International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Biochemical changes in fish Heteropneustes fossilis (Bloch) on exposure to fly ash

Author Affiliations

  • 1School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla-768019, India
  • 2School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla-768019, India
  • 3Dera Natung Government College, Itanagar, Arunachal Pradesh-791113, India

Res. J. Animal, Veterinary and Fishery Sci., Volume 10, Issue (1), Pages 18-24, May,24 (2022)


Air breathing fish Heteropneustes fossilis (Bloch) were exposed to different concentration of fly ash to study the biochemical changes in blood. The LC50 value of fly ash to fishes was estimated. Than fishes were exposed to sub lethal concentration of fly ash (200g/l, 400g/land 600g/l) for of seven days. A control group of fish with normal water was maintained. The biochemical parameters like plasma glucose, protein, triglyceride, cholesterol, creatinine and urea were estimated. There has been significant decline in plasma glucose and protein level where as cholesterol and triglyceride level increased significantly. The blood urea nitrogen and creatinine also increased significantly from the control value indicating kidney dysfunction.


  1. Walia.A. and Mehera, N. K. (1998)., A seasonal assessment of the impact of coal fly ash disposal on the river Yamuna, Delhi., Water, Air and Soil Pollut, 103(1-4), 315-339.
  2. Smolka-Danielowska, D (2006)., Heavy metals in fly ash from a coal fired power station in Poland., Polish J Environ Stud., 15(6), 943-946.
  3. Satish A. & Singh R. K. (2017)., Effect of Fly Ash on The Haematological Parameters of Channa Punctatus (Bloch)., World Journal of Pharmacy and Pharmaceutical Sciences, 6(7), 1309-1314.
  4. Pradhan, S., Behera, R. K., & Nanda, P. (2019)., Haematological alteration in fish Heteropneustes fossilis (Bloch) on exposure to fly ash., Int. Res. J. Biological. Sci., 8(8), 1-8.
  5. Nanda P. (2014)., Bioaccumulation of Heavy metals and Physiological response in Anabas testudineus on exposure to paper mill effluent., J. Environ. Anal. Toxicol., 5(1), 1-8.
  6. Kaoud H.A. and El-Dahshan, A.R. (2010)., Bioaccumulation and histopathological alterations of heavy metals in Oreochromis niloticus fish., Nature and Science, 8(4), 147-156.
  7. Adriano D.C., Page, A.L., Elseewi A.A., Chang, A.C., and Straughan, I. (1980)., Utilization and disposal of fly-ash and other coal residues in terrestrial ecosystems: A Review., J Environ Qual, 9, 333–334.
  8. Mattigod S.V, Rai, D., Eary, L.E., and Ainsworth, C.C. (1990)., Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues. I: Review of the major elements., J Environ. Qual, 19, 188–201.
  9. Page A.L., Elseewi, A.A. and Straughan, I. (1979)., Physical and chemical properties of fly-ash from coal fired power plants with reference to environmental impacts., Residue Rev, 71, 83–120.
  10. Pandey, G. and Madhuri, S. (2014)., Heavy metals causing toxicity in animals and fishes., Res. J. Animal. Veterinary and fishery Sci, 2(2), 17-23.
  11. Lowry, O.H., Rosenbrough, N.J. and Randall, R.J. (1951)., Protein measurement with the Folin-phenol reagent., J. Biol. Chem., 183, 265-275.
  12. Cooper G. R. and McDaniel, V. (1970)., Standard Methods of Clinical Chemistry., 6, 159.
  13. Trinder P. (1969)., Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor., Ann Clin Biochem, 6, 24-27.
  14. Newman D.J., H.Thakker, Edwards, R.G., Wilkie, M., White, T., Grubb, A. and Price, C.P. (1995)., Serum cystatin C measured by automated immuno-assay: a more sensitive marker of changes in GFR than serum creatinine., Kid. Int, 47, 312-318.
  15. Searcy R.L., Reardon, J.E. and Foreman, J.A. (1967)., A new photometric method for serum urea nitrogen determination., Am. J. Med. Technol, 33(1), 15-20.
