@Research Paper <#LINE#>Assessment of active tectonics in upper tapi sub-catchment using geo-spatial technology<#LINE#>Sanchita @Deshmukh,Sandesh @Bhange,Swapnil @Bonde <#LINE#>1-8<#LINE#>1.ISCA-IRJES-2021-002.pdf<#LINE#>Maharashtra Remote Sensing Application Centre, Nagpur, Maharashtra, India@Maharashtra Remote Sensing Application Centre, Nagpur, Maharashtra, India@Maharashtra Remote Sensing Application Centre, Nagpur, Maharashtra, India<#LINE#>8/1/2021<#LINE#>11/3/2021<#LINE#>Upper Tapi sub-catchment is a part of satpuda mountain range and located in between two states of India (Maharashtra and Madhya Pradesh). The area is dissected by no. of lineaments and faults. For the assessment of active tectonics we have used most conventional widely used geomorphic indices such as Basin asymmetry factor (AF), Basin shape index (BS), Hypsometric integral factor (HI), Transverse topographic symmetry factor (TTSF) and Stream gradient index (SL). The results derived from these geomorphic indices aggregated to produce relative active tectonics index (RAT) using GIS. The average of five calculated geomorphic indices were used to measure spatial distribution of RAT in study area. To define degree of RAT, we grouped RAT values in four classes, where class 1 (RAT 1 to <1.5) shows very high active tectonics, class 2 (RAT ≥ 1.5 to <2) shows high active tectonics, class 3 (RAT ≥ 2 to <2.5) indicates moderate tectonic activity and class 4 (RAT ≥ 2.5) indicates low tectonic activity. The results of RAT classes are well supported by the geomorphic evidences.<#LINE#>Shivhare, V., Goel, M. K., & Singh, C. K. (2014).@Simulation of surface runoff for upper Tapi subcatchment Area (Burhanpur Watershed) using swat.@ISPRS. https://doi.org/10.5194/isprsarchives-XL-8-391-2014.@Yes$Cox, R. T. (1994).@Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment.@Geological society of America bulletin, 106(5), 571-581.@Yes$Keller, E.A. and Pinter, N. (Eds.) (2002).@Active Tectonics: Earthquakes, Uplift, and Landscape.@2nd ed. Prentice Hall, Upper Saddle River, N.J, pp 362.@Yes$Keller, E. A. (1986).@Investigation of active tectonics: use of surficial earth processes.@Active tectonics, 1, 136-147.@Yes$Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter, J.B. & Wesling, J. R. (1988).@Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica.@Geomorphology, 1(3), 239-265.@Yes$Ahmad S and Bhat MI (2013).@Investigating drainageresponse to the Balapur fault interaction on the north eastern PirPanjal flank, Kashmir valley, India.@Journal of Himalayan Ecology and Sustainable Development, 8, 121-137.@Yes$Schumm SA (1977).@The fluvial system.@Vol 338. Wiley, New York@Yes$Tiwari, M. P. (1996).@Neotectonism in Tapti-Purna valleys and its probable correlation with geothermal activity.@Visesa Prakasana-Bharatiya Bhuvaijñanika Sarveksana, (45), 325-332.@Yes$Tiwari, M.P and Bhai, H.Y (1998).@Quaternary stratigraphy of the Purna Valley.@Rec. Geol. Surv. Ind. 128(6), 30-31.@Yes$NRSA (1995).@Integrated mission for sustainable development technical guidelines.@National Remote Sensing Agency, Department of Space, Government of India, Hyderabad.@No$Ashok K. Srivastava and Vivek M. Kale (2018).@Purna River, Maharashtra, The Indian Rivers.@Springer Hydrogeology, https://doi.org/10.1007/978-981-10-2984-4_34.@Yes$Pike, R. J., & Wilson, S. E. (1971).@Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis.@Geological Society of America Bulletin, 82(4), 1079-1084.@Yes$Schumm, S.A., Dumont, J.F., Holbrook, J.M., (2000).@Active Tectonics and Alluvial Rivers.@Cambridge University Press, Cambridge, pp 276.@Yes$Hack, J. T. (1973).@Stream-profile analysis and stream-gradient index.