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Abstract 

One of the great technique for surveying of the Earth’s subsurface is to simulate seismic wave propagation using numerical 

modeling. Various numerical approaches are available for simulation of wave propagation in 

finite-difference method (FDM), discontinuous Galerkin method (DGM), finite

(FVM), and spectral-element method (SEM). Among different

modelling of wave propagation because of flexibility and efficiency for simulation in complex geometries and inhomogeneous 

media. Standard FEM is an implicit method that means a linear system is required to be solved. Accordingly, it is a slower 

method that FDM as a result it limited the applicability to seismology.

distributed memory complicates matters further. In order to avoid this undesired problem, the spectral

approach is introduced for simulation of wave propagation. The

that FEM with a tiny differences which makes it more suitable and optimal than finite

modelling. In fact, SEM is almost a new numerical

proposing the differences between the

propagation in different angle with straightforw

finite-element and spectral-element solutions with analytical solutions of the two

modeling examples show the great performance of the spectral
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Introduction 

Numerical modelling of seismic wave propagation has an 

indispensable function at almost every part of seismic 

exploration from survey design methods to inversion algorithms 

and imaging
1
. Full waveform inversion

2
, 3D wave simulation

and reverse time migration
4
, are examples of numerical 

modelling. The finite-element and the finite difference methods 

are most common numerical techniques in seismology

finite-difference method is the important and commonplace 

method for simulation of seismic waves which it is planned 

according to estimation that allow replacing different

equations by finite-difference equations
6
.  

 

The finite-element method is a strong and adaptable tool for 

applying to the wave propagation problem. The general 

formulation and the flexibility of media parameters and 

boundary conditions have made FEM a great technique to form 

general-purpose computer programs in order to solve a wide 

range of problems
7
. However, despite the flexibility and high 

accuracy of the standard FEM, the method is rarely used for 

numerical modelling of seismic waves because it req

enormous processing memory and too much calculations
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surveying of the Earth’s subsurface is to simulate seismic wave propagation using numerical 

modeling. Various numerical approaches are available for simulation of wave propagation in 

difference method (FDM), discontinuous Galerkin method (DGM), finite-element method (FEM), finite volume method 

element method (SEM). Among different simulation approaches, FEM is a popular method in or

modelling of wave propagation because of flexibility and efficiency for simulation in complex geometries and inhomogeneous 

media. Standard FEM is an implicit method that means a linear system is required to be solved. Accordingly, it is a slower 

hod that FDM as a result it limited the applicability to seismology. Solving such algorithms on parallel computers with 

distributed memory complicates matters further. In order to avoid this undesired problem, the spectral

roduced for simulation of wave propagation. The formulations and equations of SEM is almost as same as

which makes it more suitable and optimal than finite-element method

a new numerical technique for simulation of wave propagation. The purpose of this study is 

the spectral-element method and finite-element method for simulating seismic wave 

propagation in different angle with straightforward formulation. The accuracy of the methods are shown by comparing the 

element solutions with analytical solutions of the two-dimensional (2D) model.

show the great performance of the spectral-element scheme over finite-element method.

Numerical modelling, spectral-element method, wave propagation

Numerical modelling of seismic wave propagation has an 

function at almost every part of seismic 

exploration from survey design methods to inversion algorithms 

, 3D wave simulation
3
, 

, are examples of numerical 

e finite difference methods 

are most common numerical techniques in seismology
5
. The 

difference method is the important and commonplace 

method for simulation of seismic waves which it is planned 

according to estimation that allow replacing differential 

 

element method is a strong and adaptable tool for 

applying to the wave propagation problem. The general 

formulation and the flexibility of media parameters and 

great technique to form 

purpose computer programs in order to solve a wide 

. However, despite the flexibility and high 

accuracy of the standard FEM, the method is rarely used for 

numerical modelling of seismic waves because it requires 

enormous processing memory and too much calculations
8
.  

