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Abstract  

In the present study, the analytical solutions of blood flow for two dimensional non

through the channel having symmetric stenosis of cosine shape are discussed. The governing Navier

reduced to compatibility equation along with energy equation and solved analytically by Adomian decomposition method 

(ADM) and regular perturbation method (RPM). The results are presented analytically and graphically in terms of 

streamlines, wall shear stress, separation and reattachment points and temperature distribution on blood flow through a 

stenoised channel. It has been observed that the non

over the stenoised region. Further, increase in secon

while the critical Re decreases. It is observed from comparison that the ADM is efficient, reliable, easily computable and 

provides a fast convergent series. It worthy

and found good agreement. 

 
Keywords: Second grade fluid, ADM, RPM, 
 

Introduction 

The present analysis is concerned with the solution of non

linear, two dimensional, compatibility and energy equations by 

Adomian decomposition method and regular perturbation 

method. The powerful tool for calculating the analytic series 

solution of linear and nonlinear partial differential equations is 

ADM, which was introduced and developed by George 

Adomian  and is well addressed in the literature

research work is done recently by applying ADM to linear and 

nonlinear equations. Bellomo and Monaco gi

comparison between the ADM and perturbation method proved 

the efficiency of the decomposition method compared over 

perturbation method
5
. 

 

It is well known that the stenosis is a disease of arteries and is 

caused due to abnormal growth in the lumen of the artery. Its 

actual cause may not be known exactly but its effect on 

cardiovascular system can easily be understood by analyzing the 

blood flow in its vicinity. One of the practical applications of 

blood flow through a membrane oxygenator is the

irregular wall surface. Many authors studied the behavior of 

blood in a constricted artery by considering different models of 

stenosis and assuming the blood to be Newtonian and non

Newtonian fluid. 

 

One of the earliest studies in this regard was conducted by 

Young
6
.  He considered the blood as Newtonian fluid and 

suggested that the irregular walls can be an important factor in 
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In the present study, the analytical solutions of blood flow for two dimensional non-isothermal, non

through the channel having symmetric stenosis of cosine shape are discussed. The governing Navier

compatibility equation along with energy equation and solved analytically by Adomian decomposition method 

(ADM) and regular perturbation method (RPM). The results are presented analytically and graphically in terms of 

tion and reattachment points and temperature distribution on blood flow through a 

stenoised channel. It has been observed that the non-Newtonian nature of blood reduces the magnitude of the peak of flow 

over the stenoised region. Further, increase in second grade parameter )(α  increases the temperature and wall shear stress 

while the critical Re decreases. It is observed from comparison that the ADM is efficient, reliable, easily computable and 

provides a fast convergent series. It worthy noting that the results obtained in this paper are compared with published results 

Second grade fluid, ADM, RPM, Heat transfer, Wall shear stress. 

analysis is concerned with the solution of non-

linear, two dimensional, compatibility and energy equations by 

Adomian decomposition method and regular perturbation 

method. The powerful tool for calculating the analytic series 

ar partial differential equations is 

ADM, which was introduced and developed by George 

Adomian  and is well addressed in the literature
1-4

. Considerable 

research work is done recently by applying ADM to linear and 

nonlinear equations. Bellomo and Monaco gives a useful 

comparison between the ADM and perturbation method proved 

the efficiency of the decomposition method compared over 

It is well known that the stenosis is a disease of arteries and is 

umen of the artery. Its 

actual cause may not be known exactly but its effect on 

cardiovascular system can easily be understood by analyzing the 

blood flow in its vicinity. One of the practical applications of 

blood flow through a membrane oxygenator is the flow with an 

irregular wall surface. Many authors studied the behavior of 

blood in a constricted artery by considering different models of 

stenosis and assuming the blood to be Newtonian and non-

was conducted by 

.  He considered the blood as Newtonian fluid and 

suggested that the irregular walls can be an important factor in 

the development of arterial diseases. Forrester and Young 

presented the analytical solution of Newtonian fluid for an

axisymmetric, steady, incompressible flow and considered mild 

constriction for the flow of blood, both theoretically and 

experimentally in the converging and diverging tube

Fung solved the flow model of the Newtonian fluid numerically 

through locally constricted tube for the low Reynolds number

Morgan and Young carried out the extension of Young

used an integral method and presented the approximate 

analytical solution of axisymmetric, steady state flow, which is 

applicable to both a mild and severe constriction. Haldar 

investigated the flow of blood through an axisymmetric 

constricted artery of cosine shape and presented the solutions 

for velocity, wall shear stress and separation point

indicated the presence of separation point, du

of negative wall shear stresses at high Reynolds numbers. Chow 

et al. analyzed the laminar flow of incompressible steady 

Newtonian fluid for different physical parameters by 

considering the sinusoidal boundary

increasing either Re or ε, the separation point would move down 

towards the throat in the divergent part of the channel with 

subsequent enlargement of the region of separation.

