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Abstract 

The most important data mining problem is mining of association rules. There are mainly two sub-problems, finding all 

frequent itemsets which is above threshold and finding association rules from generated frequent itemsets. The efficiency 

of algorithms is dependent on three factors: the candidates generation process, the structure is used and the 

implementation. All the previously available algorithms for mining frequent itemsets from Synthetic dataset are not 

efficient and scalable. The main aim of this paper is to presents a newly discovered Frequent Itemset Tree (FI-Tree) data 

structure. It is used for stowing frequent itemsets and its associated Transaction ID sets. In several data characteristics, 

MFIBT have a unique feature is that it has runs speedy. Large-scale experiments had been conducted and performance 

compared between several algorithms, a result shows that MFIBT better performs in terms of memory consumption and 

execution time on synthetic dataset. Also it is highly scalable in mining frequent itemsets from synthetic dataset. 
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Introduction 
 

The most important data mining problem is mining of 

association rules. In mining of association rules, extract the 

association relationship between a set of products. To extract 

rules from set of relationship have two sub-problems. First is 

finding all frequent itemsets which is above threshold and 

second is finding association rules from frequent itemsets. To 

finding all frequent itemsets sub-problem is main role in 

association rule mining. 

 

Frequent pattern finding is crucial explored field. Finding 

frequent patterns have mainly three direction (1) frequent 

itemset mining (2) sequential pattern mining and (3) sub-

structure mining. Frequent itemsets are items exists in a dataset 

with itemset support is greater than a user-specified threshold. 

Frequent itemsets are used in different knowledge mining 

problems that find most important itemsets from datasets like 

associated rules, classifiers, sequences, correlations, clusters etc. 

Out of which associated rules is crucial research problem. 

 

Frequent itemsets are itemsets that exists in a dataset which 

have criteria greater than or equal to a user specified minimum 

value criteria. For example, digital camera and memory card 

items set that exists frequently together in a transaction dataset 

is a frequent itemset. Frequent itemset mining finds relationship 

between items in a given synthetic dataset. It is used in different 

applications such as store layout, cross-marketing, customer 

shopping habits and various decision-making problems. 

 

We newly discovered a Frequent Itemset Tree (FI-Tree) data 

structure. It is used for stowing frequent itemsets and its 

associated Transaction ID sets. In several data characteristics, 

MFIBT have a unique feature is that it has runs speedy. It has 

strong performance in different kinds of dataset, better than the 

pre-existing available methods in various parameters and its 

scalability is high for finding from synthetic dataset. 

 

In this paper, next section presents frequent itemset mining 

related work. After that, list out the steps of MFIBT algorithm 

for frequent itemset finding. Then analyze performance of 

algorithms for frequent itemset finding. In the end, conclusion is 

denoted. 

 

Related work 

In 1993, Agrawal et al. was first proposed method for frequent 

itemset mining from transactional dataset in the shape of mining 

associated rules. It examine customers shopping styles by 

mining association rules between various set of frequent items. 

For example, if customers are purchasing computer, out of 

which how many percentages of customers are interested to buy 

printer and type of printer on the one time to the store in 

market? This kind of knowledge can used to improve trades by 

proper decision making, cross marketing and store layout
1
. 

 

There are thousands of research articles exists on frequent 

itemsets finding methods with several types of improvements 

and implementations. Scalability of algorithms to handles 

variety of different datasets and different mining problems in a 

diversity of applications. The Apriori algorithm is a level wise 

searching method and requires number of database scans on 

horizontal layout based synthetic dataset. Eclat algorithm
2
 

works on vertical layout based synthetic dataset, which is better 

in an execution time but requires large space of main memory. 
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FP-Growth algorithm
3
 works on projected layout based 

synthetic dataset, which is better than all discussed above 

algorithms because no candidate generates but links store in 

main memory. Also studies on the Split and Merge (SaM)
4
 

algorithm for frequent itemset generation. 

 

An itemset contains set of items. A k-itemset is a itemset have k 

items and it is commonly denoted by Lk. The total number of 

transactions that exists the itemset is called support count of the 

itemset. Apriori and FP-Tree (AFPT) algorithm is a mixer of 

Apriori and FP-Growth methods. Its working mechanism is 

faster as compared to Apriori and FP-Growth methods
5
. 

 

The frequent itemset mining issue is total number of itemset 

generated. If user specified minimum support threshold is lower 

then generation of itemsets are very huge. Then pruning 

uninteresting itemsets in process is among the main problem in 

frequent itemset finding. 

 

Methodology 

We provide a concise procedure of the Mining Frequent Itemset 

Based on Tree structure (MFIBT) for generating frequent 

itemsets discussed below: 

 

A newly discovered data structure is Frequent Itemset Tree (FI-

Tree). It is used for stowing frequent itemsets and its associated 

Transaction ID sets. 

