
 Research Journal of Computer and Information Technology Sciences _________________ISSN 2320 – 6527

Vol. 12(2), 1-5, December (2024) Res. J. Computer and IT Sci.

International Science Community Association 1

Performance Analysis of Mining Frequent Itemsets Based on Tree

Structure Algorithm using Synthetic Dataset

Tusharkumar S. Patel
1*

and Harshad B. Bhadka
2

1Faculty of Technology & Engineering, C. U. Shah University, Wadhwan City, Gujarat, India
2RDI Centre, C. U. Shah University, Wadhwan City, Gujarat, India

tusharit85@gmail.com

Available online at: www.isca.in
Received 28th July 2023, revised 13th February 2024, accepted 15th September 2024

Abstract

The most important data mining problem is mining of association rules. There are mainly two sub-problems, finding all

frequent itemsets which is above threshold and finding association rules from generated frequent itemsets. The efficiency

of algorithms is dependent on three factors: the candidates generation process, the structure is used and the

implementation. All the previously available algorithms for mining frequent itemsets from Synthetic dataset are not

efficient and scalable. The main aim of this paper is to presents a newly discovered Frequent Itemset Tree (FI-Tree) data

structure. It is used for stowing frequent itemsets and its associated Transaction ID sets. In several data characteristics,

MFIBT have a unique feature is that it has runs speedy. Large-scale experiments had been conducted and performance

compared between several algorithms, a result shows that MFIBT better performs in terms of memory consumption and

execution time on synthetic dataset. Also it is highly scalable in mining frequent itemsets from synthetic dataset.

Keywords: Association Rules, Frequent Itemset Mining, Data Mining.

Introduction

The most important data mining problem is mining of

association rules. In mining of association rules, extract the

association relationship between a set of products. To extract

rules from set of relationship have two sub-problems. First is

finding all frequent itemsets which is above threshold and

second is finding association rules from frequent itemsets. To

finding all frequent itemsets sub-problem is main role in

association rule mining.

Frequent pattern finding is crucial explored field. Finding

frequent patterns have mainly three direction (1) frequent

itemset mining (2) sequential pattern mining and (3) sub-

structure mining. Frequent itemsets are items exists in a dataset

with itemset support is greater than a user-specified threshold.

Frequent itemsets are used in different knowledge mining

problems that find most important itemsets from datasets like

associated rules, classifiers, sequences, correlations, clusters etc.

Out of which associated rules is crucial research problem.

Frequent itemsets are itemsets that exists in a dataset which

have criteria greater than or equal to a user specified minimum

value criteria. For example, digital camera and memory card

items set that exists frequently together in a transaction dataset

is a frequent itemset. Frequent itemset mining finds relationship

between items in a given synthetic dataset. It is used in different

applications such as store layout, cross-marketing, customer

shopping habits and various decision-making problems.

We newly discovered a Frequent Itemset Tree (FI-Tree) data

structure. It is used for stowing frequent itemsets and its

associated Transaction ID sets. In several data characteristics,

MFIBT have a unique feature is that it has runs speedy. It has

strong performance in different kinds of dataset, better than the

pre-existing available methods in various parameters and its

scalability is high for finding from synthetic dataset.

In this paper, next section presents frequent itemset mining

related work. After that, list out the steps of MFIBT algorithm

for frequent itemset finding. Then analyze performance of

algorithms for frequent itemset finding. In the end, conclusion is

denoted.

Related work

In 1993, Agrawal et al. was first proposed method for frequent

itemset mining from transactional dataset in the shape of mining

associated rules. It examine customers shopping styles by

mining association rules between various set of frequent items.

For example, if customers are purchasing computer, out of

which how many percentages of customers are interested to buy

printer and type of printer on the one time to the store in

market? This kind of knowledge can used to improve trades by

proper decision making, cross marketing and store layout
1
.