 

In addition to the Newtonian model many authors have studied 

the behavior of blood as non-Newtonian fluid. The non

Newtonian fluid may be considered as comparatively better 

model to represent the blood, due to its cells suspension 

property, even at a low shear rate. Further the Newtonian model 

is reasonable with regards the large channel assumption. 
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isothermal, non-Newtonian fluids flowing 

through the channel having symmetric stenosis of cosine shape are discussed. The governing Navier-Stokes equations are 

compatibility equation along with energy equation and solved analytically by Adomian decomposition method 

(ADM) and regular perturbation method (RPM). The results are presented analytically and graphically in terms of 

tion and reattachment points and temperature distribution on blood flow through a 

Newtonian nature of blood reduces the magnitude of the peak of flow 

increases the temperature and wall shear stress 

while the critical Re decreases. It is observed from comparison that the ADM is efficient, reliable, easily computable and 

noting that the results obtained in this paper are compared with published results 

the development of arterial diseases. Forrester and Young 

presented the analytical solution of Newtonian fluid for an 

axisymmetric, steady, incompressible flow and considered mild 

constriction for the flow of blood, both theoretically and 

experimentally in the converging and diverging tube
7
. Lee and 

Fung solved the flow model of the Newtonian fluid numerically 

cally constricted tube for the low Reynolds number
8
. 

Morgan and Young carried out the extension of Young
9
. They 

used an integral method and presented the approximate 

analytical solution of axisymmetric, steady state flow, which is 

and severe constriction. Haldar 

investigated the flow of blood through an axisymmetric 

constricted artery of cosine shape and presented the solutions 

for velocity, wall shear stress and separation point
10

. He 

indicated the presence of separation point, due to the occurrence 

of negative wall shear stresses at high Reynolds numbers. Chow 

et al. analyzed the laminar flow of incompressible steady 

Newtonian fluid for different physical parameters by 

considering the sinusoidal boundary
11

. It is observed that by 

, the separation point would move down 

towards the throat in the divergent part of the channel with 

subsequent enlargement of the region of separation. 

In addition to the Newtonian model many authors have studied 

Newtonian fluid. The non-

Newtonian fluid may be considered as comparatively better 

model to represent the blood, due to its cells suspension 

hear rate. Further the Newtonian model 

is reasonable with regards the large channel assumption. 
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However, for smaller channels the flow is expected to take on 

non-Newtonian character. Shukla et al. presented the analysis of 

blood by considering it as non-Newtonian fluid and studied the 

effect of constriction on the resistance to flow along with wall 

shear stress in an artery
12

. Vahdati et al. designed a non linear 

ordinary differential equation for non-fatal disease in population 

and solved by Homotopy analysis method
13

. Thundil and 

Ramsai
 
assumed the fluid to be air and presented numerical 

investigation using CFD
14

. Chauhan et al. studied the effect of 

turbulent flow over Ahmed’s body by applying numerical 

technique
15

. 

 

It should be noted that all the above investigations are limited to 

flow patterns, separation and reattachment points. However, the 

present work also investigates the effect of heat transfer in the 

channel.  The solutions are presented graphically in terms of 

stream lines, wall shear stress, points of separation and 

reattachment and temperature distribution. It is assumed that the 

blood flow is time independent between two parallel plates, 

situated at the separation 2h0. We observe that the governing 

equations are highly non-linear and apply the ADM and 

perturbation technique having δ  as a small parameter to find 

the analytical solution. 

 

Problem Formulation 

It is assumed that the blood behaves like homogeneous, 

incompressible, non-Newtonian fluid of second grade with heat 

transfer. The governing equations for the present analysis are 

conservation of mass, momentum and energy equation. 

