gouda M.D., Thakur M.S. and Karanth N.G. (2000)., Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring., Biosens. Bioelectron., 15, 499-502.
  78. Lamoureux G.L., Shimabukuro R.H. and Frear D.S. (1991)., Glutathione and glucoside conjugation in herbicide selectivity., Herbicide resistance in weeds and crops, 227-261.
  79. Coleman J.O.D., Randall R. and Blake‐Kalff M.M.A. (1997)., Detoxification of xenobiotics in plant cells by glutathione conjugation and vacuolar compartmentalization: a fluorescent assay using monochlorobimane., Plant, Cell & Environment, 20(4), 449-460.
  80. Dowd A.J., Morou E., Steven A., Ismail H.M., Labrou N., Hemingway J., Paine M.J.I. and Vontas J. (2010)., Development of a colourimetric pH assay for the quantification of pyrethroids based on glutathione-S-transferase., Int. J. Environ. Anal. Chem., 90(12), 922-933.
  81. Mulchandani A., Mulchandani P. and Chen W. (1998)., Enzyme biosensor for determination of organophosphates., Field Anal Chem. Technol., 2, 363-369.
  82. Mulchandani P., Mulchandani A., Kaneva and Chen I.W. (1999)., Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode., Biosens. Bioelectron., 14, 77-85.
  83. Deo R.P., Wang J., Block I., Mulchandani A., Joshi K.A., Trojanowicz M., Scholz F., Chen W. and Lin Y. (2005)., Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor., Anal. Chim. Acta., 530, 185-189.
  84. Lee J.H., Park J.Y., Min K., Cha H.J., Choi S.S. and Yoo Y.J. (2010)., A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents., Biosens. Bioelectron., 25(7), 1566-1570.
  85. Lan W., Chen G., Cui F., Tan F., Liu R. and Yushupujiang M. (2012)., Development of a novel optical biosensor for detection of organophoshorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity., Sensors, 12, 8477-8490.
  86. Viveros L., Paliwal S., McCraec D., Wild J. and Simonian A. (2006)., A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents., Sens. Actuators. B., 115, 150-157.
  87. DeFrank J.J. and Cheng T.C. (1991)., Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate., Journal of bacteriology, 173(6), 1938-1943.
  88. DeFrank J.J., Beaudry W.T., Cheng T.C., Harvey S.P., Stroup A.N. and Szafraniec L.L. (1993)., Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity., Chem. Biol. Interact., 87, 141-148.
  89. Sorouri Zanjani R., Mir-Esmaili S.M., Latifi A.M. and ValiPour E. (2009)., Isolation and identification of a type strain bacteria with the highest ability to produce organophosphorus acid anhidrase., Journal of Mazandaran University of Medical Sciences, 18(68), 19-26.
  90. Farnoosh G. and Latifi A.M. (2014)., A review on engineering of organophosphorus hydrolase (OPH) enzyme., J. Appl. Biotechnol. R., 1, 1-10.
  91. Yair S., Ofer B., Arik E., Shai S., Yossi D.R., Tzvika and Amir K. (2008)., Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications., Crit. Rev. Biotechnol., 28, 265-275.
  92. Dumas D.P., Caldwell S.R., Wild J.R. and Raushel F.M. (1989)., Purification and properties of the phosphotriesterase from Pseudomonas diminuta., J. Biol. Chem., 264, 19659-19665.
  93. Simonian A.L., Grimsley J.K., Flounders A.W., Schoeniger J.S., Cheng T.C., DeFrank J.J. and Wild J.R. (2001)., Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates., Anal. Chim. Acta., 442, 15-23.
  94. Stoytcheva M. (2002)., Electrochemical evaluation of the kinetic parameters of a heterogeneous enzyme reaction in presence of metal ions., Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 14(13), 923-927.
  95. Amine A., Mohammadi H., Bourais I. and Palleschi G. (2006)., Enzyme inhibition-based biosensors for food safety and environmental monitoring., Biosens. Bioelectron., 21, 1405-1423.