There are thousands of research articles exists on frequent

itemsets finding methods with several types of improvements

and implementations. Scalability of algorithms to handles

variety of different datasets and different mining problems in a

diversity of applications. The Apriori algorithm is a level wise

searching method and requires number of database scans on

horizontal layout based synthetic dataset. Eclat algorithm
2

works on vertical layout based synthetic dataset, which is better

in an execution time but requires large space of main memory.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 12(2), 1-5, December (2024) Res. J. Computer and IT Sci.

 International Science Community Association 2

FP-Growth algorithm
3
 works on projected layout based

synthetic dataset, which is better than all discussed above

algorithms because no candidate generates but links store in

main memory. Also studies on the Split and Merge (SaM)
4

algorithm for frequent itemset generation.

An itemset contains set of items. A k-itemset is a itemset have k

items and it is commonly denoted by Lk. The total number of

transactions that exists the itemset is called support count of the

itemset. Apriori and FP-Tree (AFPT) algorithm is a mixer of

Apriori and FP-Growth methods. Its working mechanism is

faster as compared to Apriori and FP-Growth methods
5
.

The frequent itemset mining issue is total number of itemset

generated. If user specified minimum support threshold is lower

then generation of itemsets are very huge. Then pruning

uninteresting itemsets in process is among the main problem in

frequent itemset finding.

Methodology

We provide a concise procedure of the Mining Frequent Itemset

Based on Tree structure (MFIBT) for generating frequent

itemsets discussed below:

A newly discovered data structure is Frequent Itemset Tree (FI-

Tree). It is used for stowing frequent itemsets and its associated

Transaction ID sets.

Now, frequent itemset mining MFIBT algorithm steps are given

below: i. Suppose no more memory required, frequent 1-

itemsets, transaction dataset and also main memory is exists for

producing 2-itemsets candidate based on frequent 1-itemset.

Scan dataset one time and produce frequent 1-itemsets with the

parallel generate transaction sets, which exists the Itemset. ii.

Produce 2-itemsets candidate based on frequent 1-itemset only.

iii. Resulted 2-itemsets candidate node count is less than user

specified minimum threshold with the help of FI-Tree data

structure, it will be eliminated. Now at the second level, FI-Tree

contains only frequent 2-itemsets. Iv. Similarly, approve the

itemset by scan the frequent itemsets and its associated

Transaction ID sets for each frequent 3, 4… n–itemset.

Performance Analysis

To analyze performance of algorithms, experiments were

conducted on Intel® corei3™ CPU, 2.13 GHz and 3 GB of

RAM computer with Microsoft Windows 7 Home Basic

Version 2009 Service Pack 1 operating system. All algorithms

were coded using JAVA language. Two synthetic dataset

T10I4D100K and T40I10D100K provided by the FIMI

repository
6,7

. The N was set to 1,000. Where, N is the number of

distinct items in datasets. Parameters of the synthetic datasets

are shown in Table-1. In the dataset T10I4D100K, |T|=10, |I|=4

and |D|=100K. In the dataset T40I10D100K, |T|=25, |I|=10 and

|D|=100K. Table-2 shown datasets and their properties.

 Table-1: Parameters of the synthetic datasets.

|T| Average number of items per transaction

|I| Average length of a frequent itemset

|D| Number of transactions

 Table-2: Datasets and their Properties.

Datasets Type No.

items

Average

length
No.

transactions

Size

(KB)

T10I4D100K Sparse 1000 10.1 100000 4026

T40I10D100K Sparse 1000 39.6 100000
1521

3

Figure-1 display our test results for T10I4D100K dataset using

the execution time vs. different minimum support. The same

results denoted by Table-3. Also peak memory in Mbytes

requirements shown in Figure-3 and Table-4. We can see that

the MFIBT is around 37.8 times faster than Apriori, 1.6 times

faster than SaM algorithm and 1.5 times faster than AFPT

algorithm with minimal support at 0.25%. Figure-2 display our

test results for T10I4D100K dataset using the execution time vs.

passes (minsup=0.25%).

 Figure-1: Total execution time of T10I4D100K dataset.

