International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Contribution to the study of phosphorus adsorption on the marine sedimentary layer from an artificial marine estuary: Vridi canal Cote d\'Ivoire)

Author Affiliations

  • 1Physical Chemistry Laboratory, UFR SSMT, Felix Houphouet-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, Cote dIvoire
  • 2Physical Chemistry Laboratory, UFR SSMT, Felix Houphouet-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, Cote dIvoire
  • 3Physical Chemistry Laboratory, UFR SSMT, Felix Houphouet-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, Cote dIvoire
  • 4Physical Chemistry Laboratory, UFR SSMT, Felix Houphouet-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, Cote dIvoire

Int. Res. J. Environment Sci., Volume 10, Issue (2), Pages 1-14, April,22 (2021)


This work focused on the study of phosphorus adsorption on the marine sedimentary layer from Vridi canal. The first part of this work has lead on the study of phosphorus adsorption kinetics on these sediments and, the second part on the study of phosphorus adsorption isotherms at 25°C on these entities. These studies were carried out under three experimental conditions partially simulating the seasonal physical and chemical characteristics of the waters from this estuary, namely: (E1) pH = 6, Salinity = 5%; (E2): pH = 7; Salinity = 30%; (E3): pH = 8, Salinity = 35%. The experiments were carried out in batch mode. The results have showed that the rate of phosphorus adsorption on these sediments increases from E1 to E3. The kinetics of this reaction are all pseudo-order 2 (Blanchard model). As a result, Blanchard model takes precedence over the diffusion kinetics of this nutrient in these substrates, and those in all the experiments carried out. Langmuir isotherm describes well the experimental isotherms obtained in E2, with favorable adsorption at the different concentrations of the synthetic phosphorus solutions, as illustrated by Hall adimensional number less than 1. The experimental isotherms obtained in E3 are in agreement with Freundlich isotherm, with a favorable adsorption shown by the heterogeneity factor less than 1. A good description of the isotherm obtained in E1 isn\'t given by these two formalisms, thus reflecting the existence of the different types of sites on these sediments surface, with a considerable difference in adsorption energy depending on their position.


