International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Diversity of arbuscular mycorrhizal fungi in Populus deltoides agroforestry systems at Kurukshetra in Northern India

Author Affiliations

  • 1Department of Botany, Kurukshetra University, Kurukshetra-136119, Haryana, India
  • 2Department of Botany, Kurukshetra University, Kurukshetra-136119, Haryana, India

Int. Res. J. Biological Sci., Volume 7, Issue (2), Pages 1-7, February,10 (2018)


This study was carried out in Populus deltoides agroforestry systems located at Gulabgarh, Kurukshetra (29°58’N, 76°57’E, 250 m above mean sea level), northern India. The aim was to analyze arbuscular mycorrhizal (AM) fungal diversity, the spatial distribution of AM fungal spore density in the soil and AM root colonization in sugarcane and wheat crops integrated with trees in Populus deltoides agroforestry systems. A total of 47 species of AM fungi belonging to five genera, i.e., Acaulospora, Entrophospora, Glomus, Gigaspora and Sclerocystis were isolated from the rhizosphere soils of wheat and sugarcane in the studied agro forestry systems. There was significant effect of soil depth and crop growth stage on the AM fungal spore density and AM fungal root colonization. The AM fungal spore density was greatest in the Populus + sugarcane system as compared to that of the Populus + wheat systems. The density of AM spores was found to attain its peak at crop maturity of the wheat crop; a significant decrease in AM spore density occurred with increase in soil depth. The colonization of sugarcane roots by AM fungi was greatest at 15 to 30 cm soil depth under 1 to 2 yr old Populus + sugarcane agro forestry systems. In the case of wheat roots (5-7 yr old Populus + wheat agroforestry systems), the AMF root colonization was greatest at 7.5 to 15 cm soil depth as wheat roots were concentrated up to 15 cm soil depth.