 

Now, frequent itemset mining MFIBT algorithm steps are given 

below: i. Suppose no more memory required, frequent 1-

itemsets, transaction dataset and also main memory is exists for 

producing 2-itemsets candidate based on frequent 1-itemset. 

Scan dataset one time and produce frequent 1-itemsets with the 

parallel generate transaction sets, which exists the Itemset. ii. 

Produce 2-itemsets candidate based on frequent 1-itemset only. 

iii. Resulted 2-itemsets candidate node count is less than user 

specified minimum threshold with the help of FI-Tree data 

structure, it will be eliminated. Now at the second level, FI-Tree 

contains only frequent 2-itemsets. Iv. Similarly, approve the 

itemset by scan the frequent itemsets and its associated 

Transaction ID sets for each frequent 3, 4… n–itemset. 

 

Performance Analysis 

To analyze performance of algorithms, experiments were 

conducted on Intel® corei3™ CPU, 2.13 GHz and 3 GB of 

RAM computer with Microsoft Windows 7 Home Basic 

Version 2009 Service Pack 1 operating system. All algorithms 

were coded using JAVA language. Two synthetic dataset 

T10I4D100K and T40I10D100K provided by the FIMI 

repository
6,7

. The N was set to 1,000. Where, N is the number of 

distinct items in datasets. Parameters of the synthetic datasets 

are shown in Table-1. In the dataset T10I4D100K, |T|=10, |I|=4 

and |D|=100K. In the dataset T40I10D100K, |T|=25, |I|=10 and 

|D|=100K. Table-2 shown datasets and their properties. 

  Table-1: Parameters of the synthetic datasets. 

|T| Average number of items per transaction 

|I| Average length of a frequent itemset 

|D| Number of transactions 

 

 Table-2: Datasets and their Properties. 

Datasets Type No. 

items 

Average 

length 
No. 

transactions 

Size 

(KB) 

T10I4D100K Sparse 1000 10.1 100000 4026 

T40I10D100K Sparse 1000 39.6 100000 
1521

3 

 

Figure-1 display our test results for T10I4D100K dataset using 

the execution time vs. different minimum support. The same 

results denoted by Table-3. Also peak memory in Mbytes 

requirements shown in Figure-3 and Table-4. We can see that 

the MFIBT is around 37.8 times faster than Apriori, 1.6 times 

faster than SaM algorithm and 1.5 times faster than AFPT 

algorithm with minimal support at 0.25%. Figure-2 display our 

test results for T10I4D100K dataset using the execution time vs. 

passes (minsup=0.25%). 

 

 
 Figure-1: Total execution time of T10I4D100K dataset. 

 

 
 Figure-2: Execution time of T10I4D100K dataset. 
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 Table-3: Total execution time of T10I4D100K dataset. 

Support 

(in %) 

Total Execution time in second 

MFIBT SaM AFPT Apriori 

2 1.404 2.497 1.856 3.419 

1.5 1.417 2.934 1.909 10.92 

1 1.441 3.791 2.59 28.32 

0.75 1.515 3.824 2.808 43.49 

0.5 1.872 3.96 3.26 64.867 

0.25 2.793 4.427 4.138 105.517 

 

 
 Figure-3: Peak memory required for T10I4D100K dataset. 

 

Table-4: Peak memory required for T10I4D100K dataset. 

Support 

(in %) 

Peak Memory in Mbytes 

MFIBT SaM AFPT Apriori 

2 92.36 96.07 93.46 87.75 

1.5 93.28 97.4 102.69 92.25 

1 93.56 95.73 110.43 94.7 

0.75 96.35 99.38 235.2 96.75 

0.5 98.29 100.55 255.18 119.79 

0.25 157.18 152.95 270.24 166.38 

 

Figure-4 display our test results for T40I10D100K dataset using 

the execution time vs. different minimum support. The same 

results denoted by Table-5. Also peak memory in Mbytes 

requirements shown in Figure-6 and Table-6. We can see that 

the MFIBT is around 2.1 times faster than Apriori, 1.4 times 

faster than SaM algorithm and 1.1 times faster than AFPT 

algorithm with minimal support at 0.25%. Figure-5 display our 

test results for T40I10D100K dataset using the execution time 

vs. passes (minsup=0.25%). 

 

 
Figure-4: Total execution time of T40I10D100K dataset. 

 
 Figure-5: Execution time of T40I10D100K dataset. 

 

  Table-5: Total execution time of T40I10D100K dataset. 

Support  

(in %) 

Total Execution time in second 

MFIBT SaM AFPT Apriori 

2 10.249 108.35 84.894 131.208 

1.5 19.94 169.536 98.112 181.412 

1 59.796 254.994 159.594 405.163 

0.75 153.926 330.96 248.658 962.26 

0.5 311.414 569.67 479.502 1286.03 

0.25 825.102 1183.44 894.852 1743.13 

 

 
Figure-6: Peak memory required for T40I10D100K dataset. 