@Journal of Research of the us Geological Survey, 1(4), 421-429.@Yes$Mahmood SA and Gloaguen R (2012).@Appraisal of active tectonics in Hindu Kush: insights from DEM derived geomorphic indices and drainage analysis.@Geosci Front, 3(4), 407-428. https://doi.org/10.1016/j.gsf.2011.12.002.@Yes$El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., & Keller, E. A. (2008).@Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain).@Geomorphology, 96(1-2), 150-173.@Yes$Bull, W. B., & McFadden, L. D. (2020).@Tectonic geomorphology north and south of the Garlock fault, California.@Geomorphology in arid regions, 115-138. Routledge.@Yes$Chandrakant, G., Babar, M., & Jagdale, A. (2020).@Morphotectonics Study of Dhamani River Basin in Kolhapur District, Maharashtra, India.@Bulletin of Pure & Applied Sciences-Geology, (2).@Yes$Andermann, C., & Gloaguen, R. (2009).@Estimation of erosion in tectonically active orogenies. Example from the Bhotekoshi catchment, Himalaya (Nepal).@International Journal of Remote Sensing, 30(12), 3075-3096.@Yes$Burbank, D.W. and Anderson, R.S. (2000).@Tectonic geomorphology.@Blackwell Scientific, Oxford, pp 270.@No$Bali, B. S., Khan, R. A., & Ahmad, S. (2016).@Morphotectonic analysis of the Madhumati watershed, northeast Kashmir Valley.@Arabian Journal of Geosciences, 9(5), 390. https://doi.org/10.1007/s12517-016-2395-9.@Yes$Ahmed, F., & Rao, K. (2016).@Morphotectonic studies of the Tuirini drainage basin: A remote sensing and geographic information system perspective.@International Journal of Geology, Earth & Environmental Sciences, 6(1), 54-65.@Yes$Golani, P. R., Bandyopadhyay, B. K., & Gupta, A. (2001).@Gavilgarh-Tan Shear: a prominent ductile shear zone in central India with multiple reactivation history.@Geological Survey of India Special Publication, 64, 265-272.@Yes$Sharma, G., & Mohanty, S. (2018).@Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India.@Geomorphology, 301, 108-120.@Yes$Hare, P. W., & Gardner, T. W. (1985).@Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica.@Tectonic geomorphology, 4, 75-104.@Yes$Tiwari, M. P., Bhai, H. Y., & Varade, A. M. (2010). Stratigraphy and tephra beds of the Purna Quaternary basin, Maharashtra, India.@Sedimentary Basin of India. Gond Geol Mag Spec, 12, 283-292.@undefined@Yes$Mueller, J. E. (1968).@An introduction to the hydraulic and topographic sinuosity indexes.@Annals of the association of American geographers, 58(2), 371-385.@Yes$Nandy D. R., Dasgupta S., Sarkar K. A. L. Y. A. N. and Ganguly A. N. I. R. U. D. D. H. A. (1983).@Tectonic evolution of Tripura Mizoram Fold Belt., Surma Basin, North East India. Quart.@Jour. Geol. Min. Met. Soc. India, 35(4), 186-194.@Yes$Raja, P., Malpe, D. B., & Tapaswi, P. M. (2010).@Tectonics of Purna sedimentary basin, central India.@Gondwana Geol. Magz. Spec, 12, 303-307.@Yes$Rajurkar, S.T. (1981).@Photographic interpretation of Upper Wardha project and surrounding area Wardha, Amravati and Betul districts.@Geological Survey of India, 28, 241-259.@Yes$Rockwell TK, Keller EA, Johnson DL (1985).@Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology, Morisawa, M., Eds.; Proceedings of the 15th Annual Geomorphology Symposium.@Allen and Unwin Publishers, Boston, MA, 183-207.@Yes$Syed Amer Mahmoodand and Richard Gloaguen (2011).@Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis.@Geoscience frontiers, 3(4), 407-428.@Yes$Ali, S. A., & Ikbal, J. (2020).@Assessment of relative active tectonics in parts of Aravalli mountain range, India: implication of geomorphic indices, remote sensing, and GIS.@Arabian Journal of Geosciences, 13(2), 1-16.@Yes$Strahler, A. N. (1952).@Hypsometric (area-altitude) analysis of erosional topography.