Consider the steady flow of blood through the channel of 

infinite length having stenosis of length 2/ol . The coordinate 

system is constituted in such a way that the channel lies in xy-

plane and x-axis coincide with the center line in the direction of 

flow and y-axis perpendicular to x-axis. Consider the boundary 

of the stenoised region of the form Haldar
5
 as 
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where ( )xh ~
 is the variable width of channel, oh2  the width of 

unobstructed channel and λ  the maximum height of stenosis. 

Geometry of the problem is shown in Figure-1.  

 

It is assumed that the blood behaves like non-Newtonian fluid 

and for steady, homogeneous, incompressible two dimensional 

flow of blood velocity field is taken as 
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Figure-1 

Geometry of the problem 

 

Where ou  is the characteristic velocity and oTT ,1  are 

temperature on the boundary of stenosis and fluid respectively. 

Dimensionless form of the boundary profile becomes 

( )

otherwise,

,1
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1
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1 =<<−+−= xxf π

ε

 (4) 

Where: ohxhf /)~(=  and oh/λε = is dimensionless height 

of stenosis.  Introducing the stream functions of the form 

x
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y
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,  (5) 

which satisfy the continuity equation identically and 

compatibility equation along with energy equation in terms of 

stream function takes the form 
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(7)

 

Boundary conditions in terms of stream functions for velocity 

component and temperature are 
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Where: 
2

2

2

2
22

yx ∂

∂
+

∂

∂
=∇ δ   and
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It is noted that for 0=α , the above model reduces to 

Newtonian case and reduced compatibility Equation-6 for 

0=α  has been discussed by many authors. 

 

Solution 

The resulting compatibility and energy equations are non-linear 

and exact solution is very difficult to find, for the series 

solutions we apply ADM and RPM in these equations by 

considering δ as a small parameter for RPM as follows. 

 

Solution of compatibility equation by ADM: The 

compatibility equation is 
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Apply 
1−L  to equation (9), we get 
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Where: A, B, C, D are functions of  x  to be determined. For the 

series solution, substituting  

∑
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



























∂∂

∑
∞

=
∂

−
∂

∑
∞

=
∂

−∑
∞

=

−
++++=∑

∞

=

22
0

),(
4

2
2

4
0

),(
4

4

0

12

2

3

60
),(

yx

n
yxn

x

n
yxn

n
nA

LDyCy
B

y
A

n
yxn

ψ

δ

ψ

δδ

ψ

 (15) 

and boundary conditions becomes 
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Comparing both sides of Equation-15 and 16, we obtain 
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The solution of (17) is obtained by using the boundary 

conditions on stream function from (18) as follows 

( )
f
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it is observed that the expression of oψ  for both the methods is 

same.  Now the recursive relation from (15) becomes as 













∂∂

∂
−

∂

∂
−

−
=+ 22

4
2

2
4

4
41

1
yx

n

x

n
nAL

n

ψ
δ

ψ
δδψ  (20) 

and the expression for 1ψ  and 2ψ  along with boundary 

conditions are given by 
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( )
( )

( )
( )

( )
( )

( )
( )

.
,

4
,1

,

1
4

,

,

2
,1Re

,

1
2

,
Re1

xy

o

xy

o

xy

o

xy

o
A

∂

∇∂
−

∂

∇∂

−
∂

∇∂
+

∂

∇∂
=

ψψ
α

ψψ
α

ψψψψ

 

(26)

  

The solution of  1ψ  is obtained from (21) by substituting oψ
along with boundary conditions from (22) as 
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Similarly the solution for 2ψ  up to second order is obtained by 

substituting 1ψ  and  oψ  in equation (23) along with respective 

boundary conditions from (24), we get 
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It is found that the solutions for 1ψ  and 2ψ  by ADM are 

different from RPM. Now we can obtain the velocity 

components vu,  from Equations-5 and 14 easily. 