These limitations, make the wave propagation problem 

computationally and mathematically challengeable in FEM. The 

spectral-element methods (SEM) has been successfully used for 

simulation of the wave equation, addressing the limitations of 

FEM and providing fast numerical method than the FEM by 

using the weak formulation 

includes the advantageous of FEM with the efficiency of a 

spectral method which it has been 

propagation in global and regional seismology that obtaining 

results remarkably are closed to the real data

hand, SEM also called a higher

(hp-FEM) that high-degree Lagrange interpolat

discretize the wave field on the elements and Gauss

Legendre integration is utilized to solve integration over an 

element
11

. 

 

The main intention of this study is to examine the numerical 

responses of the acoustics wave equation sol

FEM and SEM algorithms and discuss about accuracy, 

computational performance and other factors of different 

simulation for a 2D problem.

 

Theory: The acoustics wave equation describe the propagation 

of seismic waves in subsurface as follo
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surveying of the Earth’s subsurface is to simulate seismic wave propagation using numerical 

modeling. Various numerical approaches are available for simulation of wave propagation in different media, including 

element method (FEM), finite volume method 

approaches, FEM is a popular method in order to 

modelling of wave propagation because of flexibility and efficiency for simulation in complex geometries and inhomogeneous 

media. Standard FEM is an implicit method that means a linear system is required to be solved. Accordingly, it is a slower 

Solving such algorithms on parallel computers with 

distributed memory complicates matters further. In order to avoid this undesired problem, the spectral-element numerical 

formulations and equations of SEM is almost as same as 

element method in the time-domain 

for simulation of wave propagation. The purpose of this study is 

element method for simulating seismic wave 

ard formulation. The accuracy of the methods are shown by comparing the 

dimensional (2D) model. Numerical 

element method. 

ave propagation. 

These limitations, make the wave propagation problem 

computationally and mathematically challengeable in FEM. The 

element methods (SEM) has been successfully used for 

wave equation, addressing the limitations of 

FEM and providing fast numerical method than the FEM by 

using the weak formulation of motion equations
9
. The method 

includes the advantageous of FEM with the efficiency of a 

spectral method which it has been used for simulation of wave 

propagation in global and regional seismology that obtaining 

results remarkably are closed to the real data
10

. On the other 

hand, SEM also called a higher-order finite-element method 

degree Lagrange interpolates is applied to 

discretize the wave field on the elements and Gauss-Lobatto-

Legendre integration is utilized to solve integration over an 

The main intention of this study is to examine the numerical 

acoustics wave equation solving according to 

FEM and SEM algorithms and discuss about accuracy, 

computational performance and other factors of different 

simulation for a 2D problem. 

The acoustics wave equation describe the propagation 

of seismic waves in subsurface as following
12

, 
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where p is the acoustic pressure, c expresses the propagation 

velocity, S is external forces (source) and t is time. The 

variational or weak form of the wave equation will obtain as 

follows
5
: 
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Where Ω expresses the region domain, n is unit outward normal, 

Γ presents the region boundary and the variation operator is 

given by δ. In SEM and FEM, an approximation of the unknown 

solution within an element is estimated according to the 

interpolation (shape) functions ψi (i = 1,...,n) that only rely on 

space. We represent this approximation by
13

: 

 
1
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Where pi expresses the nodal values of the model response at 

node i of the element, and ψi is the interpolation functions for 

node i. The polynomial degree, M, is utilized to show functions 

on each element, therefore M + 1 is the number of nodes for the 

element in each direction. Practically, if the value of M is too 

small, less than generally 5, a SEM modeling almost shows the 

same response and accuracy of a standard FEM that apply to 

wave propagation problems. On the other hand, when the 

polynomial degree is very large, more than 10, the method is 

spatially very exact, but the computational cost becomes 

excessive. Optimal value of polynomial degrees, M, is usually 

between 5 and 10 for spectral-element method usage in wave 

propagation problems
10

. The polynomial degree in the standard 

FEM is M =1. However, the variation of p can be expressed as 

matrix form in the following format: 

 

p p= ψδ δ
                 

(4) 

 

Following spatial discretization, regardless of boundary 

conditions, the displacement formulation of the acoustic wave 

equation 2 becomes an algebra-differential equation which can 

express in general form as following
14

: 

 

.p(t) .p(t) (t)&&M + K = S
                

(5) 

 

and M expresses the mass matrix and K presents the stiffness 

matrix and that they can be written as: 