  96. Benilova I.V., Arkhypova V.N., Dzyadevych S.V., Jaffrezic-Renault N., Martelet C. and Soldatkin A.P. (2006)., Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor., Pesticide biochemistry and physiology, 86(3), 203-210.
  97. Dzyadevych S.V., Arkhypova V.N., Soldatkin A.P., El, Enzyme biosensor for tomatine detection in tomatoes., Analytical letters, 37(8), 1611-1624.
  98. Joshi K.A., Tang J., Haddon R., Wang J., Chen W. and Mulchandani A. (2005)., A disposaple biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode., Electroanalysis, 17, 54-58.
  99. Arduini F., Amine A., Moscone D. and Palleschi G. (2009)., Reversible enzyme inhibition–based biosensors: Applications and Analytical Improvement Through Diagnostic Inhibition., Anal. Lett., 42, 1258-1293.
  100. Shan D., Li Q., Xue H. and Cosnier S. (2008)., A highly reversible and sensitive tyrosinase inhibition-based amperometric biosensor for benzoic acid monitoring., Sensors and Actuators B: Chemical, 134(2), 1016-1021.
  101. Mohammadi H., Amine A., Cosnier S. and Mousty C. (2005)., Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix., Anal. Chim. Acta., 543, 143-149.
  102. Shan D., Cosnier S. and Mousty C. (2004)., HRP/[Zn-Cr-ABTS] redox clay-based biosensor: Design and optimisation for cyanide detection., Biosens. Bioelectron., 20, 390-396.
  103. Somerset V., Baker P. and Iwuoha E. (2013)., Mercaptobenzothiazole-on-gold organic phase biosensor systems: 2. Enhanced carbamate pesticide determination., Int. J. Chem. Res., 5, 144-152.
  104. Suwansaard S., Kanatharana P., Asawatreratanakul P., Limsakul C., Wongkittisuksa B. and Thavarungkul P. (2005)., Semi disposable reactor biosensors for detecting carbamate pesticides in water., Biosens. Bioelectron., 21, 445-454.
  105. Ciucu A., Ciucu C. and Baldwin R.P. (2002)., Organic phase potentiometric biosensor for detection of pesticides., Roum. Biotechnol. Lett., 7, 625-630.
  106. Qu Y., Sun Q., Xiao F., Shi G. and Jin L. (2010)., Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides., Bioelectrochemistry, 77(2), 139-144.
  107. Marinov I., Ivanov Y., Gabrovska K. and Godjevargova T. (2010)., Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles., J. Mol. Catal. B. Enzym., 62, 66-74.
  108. Arduini F., Ricci F., Tuta C.S., Mosconea D., Amine and Palleschi A.G. (2006)., Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode., Anal. Chim. Acta., 580, 155-162.
  109. Rekha K. and Murthy B.N. (2008)., Studies on the immobilisation of acetylcholine esterase enzyme for biosensor applications., Food and agricultural immunology, 19(4), 273-281.
  110. Andreescu S., Noguer T., Magearu V. and Marty J.L. (2002)., Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents., Talanta, 57, 169-176.
  111. Gong J., Wang L. and Zhang L. (2009)., Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite., Biosens. Bioelectron., 24, 2285-2288.
  112. Hart A.L., Collier W.A. and Janssen D. (1997)., The response of screen-printed enzyme electrodes containing cholinesterases to organophosphates in solution and from commercial formulations., Biosens. Bioelectron., 12, 645-654.
  113. Imato T. and Ishibashi N. (1995)., Potentiometric butyrylcholine sensor for organophosphate pesticides., Biosens. Bioelectron., 10, 435-441.
  114. Cho Y.A., Lee H.S., Cha G.S. and Lee Y.T. (1999)., Fabrication of butyrylcholinesterase sensor using polyurethane-based ion-selective membranes., Biosensors and Bioelectronics, 14(4), 435-438.
  115. Cremisini C., Sario S.D., Mela J., Pilloton R. and Palleschi G. (1995)., Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor., Anal. Chim. Acta., 311, 273-280.