@Geological society of America bulletin, 63(11), 1117-1142.@Yes$Toudeshki, V. H., & Arian, M. (2011).@Morphotectonic analysis in the Ghezel Ozan river basin, NW Iran.@Journal of Geography and Geology, 3(1), 258.@Yes @Review Paper <#LINE#>Petrography and heavy mineral studies of Miocene Bhuban siliciclastics in parts of Surma Basin, Northeast India<#LINE#>Sujata @Das,Nagendra @Pandey,Meghali @Baruah <#LINE#>9-19<#LINE#>2.ISCA-IRJES-2021-001.pdf<#LINE#>Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India@Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India@Department of Earth Science, Assam University Silchar, Silchar-788011, Assam, India<#LINE#>4/1/2021<#LINE#>28/4/2021<#LINE#>Miocene Bhuban Siliciclastics in parts of Surma Basin has been studied with respect to their modal composition and heavy mineral contents so as to document the tectonic provenance and paleoclimate. Mineralogically Bhuban siliciclastics has been characterized as Qt34 F15RF8 M7 MX17 Ct18 HM1 and thus qualify for clean (lithic to sub arkose) and wacke (arkosic wacke) sandstone types. Presence of undulatory quartz, recycled non-undulatory quartz, chert, physillite and feldspars (alkali & plagioclase) has been attributed to mixed source terrain comprising igneous, sedimentary and metamorphic rock types. Further occurrence of zircon, tourmaline, rutile and garnet suggests derivation from both felsic and mafic igneous rocks. Different shapes and sizes of heavy minerals including garnet, sillimanite, staurolite, kyanite, scapolite, glaucophane, phlogopite, sphene, wollastonite, chlorite, chondrodite and hedenbergite in Bhuban siliciclastics signifies overall regionally metamorphosed source rock with subordinate contributions from contact dolomitic marble and skarn deposits. Low ZTR value (15.15%) of Bhuban Siliciclastics is indicative of mineralogically immature nature of sediments. A semi-humid to semi-arid paleoclimateis is suggested with major contributions from the nearby Indo-Myanmar and the Himalayan orogens.<#LINE#>Parvin A., Woobaidulla A.S.M. and Rahman J.M. (2019).@Sequence stratigraphic analysis of the Surma Group in X Gas Field, Surma Basin, Bengal Delta.@J. Nepal Geol. Soc., 58, 39 -52.@Yes$Hiller K. and Elahi M. (1984).@Structural development and hydrocarbon entrapment in the Surma Basin, Bangladesh (Northwest Indo Burman fold belt).@In: Proceedings of 5th offshore South East Asia conference Singapore, 650 -663.@Yes$Dasgupta S. (1984).@Tectonic trends in Surma basin and possible genesis of the folded belt.@Rec. Geol. Surv. India, 113(IV), 58-61.@Yes$Uddin A. and Lundberg N. (1998).@Unroofing history of the eastern Himalaya and the Indo-Burman Ranges: Heavy mineral study of Cenozoic sediments from the Bengal Basin, Bangladesh.@Journal of Sedimentary Research, 68(3), 465-472.@Yes$Bhaduri A. (2011).@State Geological and Mineral Maps - Geological Survey of India Miscellaneous Publication Series.@@Yes$Karunakaran, C. (1974).@Geology and mineral resources of the states of India. Part IV-Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura.@Geol. Surv. India Misc. Publ, 30(4), 93-101.@Yes$J. L. Ganju (1975).@Geology of Mizoram.@Geol. Mineral. & Metallurg. Soc. India, Bull. 48, 17-26 (1975).@Yes$Dickinson, W. R. (1970).@Interpreting detrital modes of graywacke and arkose.@Journal of Sedimentary Research, 40(2), 695-707.@Yes$Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D. and Sares S.W. (1984).@The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting.@J. Sedim. Res., 54, 103-116.@No$Folk R.L. (1980).@Petrology of sedimentary rocks.@Hamphill’s, Austin, Texas, 182. Hemphill publishing company.@Yes$Middleton G.V. (2003).