 

Solution of Energy Equation by ADM: Dimensionless form 

of energy equation in terms of stream function is 
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Where 
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is highest order derivative and its inverse is defined as  
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where 1
C  and 2

C  are functions of x  to be determined. 
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in equation (32), we arrive at 
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subject to the boundary conditions on temperature becomes 
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Equation both sides of Equation-34 and 35, we obtain 
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corresponding boundary conditions are 
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Now the expressions for 1θ   and 2θ  becomes 
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subject to boundary conditions  
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The solution of (36) by making use of boundary conditions from 

(37) becomes .1=oθ  (42) 
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The solution of (40) up to second order in δ subject to 

boundary conditions from (41) gives 
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(44) 

It is observed that the three orders of θ  from ADM and RPM 

are different from each others. 
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Wall shear stress 

Wall shear stress for second grade fluid in dimensionless form is 

obtained from the component of Cauchy shear stress as follows: 
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Wall shear stress up to second order in δ  is obtained by 

making use of velocity components defined in Equation-5 as 

follows 
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It is found that the wall shear stress by both the method up to 

second order in δ is same.  The points of separation and 

reattachment are given by setting 0=wτ , the resulting equation 

is quadratic in Re and the solution in terms of Re is 
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From the expression (47), we have to find the critical Reynolds 

number at which the separation and reattachment points occur. 

 

Graphical Discussion 

In this section solutions are presented graphically for stream 

lines, wall shear stress, zero wall shear stress and temperature 

distribution by ADM and RPM. Solutions are analyzed 

numerically through graphs for second grade parameterα , 

height of stenosisε , Reynolds number ( )Re , Brinkman number 

( )Br and Peclet number ( )Pe . 

 

Figure-2 depict the behavior of stream lines by ADM and RPM 

for 04.0,1.0,2.0,12Re ==== αδε . In these figures 

axisx − lies in the horizontal direction and axisy − is 

perpendicular to it. The zeroth order solution for stream lines by 

ADM and RPM are presented in Figures-2(i) and 2(v) 

respectively; it corresponds to the flow with vanishing wall 

slopes and reduces to the flow between parallel plates for 0=ε
. It is observed that the stream lines are relatively straight in the 

center of the channel. First order solution presented in figures 

2(ii) and 2(vi) by ADM and RPM, it is found that first order 

solution induces the clockwise and counterclockwise rotational 

motion in the converging and diverging regions, which indicates 

the separation point in the converging region and reattachment 

point in the diverging region. Figures-2(iii) and 2(vii) shows the 

stream lines for second order solution by ADM and RPM, it is 

found that the rotational motion in both converging and 

diverging sections predicts the separation and reattachment 

points. Stream lines up to second order are presented in figures 

2(iv) and 2(viii) by ADM and RPM. It is observed that the 

stream lines becomes relatively straight in the center of the 

channel and similar to [11] by setting 0=α . Since the wall 

shear stress up to second order in δ for both the methods is 

same, the graphical representation for wall shear stress and 

points of separation and reattachment by both the methods 

would be similar. The wall shear stress for various values of Re

is shown in Figure-3 for fixed values of

04.0,1.0,2.0 === αδε . It is observed that an increase in 

Re , wall shear stress increases near the throat of stenoised  

region and becomes adverse in the converging and diverging 

section of the channel. The negative shearing in converging and 

diverging sections of channel indicates that there is point of 

separation in the upstream region and reattachment point in the 

downstream region of the channel. It is found that wall shear 

stress holds for both small and large Re . It is also observed that 

the magnitude of adverse wall shear stress in the diverging part 

is smaller as compared with the converging part. In figure 4 

effect of second grade parameter 08.0,04.0,0=α , is shown 

on wall shear stress, ωτ , other parameters are chosen to be 

7/1,7.0,38Re === δε . It is observed that for 0=α , the 

present result corresponds to viscous fluid and as the second 

grade parameter increases wall shear stress increases near the 

throat and becomes negative in converging and diverging 

sections due to adverse flow. It is noted that the effect of Re
and second grade parameter on wall shear stress have similar 

adverse behavior. It is also noted that the magnitude of adverse 

flow in the diverging region is smaller as compared to 

converging region. In Figure-5 effect of ε on wall shear stress 

is presented. The straight line indicates that there is no stenosis 

and the flow is Poiseuille flow. It is found that by the increase in 

ε  wall shear stress increases near the throat and becomes 

negative in the converging and diverging sections of the 

channel, which is the prediction for the points of separation and 

reattachment. The separation point was considered to be the 

point nearest the throat where adverse flow along the wall of 

channel is observed. The point farthest downstream from the 

throat where back flow occurs is defined as reattachment point. 

Figure 6 presents the distribution for the point of separation in 

converging section of the channel for different values of ε
along with fixed values of δ andα . The separation point lies to 

the right of minimum point; actually the purpose for zero wall 

shear stress is to find the critical Reynolds number where 

separation occurs. It is observed that the critical Re decreases as 

the ε  increases. The theory that the critical Reynolds number 
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decreases with the increase in height of stenosis is verified. 