 

i

T
d= ∫M N N

Ω

Ω

                 

(6) 

2

i

T T

c ( )d
x x z z

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
∫

N N N N
K

Ω

Ω

                

(7) 

The presented formulations are as matrix format which 

streamlines the performance of them in programming 

environments, especially in MATLAB environment. We can 

solve the ordinary differential equations of equation 5 in the 

frequency-domainor in the time-domain based upon the specific 

application and the available computational resources
5
. Finite-

difference approximations are suitable for modelling of wave 

propagation in the time-domain mostly by using the 

displacement of the time derivatives into the space-discrete 

equations
7
. Field �� also can be obtained by applying the second 

order of time derivative of the discrete displacement by using 

central difference approximations that explicitly obtain by: 
1

[ (t) . (t) ]p(t) p.−
−=&& M S K

               
(8) 

 

The result of this approximation is an explicit time-stepping 

scheme that allows us to compute the displacement at time t + 

dt from the displacement at times t and t – dt. Where dt express 

the time stepping interval. Equation 8 can solved as linear 

simultaneous equations that we have used computer program, 

MATLAB, for solving it. 

 

The finite-element and spectral-element 

Standard finite-element method is similar in all given 

relationships to high-order finite-element method (spectral-

element). Interpolating points and numerical integration method 

are two main differences between finite-element and spectral-

element. Nodal points with identical space are used in the 

standard FEM. In fact, if nodal points with evenly-spaced are 

used, the interpolation accuracy will decline. The reason of this 

incident is Runge’s phenomenon. Runge’s phenomenon occur 

close the edges of the interpolation interval when identical space 

points are applied
5
. Figure-1a shows the Rung’s phenomenon in 

interpolation of one-dimensional Gaussian function with 

equidistant nodal points. This undesirable effect can be removed 

by using Gauss-Lobatto-Legendre (GLL) Points for polynomial 

interpolation Figure-1b. As you can see, precision of 

interpolation has increased significantly with GLL nodal points. 

 

Another difference between the methods is the numerical 

integration, Gaussian points are used as collocation points and 

integration weights in standard finite-element method, while 

GLL points are used in the spectral-element as the points of 

integration. Gaussian quadrature is used as numerical 

integration in both methods. The combination of discretization 

and applying the GLL quadrature method in order to achieve 

accurate estimation of the integrals of equation 6 leads to a 

diagonal mass matrix which considerably simplifies the 

algorithm in SEM and decreases drastically computational 

cost
15

. 

 

In order to better understanding the differences between FEM 

and SEM, a simple model, 50m×50m, with velocity of 3,000 

m/s has considered. The maximum frequency is 60Hz. 



International Research Journal of Earth Sciences

Vol. 8(1), 8-12, February (2020) 

 

 International Science Community Association

Therefore, according to the wavelength equation (

the smallest wavelength will be 50m. 

 

Figures-2 and 3 show the patterns of mass and stiffness matrixes 

for two methods. As you can see, the mass matrix (Figure

for the spectral element method is a single diagonal matrix, as a 

result, in the space discretization, the equations

independent of other nodes thus there is no need to calculate the 

inverse of this matrix in equation 8. Therefore, it allows an 

efficient parallel implementation in programing environment 

especially in Matlab. In addition, the stiffness 

element (Figure-2a) is completely filled. Therefore, the 

 

 

Figure-1: Runge’s effect in FEM. Runge’s function is Gaussian function, f (x) =

curve) and the interpolant curves are red. The equidistant points in the interpolation of Runge’s function (left) causes a noticeable 

overshooting of the interpolantnear at the edges of the interpolation interval [

(right) this undesirable effect is removed. 

 

Figure

Figure
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Therefore, according to the wavelength equation (λ �
�

�
�

����

��
), 

2 and 3 show the patterns of mass and stiffness matrixes 

for two methods. As you can see, the mass matrix (Figure-2b) 

for the spectral element method is a single diagonal matrix, as a 

result, in the space discretization, the equations for each node is 

independent of other nodes thus there is no need to calculate the 

Therefore, it allows an 

efficient parallel implementation in programing environment 

In addition, the stiffness matrix for an 

a) is completely filled. Therefore, the 

accuracy of the response in the spectrum method will be more 

than FEM. 