 Figure-2: Execution time of T10I4D100K dataset.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 12(2), 1-5, December (2024) Res. J. Computer and IT Sci.

 International Science Community Association 3

 Table-3: Total execution time of T10I4D100K dataset.

Support

(in %)

Total Execution time in second

MFIBT SaM AFPT Apriori

2 1.404 2.497 1.856 3.419

1.5 1.417 2.934 1.909 10.92

1 1.441 3.791 2.59 28.32

0.75 1.515 3.824 2.808 43.49

0.5 1.872 3.96 3.26 64.867

0.25 2.793 4.427 4.138 105.517

 Figure-3: Peak memory required for T10I4D100K dataset.

Table-4: Peak memory required for T10I4D100K dataset.

Support

(in %)

Peak Memory in Mbytes

MFIBT SaM AFPT Apriori

2 92.36 96.07 93.46 87.75

1.5 93.28 97.4 102.69 92.25

1 93.56 95.73 110.43 94.7

0.75 96.35 99.38 235.2 96.75

0.5 98.29 100.55 255.18 119.79

0.25 157.18 152.95 270.24 166.38

Figure-4 display our test results for T40I10D100K dataset using

the execution time vs. different minimum support. The same

results denoted by Table-5. Also peak memory in Mbytes

requirements shown in Figure-6 and Table-6. We can see that

the MFIBT is around 2.1 times faster than Apriori, 1.4 times

faster than SaM algorithm and 1.1 times faster than AFPT

algorithm with minimal support at 0.25%. Figure-5 display our

test results for T40I10D100K dataset using the execution time

vs. passes (minsup=0.25%).

Figure-4: Total execution time of T40I10D100K dataset.

 Figure-5: Execution time of T40I10D100K dataset.

 Table-5: Total execution time of T40I10D100K dataset.

Support

(in %)

Total Execution time in second

MFIBT SaM AFPT Apriori

2 10.249 108.35 84.894 131.208

1.5 19.94 169.536 98.112 181.412

1 59.796 254.994 159.594 405.163

0.75 153.926 330.96 248.658 962.26

0.5 311.414 569.67 479.502 1286.03

0.25 825.102 1183.44 894.852 1743.13

Figure-6: Peak memory required for T40I10D100K dataset.

Table-6: Peak memory required for T40I10D100K dataset.

Support

(in %)

Peak Memory in Mbytes

MFIBT SaM AFPT Apriori

2 219.57 368.5 408.96 203.61

1.5 286.11 378.12 478.4 233.5

1 318.07 380.75 526.46 260.6

0.75 331.57 382.84 552.72 287.7

0.5 332.88 388.02 579.81 314.8

0.25 334.84 391.51 619.97 341.9

Figure-7 display our scalability test results for T10I4 dataset

using the relative time vs. number of transactions

(minsup=0.75%). The same results denoted by Table-7.

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 12(2), 1-5, December (2024) Res. J. Computer and IT Sci.

 International Science Community Association 4

Also peak memory in Mbytes requirements shown in Figure-8

and Table-8. We can see that the MFIBT is around 27.5 times

faster than Apriori, 3.7 times faster than SaM algorithm and 2.2

times faster than AFPT algorithm with number of transactions at

250K.

 Figure-7: Relative time of T10I4 dataset.

Table-7: Relative time of T10I4 dataset.

Number of

transactions

(minsup=0.75%)

Relative Time

MFIBT SaM AFPT Apriori

50K 0.795 2.715 1.732 23.32

100K 1.515 3.824 2.808 43.49

150K 1.85 6.875 3.554 50.45

200K 2.044 7.526 3.9 62.743

250K 2.508 9.377 5.446 69.035

 Figure-8: Peak memory required for T10I4 dataset.

Table-8: Peak memory required for T10I4 dataset.