Figure-7 predicts the separation point for different values of 

second grade parameter ( )α  in the converging region for fixed 

values of δ andε . It is observed that with the increase in α

critical Reynolds number ( )Re  decreases. It is observed that the 

critical Re have same behavior for negative values of α . In 

Figure-8 zero wall shear stress is plotted for ε  having fixed 

values of α and δ  in diverging section of the channel. The aim 

of investigation is to determine the critical value of Re at which 

reattachment occurred in the diverging region of the channel. As 

the critical Re reached the reattachment occurred in the 

diverging region of the channel and separation point occurred in 

the upstream region of the channel. It is observed form figure 8 

that as ε  increases critical Re decreases. In figure 9 analysis of 

zero wall shear stress is presented for various values of α along 

with fixed values of ε  and δ . It is observed that critical Re
decreases as α  increases in the diverging region of the channel. 

It is noted that the reattachment point lies to the left of minimum 

point and found the similar behavior as in figure 8. Now the 

numerical results are carried out to study the behavior of 

temperature distribution graphically for α , Br , and Pe by 

ADM and RPM. In figures 10 and 11, behavior of Newtonian 

0=α  and non-Newtonian 0≠α  effects are observed for the 

distribution of temperature by ADM and RPM respectively. It is 

noted that by the increase in α temperature increases over the 

stenoised region with fixed values of the remaining parameters 

and becomes negative in the converging and diverging regions 

with small amplitude. It is found that the maximum value of 

temperature occurs at the middle of the stenoised region. The 

adverse temperature in these regions causes back flow as 

observed earlier. In Figures-12 and 13 the effect of Br number 

is shown over the distribution of temperature respectively by 

ADM and RPM for fixed Pe and Re . It is found that with the 

increase in Br temperature increases over the stenosis. Figures 

14 and 15 presents the effect of Peclet number, Pe , on 

temperature by keeping other parameters fixed. It is found that 

with the increase in Pe  number temperature increases by two 

methods which firmly ensure that the whole region is dominated 

by convection. The magnitude of the adverse temperature in the 

diverging regions is smaller as compared to the converging 

regions. The adverse temperature in these sections causes back 

flow. 

 

  

  
Figure-2 

Stream lines 
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Figure-3 

Effect of Re on wall shear stress 

 

 
Figure-4 

Effect of α on wall shear stress 

 

 
Figure-5 

Effect of ε  on wall shear stress 

 
Figure-6 

Separation point for ε  in converging region 

 

 
Figure-7 

Separation point for α in the converging region 

 

 
Figure-8 

Reattachment point for ε  in the diverging region 
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Figure-9 

Reattachment point for α in the diverging region 

 

 
Figure-10 

Temperature distribution forα  by ADM 

 

 
Figure-11  

Temperature distribution forα  by RPM 

 
Figure-12 

Temperature distribution for Br by ADM 

 

 
Figure-13 

Temperature distribution for Br by RPM 

 

 
Figure-14 

Temperature distribution for Pe by ADM 
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Figure-15  

Temperature distribution for Pe by RPM 

 

Conclusion 

In present article, consideration has been given to second grade 

steady state flow of blood through the channel of infinite length 

with heat transfer having stenosis of length 2/ol . Non-linear 

equations are solved by ADM and regular perturbation method 

(RPM). The results thus obtained are discussed graphically in 

terms of stream lines, wall shear stress, separation and 

reattachment points and temperature distribution. It is noted that 

by setting 0=α , the present model reduces to viscous case 

similar to previously reported results
6-10

. Furthermore, the 

general pattern of streamlines is same as discussed by previous 

researchers
8-10

. Wall shear stress is similar to J.H. et. al.
7
 & Lee 

J.S. et. al.
8
 and separation and reattachment points are similar to 

Lee J.S. et. al.
8
. From the present investigation the following 

conclusions are made: Increase in Re increases wall shear 

stress. Increase in ε  increases wall shear stress and 

temperature. Critical Re decreases with an increase inε . 

Increase in α leads to increases in temperature and wall shear 

stress. Temperature increases with an increase in Br and Pe . 

The critical Re decreases with an increase in α in the 

converging and diverging region. As a comparison ADM gives 

better results than RPM and easy to compute. 
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