  116. Palchetti I., Cagnini A., Carlo M.D., Coppi C., Mascini M. and Tumer A.P.F. (1997)., Determination of anticholinesterase pesticides in real samples using a disposable biosensor., Anal. Chim. Acta., 337, 315-321.
  117. Shimomura T., Itoh T., Sumiya T., Mizukami F. and Ono M. (2009)., Amperometric biosensor based on enzymes immobilized in hybrid mesoporous membranes for the determination of acetylcholine., Enzyme Microb. Technol., 45, 443-448.
  118. Ghindilis A.L., Morzunova T.G., Barmin A.V. and Kurochkin I.N. (1996)., Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis., Biosensors and Bioelectronics, 11(9), 873-880.
  119. Albuquerque Y.D.T. and Ferreira L.F. (2007)., Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes., Anal. Chim. Acta., 596, 210-221.
  120. Pita M.T.P., Reviejo A.J., Villena F.J.M. and Pingarron J.M. (1997)., Amperometric selective biosensing of dimethyl- and diethyldithiocarbamates based on inhibition processes in a medium of reversed micelles., Anal. Chim. Acta., 340, 89-97.
  121. de Lima F., Lucca B.G., Barbosa A.M., Ferreira V.S., Moccelini S.K., Franzoi A.C. and Vieira I.C. (2010)., Biosensor based on pequi polyphenol oxidase immobilized on chitosan crosslinked with cyanuric chloride for thiodicarb determination., Enzyme and microbial technology, 47(4), 153-158.
  122. Campanella L., Lelo D., Martini E. and Tomassetti M. (2007)., Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase opee and application to natural waters., Anal. Chim. Acta., 587, 22-32.
  123. Dowd A.J., Steven A., Morou E., Hemingway J., Vontas J. and Paine M.J.I. (2009)., A simple glutathione transferase-based colorimetric endpoint assay for insecticide detection., Enzyme Microb. Technol., 45, 164-168.
  124. Kapoli P., Axarli I.A., Platis D., Fragoulaki M., Paine M., Hemingway J., Vontas J. and Labrou N.E. (2008)., Engineering sensitive glutathione transferase for the detection of xenobiotics., Biosens. Bioelectron., 24, 498-503.
  125. Oliveira T.I.S., Oliveira M., Viswanathan S., Barroso M.F., Barreiros L., Nunes O.C., Rodrigues J.A., Neto P.L., Mazzetto S.E., Morais S. and Matos C.D. (2013)., Molinate quantification in environmental water by a glutathione-S-transferase based biosensor., Talanta, 106, 249-254.
  126. Kumar J., Jha S.K. and D′Souza S.F. (2006)., Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent., Biosens. Bioelectronics., 21, 2100-2105.
  127. Mulchandani P., Chen W. and Mulchandani A. (2006)., Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp., Anal. Chim. Acta., 568, 217-221.
  128. Mulchandani P., Chen W., Mulchandani A., Wang J. and Chen L. (2001)., Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase., Biosens. Bioelectron., 16, 433-437.
  129. Mulyasuryani A. and Dofir M. (2014)., Enzyme biosensor for detection of organophosphate pesticide residues base on screen printed carbon electrode (SPCE)-Bovine Serum Albumin (BSA)., Engineering, 6, 230-235.
  130. Simonian A.L., Good T.A., Wang S.S. and Wild J.R. (2005)., Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides., Analytica chimica acta, 534(1), 69-77.
  131. Laothanachareon T., Champreda V., Sritongkham P., Somasundrum M. and Surareungchai W. (2008)., Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds., World J. Microbiol. Biotechnol., 24, 3049-3055.
  132. Du D., Chen W., Zhang W., Liu D.H., Li H. and Lin Y. (2010)., Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion., Biosens. Bioelectron., 25, 1370-1375.
  133. EPA. (2011)., Pesticides industry sales and usage 2006 and 2007 Market Estimates.,