  1. Brussaard L., Behan-Pelletier V.M., Bignell D.E., Brown V.K., Didden W., Folgarait P., Fragoso C., Wall Freckman D., Gupta V.V.S.R., Hattori T., Hawkswoth D.L., Klopatek C., Lavelle P., Malloch D.W., Rusek J., Soderstrom B., Tiedje J.M. and Virginia R.A. (1997)., Biodiversity and ecosystem functioning in soil., Ambio, 26(8), 563-570. URL:
  2. Rillig M.C. (2004)., Arbuscular mycorrhizae, glomalin and soil aggregation., Can. J. Soil Sci., 84(4), 355-363.
  3. Lovera M. and Cuenca G. (1996)., Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored Savannas in La Gran Sabana, Venezuela., Mycorrhiza, 6(2), 111-118. doi: 10.1007/s005720050115
  4. Haselwandter K. and Bowen G.D. (1996)., Mycorrhizal relations in trees for agroforestry and land rehabilitation., Forest Ecol. Manag., 81(1-3), 1-17.
  5. Grime J.P., Mackey J.M., Hiller S.M. and Read D.J. (1987)., Floristic diversity in a model system using experimental microcosms., Nature, 328, 420-422. Doi:10.1038/328420a0
  6. Gange A.C., Brown V.K. and Farmer L.M. (1990)., A test of mycorrhizal benefit in an early successional plant community., New Phytol., 115(1), 85-91. doi/10.1111/j.1469-8137.1990.tb00925.x/
  7. Van der Heijden M.G.A., Boller T., Wiemken A. and Sanders I.R. (1998)., Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure., Ecology, 79(6), 2082-2091. DOI: 10.1890/0012-9658(1998)079[2082:DAMFSA] 2.0.CO;2
  8. Cardoso I.M., Boddington C., Janssen B.H., Oenema O. and Kuyper T.W. (2003)., Distribution of mycorrhizal and fungal spores in soils under agroforestry and monoculture coffee systems in Brazil., Agroforest. Syst., 58(1), 33-43. DOI: 10.1023/A:1025479017393 •
  9. Muleta D., Assefa F., Nemomissa S. and Granhall U. (2008)., Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia., Biol. Fertil. Soils, 44(4), 653-659. doi: 10.1007/s00374-007-0261-3
  10. Oehl F., Sieverding E., Mäder P., Dubois D., Ineichen K., Boller T. and Wiemken A. (2004)., Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi., Oecologia, 138(4), 574-583.
  11. Jeffries P., Gianinazzi S., Perotto S., Turnau K. and Barea J. (2003)., The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility., Biol. Fertil. Soils, 37(1), 1-16.
  12. Smith S.E. and Read D.J. (1997)., Mycorrhizal symbiosis., Academic Press, San Diego, California, USA, (2nd edition), 1-605. ISBN: 9780126528404.
  13. Newsham K.K., Fitter A.H. and Watkinson A.R. (1995)., Multifunctionality and biodiversity in arbuscular mycorrhizas., Trends Ecol. Evol., 10(10), 407-411.
  14. Zhu Yong-Guan and Miller R.M. (2003)., Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems., Trends in Plant Sci., 8(9), 407-409.
  15. Sieverding E. and Leihner D.E. (1984)., Influence of crop rotation and intercropping of cassava with legumes of VA mycorrhizal symbiosis of cassava., Plant Soil, 80(1), 143-146.
  16. Dodd J.C., Arias I., Koomen I. and Hayman D.S. (1990)., The management of populations of vesicular-mycorrhizal fungi in acid-infertile soils of a Savanna ecosystem., Plant Soil, 122(2), 229-240.
  17. Arihara J. and Karasawa T. (2000)., Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize., Soil Sci. Plant Nutr., 46(1), 43-51. DOI: 10.1080/00380768.2000.10408760
  18. Leakey R.R.B., Wilson J. and Deans J.D. (1999)., Domestification of trees for agroforestry in drylands., Ann. Arid Zone, 38(3-4), 195-220.
  19. Ingleby K., Wilson J., Munro R.C. and Cavers S. (2007)., Mycorrhizas in agroforestry : spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches., Plant Soil, 294, 125-136. DOI: 10.1007/ s11104-007-9239-z
  20. Dhar P.P. and Mridha M.A.U. (2003)., Status of biodiversity of arbuscular mycorrhizal fungi in different tree species growing in Betagi community forests., The Chittagong University Journal of Science, 27, 13-19.
  21. Pande M. and Tarafder J.C. (2004)., Arbuscular mycorrhizal fungal diversity in neem based agroforestry systems in Rajasthan., Appl. Soil Ecol., 26(3), 233-241.
  22. Singh J.S. and Yadava P.S. (1974)., Seasonal variation in composition, plant biomass and net primary productivity of a tropical grassland at Kurukshetra, India., Ecol. Monogr., 44(3), 351-376. DOI: 10.2307/2937034
  23. Duggal S.L. (1970)., Soil Geographical Zones of Haryana., CCS Haryana Agricultural University Publication, CCS, HAU, Hisar. Publication No. 2/70, 1-37. ASIN: B0006C8E1O.
  24. Gerdemann J.W. and Nicolson Y.H. (1963)., Spores of mycorrhizae Endogyne species extracted from soil by sieving and decanting., Trans. Br. Mycol. Soc., 46(2), 235-244.
  25. Morton J.B. and Benny G.L. (1990)., Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glomineal and Gigaspora, and two new families, Acaulosporaceae and Gigasporaeceae with an emendation of Glomaceae., Mycotaxon, 37, 471-491.
  26. Phillips J.M. and Hayman D.S. (1970)., Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrizal fungi for the rapid assessment of infection., Trans. Br. Mycol. Soc., 55(1), 158-161.
  27. Devi P., Aggarwal A. and Gupta S.R. (2014)., Carbon accumulation, nitrogen uptake and mycorrhizal root colonization in a tropical rice-wheat system in northern India., Indian Journal of Science, 11(27), 21-31.
  28. INVAM (2017) ://http./, undefined, undefined