@Encyclopedia of sediments and sedimentary rocks.@Springer, New York, 821.@Yes$McBride E.F. (1963).@A classification of common sand-stones.@Jour. Sed. Petrology, 33, 664-669.@Yes$Pettijohn F. J. (1957).@Sedimentary Rocks.@Second Edition: New York, Harper Brothers, 718.@No$Pettijohn, F. J., Potter, P. E., & Siever, R. (1987).@Sandy Depositional Systems.@Sand and Sandstone, 341-423. Springer, New York, NY.@Yes$Pettijohn F.J., Potter P.E. and Siever R (1972).@Sand and sandstone.@Springer, New York, 618.@No$Williams H., Turner F.J. and Gilbert C.M. (1954).@Petrography, San Francisco: Freeman, 406.@undefined@No$Hubert J.F. (1962).@A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones.@J. Sedim. Res., 32(3), 440-450.@Yes$Dickinson W.R. and Suczek C.A. (1979).@Plate tectonics and sandstone composition.@Bull. Am. Assoc. Petrol. Geol., 63(12), 2164-2182.@Yes$Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavek J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A. and Ryberg P.T. (1983).@Provenance of North American Phanerozoic sandstones in relation to tectonic setting.@Geol. Soc. Am. Bull., 94(2), 222-235.@Yes$Nechaev V.P. and Isphording W.C. (1993).@Heavy mineral assemblages of continental margins as indicators of plate tectonic environment.@J. Sedim. Petrol., 63(6), 1110-1117.@Yes$Suttner L.J. and Dutta P.K. (1986).@Alluvial sandstone composition and palaeoclimate. Framework mineralogy.@J. Sedim. Petrol., 56(3), 329-345.@Yes <#LINE#>A review of peat deposits in Rwanda<#LINE#>Theophile @Mugerwa,Olugbenga A . @Ehinola,Ibrahim A. @Oladosu,Digne Edmond @Rwabuhungu <#LINE#>20-27<#LINE#>3.ISCA-IRJES-2020-005.pdf<#LINE#>Institute of Life and Earth Science, Pan African University, Ibadan, Nigeria and Department of Geology, University of Ibadan , Nigeria and School of Mining and Geology, UR-College of Science and Technology, Rwanda@Institute of Life and Earth Science, Pan African University, Ibadan, Nigeria and Department of Geology, University of Ibadan , Nigeria@Institute of Life and Earth Science, Pan African University, Ibadan, Nigeria and Department of Chemistry, University of Ibadan, Nigeria@School of Mining and Geology, UR-College of Science and Technology, Rwanda<#LINE#>13/2/2020<#LINE#>2/12/2020<#LINE#>The peat deposits in Rwanda are distributed over an area of 50,000 ha. The studies show that Rwanda has one hundred fifty five (155) million tone of dry peat, which can produce electrical energy, and this deposit is sufficient for Rwanda to achieve energy target. These deposits maybe used for about 30 years. Hereafter, it was felt crucial to do mapping to identify probable locations of peats and find out respective energy potential. The result of the study and assessment of peat to power in Rwanda shows that the average in-situ ash content, in-situ moisture content and in-situ bulk density of the collected peat samples are 36% wt, 70.8% wt and 1112kg/m3 respectively. Their average thickness ranges from 0.9 to 7.8m. In Finland, peat was used as fuel in 1996 and produce 10% of total installed capacity. Rwanda has the same operational power plant in Gishoma; Rusizi District generating 15MW connected to the national electrical grid. A peat-fuelled power plant is under construction and is expected to generate 80 MW. This plant, once completed, is expected to connect 50% more household into national grid before the end of 2018. Thus, this effort along with other projects will increase electrical power from 208 MW to 563 MW in 2024. Peat deposit is expected to generate 500 Mega watt electrical powers during 30 years. Although an effort was done to use peat as fuel, the power plant is still vulnerable to the lack of good quality of dry peat to operate and thus efforts are on to develop suitable technology for exploitation.