  1. Dai, W., Zhang, J., Tu, Q., Deng, Y. and Xiong, J. (2017)., Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication., Chemosphere, 177, 317-325.
  2. Gieswein, A., Hering, D. and Feld, C.K. (2017)., Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed., Sci. Tot. Environ., 593-594, 27-35.
  3. Trannum, H.C., Gundersen, H., Oug, E., Rygg, B. and Norderhaug, K.M. (2018)., Soft bottom benthos and responses to climate variation and eutrophication in Skagerrak., J. Sea Res., 141, 83-98.
  4. Wang, Y., Li, Y., Luo, X., Ren, Y., Gao, E. and Gao, H. (2018)., Effects of yttrium and phosphorus on growth and physiological characteristics of Microcystis aeruginosa., J. Rare Earths, 36(7), 781-788.
  5. Cao, X., Zhu, J., Lu, M., Ge, C., Zhou, L. and Yang, G. (2019)., Phosphorus sorption behavior on sediments in Sanggou Bay related with their compositions by sequential fractionation, . Ecotoxicol. Environ. Saf., 169, 144-149.
  6. Hei, P., Zhang, Y., Shang, Y., Lei, X., Quan, J. and Zhang, M. (2017)., An approach to minimizing the uncertainty caused by sediment washing pretreatment in phosphorus adsorption experiments., Ecol. Eng., 107, 244-251.
  7. Huang, W., Lu, Y., Li, J.H., Zheng, Z., Zhang, J.B. and Jiang, X. (2015)., Effect of ionic strength on phosphorus sorption in different sediments from a eutrophic plateau lake., RSC Adv., 5, 79607-79615.
  8. Huang, S., Huang, H. and Zhu, H. (2016)., Effects of the addition of iron and aluminum salt on phosphorus adsorption in wetland sediment., Environ. Sci. Pollut. Res., 23, 10022-10027.
  9. Li, M., Whelan, M.J., Wang, G.Q. and White, S.M. (2013)., Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze estuary and Hangzhou bay, China., Biogeosci., 10, 3341-3348.
  10. Meng, J., Yao, Q. and Zhigang, Y. (2014)., Particulate phosphorus speciation and phosphate adsorption characteristics associated with sediment grain size., Ecol. Eng., 70, 140-145.
  11. Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B. and Liu, X. (2017)., Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions., Chemosphere, 188, 677-688.
  12. Kwak, D-K., Jeon, Y-T. and Hur, Y. D. (2018)., Fractionation and release characteristics of Sediment in the Saemangeum Reservoir for seasonal change., Inter. J. Sediment Res., 33(3), 250-261.
  13. Mendes, L.R.D., Tonderski, K. and Kjaergaard, C. (2018)., Phosphorus accumulation and stability in sediments of surface-flow constructed wetlands., Geoderma, 331, 109-120.
  14. Xiao, Y., Xia, Y., Yuan, S-y. and Tang, H-w. (2017)., Flow structure and phosphorus adsorption in bed sediment at a 90° channel confluence., J. Hydrodyn. (Ser. B), 29 (5), 902-905.
  15. Zhu, J., Li, M., and Whelan, M. (2018)., Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review., Sci. Tot. Environ., 612, 522-537.
  16. Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H. and Xue, X. (2016)., Effects of pH on phosphorus removal capacities of basic oxygen furnace slag., Ecol. Eng., 89, 1-6.
  17. Li, Z.R., Sheng, Y.Q., Yang, J. and Burton, E.D. (2016)., Phosphorus release from coastal sediments: impacts of the oxidation-reduction potential and sulfide., Mar. Pollut. Bull., 113, 176-181.
  18. Yao M.K., Brou, Y.S., Trokourey, A. and Soro, M.B (2017)., Metal Pollution and Ecological Risk Assessment in Sediment of Artificial Estuary: Case of Vridi Channel, Cote dIvoire., J. Appl. Sci. Environ. Manage., 21 (4), 785-792.
  19. Yao, M.K. and Trokourey, A. (2018)., Fractionation distribution and ecological risk assessment of some trace metals in artificial estuary: Vridi channel (Cote d, Adv. Nat. Appl. Sci., 12(6), 1-6.
  20. Yao, M.K. and Trokourey, A. (2018)., Influence de lhydroclimat sur la dynamique saisonniere de certains elements traces metalliques dans un estuaire marin : Cas detude., J. Soc. Ouest-Afr. Chim., 045, 31-41.
  21. N, Seasonal dynamics of phosphorus fractions in artificial marine estuary: Vridi channel (Cote d, Inter. J. Adv. Biol. Res.,8 (4), 458-469.
  22. Affian Koudio (2003)., Approche environnementale dun ecosysteme lagunaire microtidal (la lagune Ebrie en Cote dIvoire), par des etudes geochimiques et hydrologiques, bathymetriques et hydrologiques : contribution du S.I.G. et de la teledetection., These de doctorat d
  23. Gnagne, Y.A., Yapo, B.O., Meite, L., Kouame, V.K., Gadji, A.A., Mambo, V. and Houenou, P. (2015). Caracterisation physico-chimique et bacteriologique des eaux usees brutes du reseau degout de la ville dAbidjan. Int. J. Biol. Chem. Sci., 9(2), 1082-1093., undefined, undefined
  24. AFNOR X 31-100 standard (1992)., Qualite des sols-echantillonnage, methode de prelevement dechantillons de sols., Boutique AFNOR Edition Decembre 1992, France.
  25. AFNOR NF EN ISO 16720 standard (2007)., Qualite du sol-pretraitement des echantillons par lyophilisation pour analyse subsequente., Mai 2007, France.