Number of

transactions

(minsup=0.75%)

Peak Memory in Mbytes

MFIBT SaM AFPT Apriori

50K 49.5 55.53 67.08 66.09

100K 96.35 99.38 235.2 96.75

150K 110.675 131.445 252.61 133.125

200K 185 163.51 270.02 189.5

250K 204.325 195.575 287.43 208.875

Figure-9 display our scalability test results for T40I10 dataset

using the relative time vs. number of transactions

(minsup=0.75%). The same results denoted by Table-9. Also

peak memory in Mbytes requirements shown in Figure-10 and

Table-10. We can see that the MFIBT is around 5.1 times faster

than Apriori, 1.5 times faster than AFPT algorithm and 1.2

times faster than SaM algorithm with number of transactions at

250K.

 Figure-9: Relative time of T40I10 dataset.

Table-9: Relative time of T40I10 dataset.

Number of

transactions

(minsup=0.75%)

Relative Time

MFIBT SaM AFPT Apriori

50K 64.681 168.57 142.968 401.086

100K 153.926 330.96 248.658 962.26

150K 285.867 405.39 390.018 1254.69

200K 417.807 479.82 531.378 1747.11

250K 459.747 554.25 672.738 2339.53

 Figure-10: Peak memory required for T40I10 dataset.

 Table-10: Peak memory required for T40I10 dataset.

Number of

transactions

(minsup=0.75%)

Peak Memory in Mbytes

MFIBT SaM AFPT Apriori

50K 174.51 194 402.86 233.22

100K 331.565 382.84 552.72 287.7

150K 340.453 407.93 565.97 320.285

200K 349.34 413.02 583.22 382.87

250K 358.227 428.11 591.47 395.455

Research Journal of Computer and Information Technology Sciences ___________________________________ISSN 2320 – 6527

 Vol. 12(2), 1-5, December (2024) Res. J. Computer and IT Sci.

 International Science Community Association 5

Conclusion

In this paper, we conduct the experiments on MFIBT algorithm

to find frequent itemsets using a newly discovered Frequent

Itemset Tree (FI-Tree) data structure. It is used for stowing

frequent itemsets and its associated Transaction ID sets. In

several data characteristics, MFIBT have a unique feature is that

it has runs speedy. The experiments includes time required for

execution, maximum memory requirement and scalability are

evaluated for MFIBT, SaM, AFPT and Apriori algorithms using

synthetic dataset and varying minimum support thresholds.

Switching the user specified support value does not major affect

the MFIBT algorithm in execution time and memory

consumption.

Our experiments prove that the MFIBT algorithm has a

magnitude order improved over the basic Apriori method on

synthetic dataset and is better than the other three algorithms.

Since MFIBT algorithm uses frequent itemset tree structure,

execution time and memory consumption do not necessary

increase as the number of transactions increases. Different

experiments had been conducted and performance compared

between several algorithms, a result shows that MFIBT better

performs in terms of memory consumption and execution time

on synthetic dataset which are T10I4D100K and T40I10D100K.

Scalability of MFIBT algorithm is high in frequent itemset

mining.

References

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for

mining association rules. In Proc. 20th int. conf. very large

data bases, VLDB, 1215, 487-499.

2. Borgelt, C. (2003). Efficient implementations of apriori and

eclat. In FIMI’03: Proceedings of the IEEE ICDM

workshop on frequent itemset mining implementations

(Vol. 90).

3. Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns

without candidate generation. ACM sigmod record, 29(2),

1-12.

4. Borgelt, C. (2010). Simple algorithms for frequent item set

mining. In Advances in Machine Learning II: Dedicated to

the Memory of Professor Ryszard S. Michalski, 351-369.

Berlin, Heidelberg: Springer Berlin Heidelberg.

5. Lan, Q., Zhang, D., & Wu, B. (2009). A new algorithm for

frequent.

6. Goethals, B. (2003). Frequent itemset mining dataset

repository. http://fimi. cs. helsinki. fi/data/.

7. Bayardo, R. (2014). Frequent itemset mining dataset

repository. UCI datasets and PUMSB.