 

Table-6: Peak memory required for T40I10D100K dataset. 

Support 

(in %) 

Peak Memory in Mbytes 

MFIBT SaM AFPT Apriori 

2 219.57 368.5 408.96 203.61 

1.5 286.11 378.12 478.4 233.5 

1 318.07 380.75 526.46 260.6 

0.75 331.57 382.84 552.72 287.7 

0.5 332.88 388.02 579.81 314.8 

0.25 334.84 391.51 619.97 341.9 

 

Figure-7 display our scalability test results for T10I4 dataset 

using the relative time vs. number of transactions 

(minsup=0.75%). The same results denoted by Table-7.  
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Also peak memory in Mbytes requirements shown in Figure-8 

and Table-8. We can see that the MFIBT is around 27.5 times 

faster than Apriori, 3.7 times faster than SaM algorithm and 2.2 

times faster than AFPT algorithm with number of transactions at 

250K. 

 

 
 Figure-7: Relative time of T10I4 dataset. 

 

Table-7: Relative time of T10I4 dataset. 

Number of 

transactions 

(minsup=0.75%) 

Relative Time 

MFIBT SaM AFPT Apriori 

50K 0.795 2.715 1.732 23.32 

100K 1.515 3.824 2.808 43.49 

150K 1.85 6.875 3.554 50.45 

200K 2.044 7.526 3.9 62.743 

250K 2.508 9.377 5.446 69.035 

 

 
 Figure-8: Peak memory required for T10I4 dataset. 

 

Table-8: Peak memory required for T10I4 dataset. 

Number of 

transactions 

(minsup=0.75%) 

Peak Memory in Mbytes 

MFIBT SaM AFPT Apriori 

50K 49.5 55.53 67.08 66.09 

100K 96.35 99.38 235.2 96.75 

150K 110.675 131.445 252.61 133.125 

200K 185 163.51 270.02 189.5 

250K 204.325 195.575 287.43 208.875 

Figure-9 display our scalability test results for T40I10 dataset 

using the relative time vs. number of transactions 

(minsup=0.75%). The same results denoted by Table-9. Also 

peak memory in Mbytes requirements shown in Figure-10 and 

Table-10. We can see that the MFIBT is around 5.1 times faster 

than Apriori, 1.5 times faster than AFPT algorithm and 1.2 

times faster than SaM algorithm with number of transactions at 

250K. 

 
 Figure-9: Relative time of T40I10 dataset. 

 

Table-9: Relative time of T40I10 dataset. 

Number of 

transactions 

(minsup=0.75%) 

Relative Time 

MFIBT SaM AFPT Apriori 

50K 64.681 168.57 142.968 401.086 

100K 153.926 330.96 248.658 962.26 

150K 285.867 405.39 390.018 1254.69 

200K 417.807 479.82 531.378 1747.11 

250K 459.747 554.25 672.738 2339.53 

 

 
 Figure-10: Peak memory required for T40I10 dataset. 

 

  Table-10: Peak memory required for T40I10 dataset. 

Number of 

transactions 

(minsup=0.75%) 

Peak Memory in Mbytes 

MFIBT SaM AFPT Apriori 

50K 174.51 194 402.86 233.22 

100K 331.565 382.84 552.72 287.7 

150K 340.453 407.93 565.97 320.285 

200K 349.34 413.02 583.22 382.87 

250K 358.227 428.11 591.47 395.455 
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Conclusion 

In this paper, we conduct the experiments on MFIBT algorithm 

to find frequent itemsets using a newly discovered Frequent 

Itemset Tree (FI-Tree) data structure. It is used for stowing 

frequent itemsets and its associated Transaction ID sets. In 

several data characteristics, MFIBT have a unique feature is that 

it has runs speedy. The experiments includes time required for 

execution, maximum memory requirement and scalability are 

evaluated for MFIBT, SaM, AFPT and Apriori algorithms using 

synthetic dataset and varying minimum support thresholds. 

Switching the user specified support value does not major affect 

the MFIBT algorithm in execution time and memory 

consumption.  

 

Our experiments prove that the MFIBT algorithm has a 

magnitude order improved over the basic Apriori method on 

synthetic dataset and is better than the other three algorithms. 

Since MFIBT algorithm uses frequent itemset tree structure, 

execution time and memory consumption do not necessary 

increase as the number of transactions increases. Different 

experiments had been conducted and performance compared 

between several algorithms, a result shows that MFIBT better 

performs in terms of memory consumption and execution time 

on synthetic dataset which are T10I4D100K and T40I10D100K. 

Scalability of MFIBT algorithm is high in frequent itemset 

mining.  
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