  26. Murphy, J. and Riley, J.P. (1962)., Amodified single solution method for determination of phosphate in natural waters., Anal. Chim. Acta , 27, 31-36.
  27. AFNOR NF T90-023 standard (1982)., Essai des eaux, dosage des orthophosphates, des polyphosphates et du phosphore total., Recueil de Normes Francaises, Qualite de leau, environnement 1994, pp. 356-366. ISBN: 212-17-9011 X
  28. Dubus Igor (1997)., etude au laboratoire de la retention du phosphore dans les sols ferralitiques allitiques de l, Convention Sciences de la Vie-Agropedologie (N°40), ORSTOM editions, île de loyaute, Mare, Nouvelle Caledonie, pp. 1-43. Identifiant IRD: fdi 010011063.
  29. Lagergren, S. (1898)., About the Theory of So-Called Adsorption of Soluble Substances., Kungliga Svenska Vetenskapsakademiens Handlingar, 24,1-39.
  30. Blanchard, G., Maunaye, M. and Martin, G. (1984)., Removal of heavy metals from waters by means of natural zeolites., Water Res., 18, 1501-1507.
  31. Díaz-Blancas, V., Ocampo-Perez, R., Leyva-Ramos, R., Alonso-Dávila, P.A. and Moral-Rodríguez, A.I. (2018)., 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution., Chem. Eng. J., 349, 82-91.
  32. Wu, T., Wang, Z., Tong, Y., Wang, Y. and Loon, L.R.V. (2018)., Investigation of Re (VII) diffusion in bentonite by through-diffusion and modeling techniques., Appl. Clay Sci., 166, 223-229.
  33. Weber, W.J. and Morris, J.C. (1963)., Kinetics of adsorption on carbon from solution., J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31-60.
  34. Giles, C.H., MacEwan, T.H., Nakhwa, S.N. and Smith, D. (1986)., Studies in adsorption, 1986 (Part XI). A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids., J. Chem. Soc., 10, 3973-3993.
  35. Brunauer Stephen (1943)., The adsorption of gases and vapors., Volume I, Physical. Adsorption, Oxford University press, United States, pp. 1-511. B005KDFW5K
  36. Langmuir, I. (1938)., The adsorption of gases on plane surfaces of glass, mica and platinum., J. Am. Chem. Soc., 40(9), 1361-1403.
  37. Hall, K.R., Eagleton, L.C., Acrivos, A. and Vermeulen, T. (1966)., Pore and soliddiffusion kinetics in fixed-bed adsorption under constant-pattern conditions., Ind. Eng. Chem. Fund., 5, 212-223.
  38. Freundlich, H. (1906)., On adsorption in solution., Z. Physik. Chem., 57, 385-471.
  39. Coulibaly, S. L. (2014)., Abattement des phosphates des eaux usees par adsorption sur des geomateriaux constitues de Laterite, gres et schistes ardoisiers., (Doctoral dissertation, Universite de Lorraine). pp.1-213
  40. Chmielewska, E., Hodossyova, R. and Bujdos, M. (2013)., Kinetic and thermodynamic studies for phosphate removal using natural adsorption Materials., Pol J. Environ Stud., 22(5), 1307-1316.
  41. Hou, Q., Meng, P., Pei, H., Hu, W. and Chen, Y. (2018)., Phosphorus adsorption characteristics of alum sludge: Adsorption capacity and the forms of phosphorus retained in alum sludge., Mat. Lett., 229, 31-35.
  42. Fang, H., Cui, Z., He, G., Huang, L. and Chen, M. (2017). Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Sci. Tot. Environ., 605-606, 357-367., undefined, undefined
  43. Lin, L., Li, Z., Song, X., Jiao, Y. and Zhou, C. (2018)., Preparation of chitosan/lanthanum hydroxide composite aerogel beads for higher phosphorus adsorption., Mat. Lett., 218, 201-204.
  44. Chaussidon, J. (1958)., sur la notion de double couche diffuse., Bull. Groupe fr. Argiles, 10(5), 27-30.
  45. Liu, M., Hou, L., Xu, S., Ou, D., Yang, Y., Zhang, B. and Liu, Q. (2002)., Adsorption of phosphate on tidal flat surface sediments from the Yangtze Estuary., Environ. Geol., 42 (6), 657-665.
  46. Djelloul Claude (2014)., Experimentation, modelisation et optimisation des effluents textiles., These de Doctorat. Universite de Mohamed Khider de Biskra, Republique d
  47. Karaca, S., Gürses, A., Ejder, M. and Acikyildiz, M. (2004)., Kinetic modeling of liquid-phase adsorption of phosphate on dolomite., J. colloid. interface Sci., 277(2), 257-263.
  48. Masmoudi, T., Guergazi, S. and Achour, S. (2018)., elimination du mercure par le charbon actif., Larhyss J., 34, 21-38.
  49. Ouakouak, A.K. and Youcef, L. (2016)., Adsorption des ions Cu2+ sur un charbon actif en poudre et une bentonite sodique., Larhyss J., 27, 39-61.
  50. Barrow N.J. (1990)., Relating chemical processes to management systems. Proceedings of Phosphorus requirements for sustainable agriculture in Asia and Oceania, Manilla, Philippines., 6th-10th March. Pp. 199-209.
  51. Rahman, M., Adil, M., Yusof A. M., Kamaruzzaman, Y.B. and Ansary, R.H. (2014)., Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells., Mat., 7, 3634-3650.
  52. Jiang, M., Jin, X., Lu, X. and Chen, Z. (2010)., Adsorption of Pb (II), Cd (II), Ni (II) and Cu(II) onto natural kaolinite clay., Desalination, 252(1-3), 33-39.