 

Discretization of SEM wave field at the elements is done by 

using high-degree Lagrange interpolates, and integrati

element is resolved by using GLL integration rule. It causes 

lowest numerical grid dispersion and anisotropy. Diagonality of 

mass matrix is the most pivotal feature of the SEM, which 

because of this important feature, we can use a straight forwa

time integration scheme without having to in

(equation 8) that drastically reduces the computational cost and 

simplifies the implementation. Furthermore, it allows an 

efficient parallel implementation in programing environment 

especially in Matlab environment.

Runge’s effect in FEM. Runge’s function is Gaussian function, f (x) =
2

10 x

e
−

with a dominant frequency of 15 MHz (black 

curves are red. The equidistant points in the interpolation of Runge’s function (left) causes a noticeable 

overshooting of the interpolantnear at the edges of the interpolation interval [−1, 1]. By using the GLL points as interpolat

 

Figure-2: Mass matrices scheme. a: FEM, b: SEM. 

 

Figure-3: Stiffness Matrices scheme. a:FEM, b:SEM. 
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accuracy of the response in the spectrum method will be more 

Discretization of SEM wave field at the elements is done by 

degree Lagrange interpolates, and integration of each 

element is resolved by using GLL integration rule. It causes 

lowest numerical grid dispersion and anisotropy. Diagonality of 

mass matrix is the most pivotal feature of the SEM, which 

because of this important feature, we can use a straight forward 

time integration scheme without having to invert a linear system 

8) that drastically reduces the computational cost and 

simplifies the implementation. Furthermore, it allows an 

efficient parallel implementation in programing environment 

ally in Matlab environment. 

 

with a dominant frequency of 15 MHz (black 

curves are red. The equidistant points in the interpolation of Runge’s function (left) causes a noticeable 

−1, 1]. By using the GLL points as interpolation points 
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Numerical example 

In order to investigate the accuracy and computational costs of 

FEM and SEM, we have considered a 2D homogeneous model, 

1500m×1500m,withvelocity of 3,000m/s. Ricker wavelet with a 

dominant frequency of 30Hzis used as a source of seismic 

energy. Analytical estimates are calculated by using the 

software package "Gar6more2D". 

 

We show numerical response for a typical receiver located at 

600 meters far away from the source (Figure

compares the exact solution with 6th order spectral

method (SEM 6), 8th order spectral-element method (SEM 8), 

and FEM. The results of the seismic analysis corresponding to 

the modelling characteristics of 6th order and 8th order spectral

element and the finite-element methods in Table

 

As can be seen, the finite-element method in spite of using 

smaller elements has larger error. The 8th or

nodes, at the minimum wavelength, has very reasonable 

accuracy. SEM 6 has some numerical dispersion that 

magnification of the final part of answer is clearly visible.

 

We have written all algorithms in Matlab environment. 

According to Table-1, computational costs of FEM in Matlab is 

more than 20 times that of the SEM.  

 

Figure-4: Comparison of numerical dispersion in SEM and FEM simulation of seismic wave propagation in 2D homogeneous 

medium. Responses are at 600m of the source. Numerical dispersion becomes insignificant, when the polynomial degree and grid 

points per wavelength are 8 and 4.5 respectively in SEM8 (Blue line).

used as a source. Black line shows numerical dispersion effect in SEM with the polynomial degree 6 and

responses. Exact solution is shown by green line.

 

Table-1: Comparison of different factors in a simulation seismic waves by using SEM and FEM. SEM 6 is SEM with the 

polynomial degree 6 and SEM 8 represents SEM with the polynomial degree 8

Method 
Computation 

Time (s) 

Degrees 

freedom

FEM 795 63001

SEM 6 14 22801

SEM 8 35 40401

Sciences ___________________________________________________
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In order to investigate the accuracy and computational costs of 

have considered a 2D homogeneous model, 

m/s. Ricker wavelet with a 

dominant frequency of 30Hzis used as a source of seismic 

energy. Analytical estimates are calculated by using the 

merical response for a typical receiver located at 

600 meters far away from the source (Figure-4). Figure-4 

compares the exact solution with 6th order spectral-element 

element method (SEM 8), 

eismic analysis corresponding to 

the modelling characteristics of 6th order and 8th order spectral-

element methods in Table-1. 

element method in spite of using 

smaller elements has larger error. The 8th order SEM with 4.5 

nodes, at the minimum wavelength, has very reasonable 

has some numerical dispersion that 

magnification of the final part of answer is clearly visible. 