<#LINE#>Andriesse, J. P. (1988).@Nature and Management of tropical peat soils (No. 59).@Food & Agriculture Org, Soil Bulletin.@Yes$Schora, F.C., and Punwani, D.V. (1980).@An Energy Alternative, Vienna.@Energy Research abstracts, 8, 25289-34979.@No$Sarkki, J., Griffin, F., Scully, S., and Flynn, T. (2012).@CFB technology in ESB peat: Burning power stations.@21st International Conference, ESB, Ireland, Naples, and Italy.@Yes$Ekono (1992).@Rwanda Peat Master Plan, Kigali.@Final report.@No$Pajunen, H. (1996).@Mires as late Quaternary accumulation basins in Rwanda and Burundin, Central Africa.@Geological Survey of Finland, Bulletin, Vol. 384.@Yes$Namata. B. (2014).@East African: Growing Demand Switches on Peat Company to Seek Capital Injection, Nairobi.@@Yes$PEC (Peat Energy Company) (2018).@Area of Operation: Energy and Mining.@Online, http://www.epd-rwanda.com/ our-members-kigali.html (Accessed July 20, 2018).@No$Staub, J. R., Esterle, J. S., and Raymond, A. L. (1991).@Comparative geomorphologic analysis of Central Appalachian coal beds and Malaysian peat deposits. In Caol: Formation, occurrence and related properties.@Bull. Soc. Geol. Fr, 162(2), 339-352.@Yes$Dehmer, J. (1992).@Petrology and organic geochemistry of peat samples from a raised bog of Kalimantan (Borneo).@Org. Geochem, 20(3), 340-362.@Yes$Fernandez-Alonso, M., Cutten, H., Waelec, D., Tack, L., Tahon A., Baudet, D., Barritt S.D. (2012).@The Mezoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events.@Precambrian Research, 216, 63-86. http://dx.doi.org/10.1016/ j.precamres.2012.06.007@Yes$Friso de Clercq, Philippe Muchez, Stijn Dewaele & Adrian Boyce (2008).@The Tungsten mineralisation at Nyakabingo and Gifurwe (rwanda): Preliminary results.@Geologica Belgica, 11/3-4, 251-258.@Yes$Schlüter, T. (2008).@Geological atlas of Africa 978-3-540-29144-2.@Springer-Verlag, Berlin. Heidelberg New York. p. 307.@Yes$Theophile Mugerwa, Digne Edmond Rwabuhungu Rwatangabo, O.A. Ehinola and I.A. Oladosu (2018).@Rwanda Peat deposits in Rwanda; an alternative to energy sources.@Energy Reports, 5(2019), 1151-115.@No$Del Rio, J. C., Gonzalez-Vila, F. J., & Martin, F. (1992).@Variation in the content and distribution of biomarkers in two closely situated peat and lignite deposits.@Organic geochemistry, 18(1), 67-78. https://doi.org/10.1016/0146-6380(92)90144-M.@Yes$Cohen, D.A., Spackman, S., and Raymond, J. R. (1987).@Interpreting the characteristics of coal seams from chemical. Physical and petrographic studies of peat deposit.@Geological Society Special Publication, 32, 107-125. https://doi.org/10.1144/GSL.SP.1987.032.01.08.@Yes$Lindström O. (1980).@The technology of peat.@Ambio, 9(6), 309-313.@Yes$Vitikka, A and Lahtinen, P. (2013).@Rwanda Peat Master Plan Update.@Final Report.@Yes$Jean de Dieu K. Hakizimana, Sang-Phil Yoon, Tae-Jin Kang, Hyung-Taek Kim, Young-Shin Jeon and Young-Chan Choi (2016).@Potential for peat-to-power usage in Rwanda and associated implications.@Energy Strategy Reviews, 13-14, 222-235. http://dx.doi.org/10.1016/j.esr. 2016.04.001@Yes$EDCL (2014).@Detailed study and assessment of peat bogs in Rwanda and their Potential use as a source of fuel for power generation.@Final assessment report, 2014.@No$BIS (2003).@Methods of test for Coal and Coke.@Second revision of IS: 1350. Part I, Proximate analysis. Bureau of Indian Standard, pp.1 -29.@Yes$Fatma Hoş-Çebi & Sadettin Korkmaz (2015).@Organic geochemistry of Ağaçbaşı Yayla Peat Deposits, Köprübaşı/ Trabzon, NE Turkey.@International Journal of coal geology, 146, 155-165. http://dx.doi.org/10.1016/j.coal. 2015.05.007.@Yes