International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Establishment of maternity from sternum bone of an unidentified dead body - A case study

Author Affiliations

  • 1DNA Division, Regional Forensic Science Laboratory, Central Range, Mandi - 175002, Himachal Pradesh, India
  • 2Directorate of Forensics Services, Junga, Shimla - 171218, Himachal Pradesh, India

Res. J. Forensic Sci., Volume 9, Issue (1), Pages 7-10, January,29 (2021)


Sternum bone is one of the most common exhibits received in forensic laboratories from unidentified dead bodies. These bones are received for identification of dead bodies or establishment of maternity and paternity. Sternum bones are a good source for DNA profiling as they contain abundant cells. The costal cartilage tissue attached with sternum bone act as a source of clean DNA profile. In the present study, maternity was established from sternum bone of an unidentified dead body. DNA from sternum bone was isolated using magnetic bead based method with Qiagen EZ1 Advanced XL BioRobot, whereas DNA from FTA card of putative son was purified using FTA purification buffer reagent. The isolated and purified DNA was subjected to Multiplex PCR amplification using PowerPlex® 21 System kit (Promega Corporation, Wisconsin, United States). Capillary electrophoresis of amplified products was done with 3130 Genetic Analyzer (Applied Biosystems, U.S.A.). The data were analyzed using GeneMapper®ID Software Version 3.2. The autosomal short tandem repeats (STR) DNA analysis confirmed the maternity of unidentified dead bodies. Hence, human sternum bones are a good source of DNA for establishment of identity, maternity and paternity.


  1. Prahlow, J.A., Cameron, T., Arendt, A., Cornelis, K., Bontrager, A., Suth, M.S., Black, L., Tobey, R., Pollock, S., Stur, S., Cotter, K. and Gabrielse, J. (2017)., DNA testing in homicide investigations., Med. Sci. Law, 57(4), 179-191. doi: 10.1177/0025802417721790.
  2. Alonso, A., Martin, P., Albarrán, C., Garcia, P., de Simon, L.F., Iturralde, M.J., Fernández-Rodriguez, A., Atienza, I., Capilla, J., Garcia-Hirschfeld, J., Martinez, P., Vallejo, G., Garcia, O., Garcia, E., Real, P., Alvarez, D., León, A. and Sancho, M. (2005)., Challenges of DNA profiling in mass disaster investigations., Croat. Med. J., 46(4), 540-548.
  3. Budowle, B., Bieber, F.R. and Eisenberg, A.J. (2005)., Forensic aspects of mass disasters: strategic considerations for DNA-based human identification., Legal Med., 7(4), 230-243.
  4. Taki, T., Machida, M. and Shimada, R. (2019)., Trends of traffic fatalities and DNA analysis in traffic accident investigation., IATSS Res., 43(2), 84-89.
  5. Artes, T., Oom, D., de Rigo, D., Durrant, T.H., Maianti, P., Libertá, G. and San-Miguel-Ayanz, J. (2019)., A global wildfire dataset for the analysis of fire regimes and fire behaviour., Sci. Data. 6, 296. 10.1038/s41597-019-0312-2.
  6. Dalibor, N. and Vladimir, P. (2020)., The challenges of forensic medical expertise in aircraft accidents: A case report., J. Indian Acad. Forensic Med., 42(10), 63-65.
  7. Biesecker, L.G., Bailey-Wilson, J.E., Ballantyne, J., Baum, H., Bieber, F.R., Brenner, C., Budowle, B., Butler, J.M., Carmody, G., Conneally, P.M., Duceman, B., Eisenberg, A., Forman, L., Kidd, K.K., Leclair, B., Niezgoda, S., Parsons, T.J., Pugh, E., Shaler, R., Sherry, S.T., Sozer, A. and Walsh, A. (2005)., DNA identifications after the 9/11 world trade center attack., Sci., 310(5751), 1122-1123.
  8. Roewer, L. (2013)., DNA fingerprinting in forensics: past, present, future., Investig. Genet., 4, 22. 10.1186/2041-2223-4-22
  9. Prinz, M., Carracedo, A., Mayr, W.R., Morling, N., Parsons, T.J., Sajantila, A., Scheithauerg, R., Schmitterh, H. and Schneideri, P.M. (2007)., DNA commission of the international society for forensic genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI)., Forensic Sci. Int. Genet., 1(1), 3-12.
  10. Leena Sakari, S., Jimson, S., Masthan, K.M.K. and Jacobina, J. (2015)., Role of DNA profiling in forensic odontology., J. Pharm. Bioallied Sci., 7 (Suppl 1), S138-S141.
  11. Siriboonpiputtana, T., Rinthachai, T., Shotivaranon, J., Peonim, V. and Rerkamnuaychoke, B. (2018)., Forensic genetic analysis of bone remain samples., Forensic Sci. Int., 284, 167-175.
  12. Kumar, N., Maitray, A., Ritika, G., Sharma, D. and Shukla, S.K. (2017)., Effect of preservation on DNA and its profiling from sternum bone from unidentified bodies., J. Punjab Acad. Forensic Med. Toxicol., 17(2): 77-79.
  13. Abuidrees, A. (2016)., A suitable method for DNA extraction from bones for forensic applications: A case study., Arab J. Forensic Sci. Forensic Med., 1(3), 346-352.
  14. Kenneth Saladin (2010)., Anatomy and physiology: The Unity of form and function., Fifth Edition, McGraw-Hill, New York.
  15. Parvathi, S. (2013)., Sternal foramen - A case report., Int. J. Curr. Res. Rev., 05(6), 80-86.
  16. Qiagen (2020)., EZ1 DNA Investigator Handbook., 08 October 2020.Sahajpal, V., Rajput, S., Sharma, T., Sharma, A. and Thakar, M.K. (2019).
  17. Sahajpal, V., Rajput, S., Sharma, T., Sharma, A. and Thakar, M.K. (2019). Development and evaluation of a novel DNA purification buffer and protocol for blood samples on FTA cards. Forensic. Sci. Int. Rep., 1, 100014.
  18. Technical Manuals (2020)., PowerPlex® 21 System for Use on the Applied Biosystems ® ® ® Genetic Analyzers, DC8902 and DC8942., resources/ protocols/technical-manuals/101/ powerplex-21-system-protocol.pdf?la=en. 08 October 2020.
  19. De Donno, A., Mele, F., Baldassarra, S.L., Martini, A., Lauretti, C., Favia, M., Introna, F. and Santoro, V. (2020)., DNA extraction from sternum bone for identification of a saponified body: use of a modified protocol., Anthropol. Anz., 77(3), 235-242.