We have written all algorithms in Matlab environment. 

1, computational costs of FEM in Matlab is 

Evidently the most advantageous feature of the SEM is the 

diagonality of the mass matrix

size of elements in FEM are much smaller than that of SEM, but 

it has much lower accuracy. Since in the application of seismic 

oil exploration, information related to environmental features 

such as speed and density are also 

so the spectral-element method will be optimum. Since the 

dimensions of environment in applications of seismic oil 

exploration is bigger than 6km×20km, the problem has very 

high degree of freedom and requires very high memory 

computational costs and according to the results reported in the 

Table-1, using the finite-

applications will be practically impossible and more research on 

this technique does not recommend. 

 

It should be noted that using

exploration including issues of mechanical engineering, 

structural dynamics and vibration compared with finite

method should be reviewed, because in these applications the 

dimensions are very small and the freque

sources is very high and the properties of the environment 

change at very lower intervals. In this case, in the spectral

element method should also use much smaller elements which 

will increase computational cost.

Comparison of numerical dispersion in SEM and FEM simulation of seismic wave propagation in 2D homogeneous 

of the source. Numerical dispersion becomes insignificant, when the polynomial degree and grid 

avelength are 8 and 4.5 respectively in SEM8 (Blue line). A Ricker wavelet with a dominant frequency of 30 MHz is 

used as a source. Black line shows numerical dispersion effect in SEM with the polynomial degree 6 and

tion is shown by green line. 

Comparison of different factors in a simulation seismic waves by using SEM and FEM. SEM 6 is SEM with the 

polynomial degree 6 and SEM 8 represents SEM with the polynomial degree 8. 

Degrees of 

freedom 

The number of nodes in 

the smallest wavelength 

Element 

length (m) 

63001 6 5 

22801 3.5 15 

40401 4.5 20 
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Evidently the most advantageous feature of the SEM is the 

diagonality of the mass matrix
15

. In addition, even though the 

size of elements in FEM are much smaller than that of SEM, but 

it has much lower accuracy. Since in the application of seismic 

oil exploration, information related to environmental features 

such as speed and density are also available at 25 or 50 meters; 

element method will be optimum. Since the 

dimensions of environment in applications of seismic oil 

exploration is bigger than 6km×20km, the problem has very 

high degree of freedom and requires very high memory and 

computational costs and according to the results reported in the 

-element method in the desired 

applications will be practically impossible and more research on 

this technique does not recommend.  

It should be noted that using SEM in applications other than oil 

exploration including issues of mechanical engineering, 

structural dynamics and vibration compared with finite-element 

method should be reviewed, because in these applications the 

dimensions are very small and the frequency content of energy 

sources is very high and the properties of the environment 

change at very lower intervals. In this case, in the spectral-

element method should also use much smaller elements which 

will increase computational cost. 

 
Comparison of numerical dispersion in SEM and FEM simulation of seismic wave propagation in 2D homogeneous 

of the source. Numerical dispersion becomes insignificant, when the polynomial degree and grid 

A Ricker wavelet with a dominant frequency of 30 MHz is 

used as a source. Black line shows numerical dispersion effect in SEM with the polynomial degree 6 and red line show FEM 

Comparison of different factors in a simulation seismic waves by using SEM and FEM. SEM 6 is SEM with the 

The smallest 

wavelength (m) 

The standard 

error (%) 

30 10.93 

30 6.81 

30 2.72 
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Conclusion 

We study numerical modelling of wave propagation in seismic 

based on spectral-element and finite-element methods and 

discuss about accuracy and computational cost of them for a 2D 

model. The properties of the spectral-element and the finite-

element formulations are presented, and then the relations and 

differences between the two formulations are established. 

Numerical modelling examples demonstrate the performance of 

the spectral-element scheme. The results show that there is an 

optimum time and accuracy for SEM compared to FEM. In the 

application of seismic exploration, the finite-element method is 

undesirable and its usage in time-domain is practically 

impossible. The results show that SEM with the polynomial 

degree 8 of 4.5 grid points per minimum wavelength has very 

good accuracy and there is an acceptable and great accordance 

between the results of exact response and high order spectral-

element, SEM 8. 

 

References 

1. Robertsson J.O.A., Blanch J.O., Nihei K. and Tromp J. 

(2012). Numerical Modeling of Seismic Wave Propagation: 

Gridded Two-way Wave-equation Methods. Society of 

Exploration Geophysicists, the international Society of 

applied geophysics, no. 28. 

2. Jeong W., Min Dong-Joo., Lee Gyu-hwa. and Lee Ho-Yong 

(2011). 2D Frequency-Domain Elastic Full Waveform 

Inversion Using Finite-Element Method For VTI Media. 

Society of Exploration Geophysicists Annual Meeting, 18-

23, September, San Antonio, Texas, USA. 

3. Carcione J.M., Poletto F. and Gei Davide (2003). 3-D wave 

simulation in anelastic media using the Kelvin–Voigt 

constitutive equation. Journal of Computational Physics, 

196, 282-297. 

4. Baldassari C., Barucq H., Calandra H., Denel B. and Diaz J. 

(2009). The reverse time migration technique coupled with 

finite element methods. In: Leger A., Deschamps M. (eds) 

Ultrasonic Wave Propagation in Non Homogeneous Media. 

Springer Proceedings in Physics, 128. Springer, Berlin, 

Heidelberg. 

5. Fichtner A. (2011). Full Seismic Waveform Modelling and 

Inversion, Springer-Verla Berlin Heidelberg. Advances in 

Geophysical and Environmental Mechanics and 

Mathematics. Springer. ISBN: 978-3-642-15807-0. 

6. Moczo P., Robertsson J.O.A. and Eisner L. (2007). The 

Finite-Difference Time-Domain Method for Modeling of 

Seismic Wave Propagation. Advances in Geophysics, 48, 

421-516. 

7. Matthew and Sadiku (2001). Numerical Techniques in 

Electromagnetics. CRC Press LLC. ISBN: 0-8493-1395-3. 

8. Lysmer J. and Drake L.A. (1972). A finite element method 

for seismology. Methods in computational physics, 11, 181-

216. 

9. Komatitsch D., Vilotte J.P., Vai R., Castillo-Covarrubias 

J.M. and Sanchez-Sesma F.J. (1999c). The spectral element 

method for elastic wave equations. application to 2D and 

3D seismic problems, Int. J.  Num. Meth. Eng., 45, 1139-

1164. 

10. Komatitsch D. and Tromp J. (1999). Introduction to the 

spectral element method for three-dimensional Seismic 

wave propagation. Geophysical Journal International, 

139(3), 806-822. 

11. Babuska I. and Suri M. (1990). The p- and h-p versions of 

the finite element method, an overview. Computer Methods 

in Applied Mechanics and Engineering, 80(1-3), 5-26. 

https://doi.org/10.1016/0045-7825(90)90011-A. 

12. Marfurt K.J. (1984). Accuracy of finite-difference and 

finite-element modeling of the scalar and elastic wave 

equations. Geophysics, 49(5), 533-549.  

13. Rahimi Dalkhani A., Javaherian A. and Mahdavi Basir H. 

(2017). Frequency domain finite-element and spectral-

element acoustic wave modeling using absorbing 

boundaries and perfectly matched layer. waves in Random 

and Complex Media, 28(2), 367-388. 

14. Van Pamel A., Sha G., Rokhlin S.I. and Lowe M.J. (2017). 

Finite-element modelling of elastic wave propagation and 

scattering within heterogeneous media. Proc Math Phys 

Eng Sci., 473, 

(2197). https://doi.org/10.1098/rspa.2016.0738. 

15. Komatitsch D. and Vilotte J.P. (1998). The spectral element 

method: an efficient tool to simulate the seismic response of 

2D and 3D geological structures. Bulletin of the 

Seismological Society of America, 88(2), 368-392. 

 

 