  16. Sullivan D.R., Kruijswijik, Z., West C.E., Kohlmeier, M. and Katan, M.B. (1985)., Determination of serum triglycerides by an accurate enzymatic method not affected by free glycerol., Clin. Chem., 31(7), 1227-8.
  17. Thangam, Y. (2014)., Effect of nitrite toxicity in carbohydrate metabolism to fresh water fish Cirrhinus mrigala., IOSR Journal of Pharmacology and Biosciences, 9(5), 03-11.
  18. Authman, M., Zaki, M.S., Khallaf, E.A. and Abbas, H.H., (2015)., Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution., J. Aquac. Res. Dev, 16(6), 1-13.
  19. Mehjbeen Javed and Usmani, N. (2014)., Assessment of heavy metals (Cu, Ni, Fe, Co, Mn, Cr, Zn) in rivulet water, their accumulations and alterations in hematology of fish Channa punctatus., African Journal of Biotechnology, 13(3), 492-501.
  20. Harper, H.A., Rodwell, V.W. and Mayes, P.A. (1977)., Review of physiological chemistry., Lange medical publications, Los Atlos, California, USA.
  21. Kavitha, C., Malarvizhi, A., Kumaran, S.S. and Ramesh, M. (2010)., Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla., Food and Chemical Toxicology, 48, 2848–2854.
  22. Pandey, G. and Madhuri, S. (2014)., Heavy metals causing toxicity in animals and fishes., Res. J. Animal. Veterinary and fishery Sci, 2(2), 17-23.
  23. Harper, H.A., Rodwell, V.W. and Mayes, P.A. (1977)., Review of physiological chemistry., Lange Medical Publications, 6(1), 23-28.
  24. Nanda P., Panda B.N. and Behera, M.K. (2000)., Nickel induced alterations in protein level of some tissues of Heteropneustes fossilis., J. Environ. Biol., 21(2), 117-119.
  25. Parvathi, K., Sivakumar, P, Ramesh, M. and Sarasu (2011)., Sublethal effects of chromium on some biochemical profiles of the fresh water teleost, Cyprinus carpio., International Journal of Applied Biology and Pharmaceutical Technology, 2(1), 295-300.
  26. Haque, M. S., Hasan, M. M., Maniruzzaman, M., Aktaruzzaman, M., Zubair, M. A., & Rahman, M. M. (2016)., Metabolic alterations in liver of fresh water fish, C. punctata exposed to arsenic: an adverse and adaptive response to the environment., International Journal of Agricultural Research, Innovation and Technology, 6(2), 87-94.
  27. Kumar, R. and Banerjee, T.K. (2012)., Study of sodium arsenite induced biochemical changes on certain biomolecules of the freshwater catfish, Clarias batrachus., Neotrop. Ichthyol., 10(2), 451-459.
  28. Gijare, S., Raje, I.A., Tantarpale, V.T. and Kulkarni, K.M. (2013)., Lipid changes in the freshwater fish Ophiocephalus punctatus exposed to synthetic pyrethroidcypermethrin; Biosci., Biotech. Res. Comm., 4(1), 52-54.
  29. Okonkwo, F.O. and Ejike, C.E.C.C. (2011)., Simulation of heavy metal contamination of fresh water bodies:toxic effects in the catfish and its amelioration with co-contamination with glyphosate., J. Appl. Sci. Environ. Manage., 15(2), 341-345.
  30. Mahmoud, U. M., Ebied, A. M. and Mohamed, S. M. (2013)., Physiology & Molecular Biology Effect of lead on some haematological and biochemical characteristics of Clarias gariepinus dietary supplemented with lycopene and vitamin E., J. Biolog. Sci., 5(1), 67-89.
  31. Mishra AK and Mohanty B (2008)., Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch)., Environ Toxicol Phar., 26, 136–141.
  32. Farag A.M., May, T., Marty, G.D., Easton, M., Harper, D.D., Little, E.E. and Cleveland, L. (2006)., The effect of chronic chromium on the health of Chinook salmon (Oncorhynchus tshawytscha)., Aq. Toxic., 76(3-4), 246-257.
  33. Ahmad O.A., Hohn, C., Allen, P.J., Rodriguez, J. and Petrie-Hanson, L. (2014)., Tissue PAH, blood cell and tissue changes following exposure to water accommodated fractions of crude oil in alligator gar, Atractosteus spatula., Marine Environmental Research., 108, 33-44.
  34. Mehibeen, J. and Usmani, N. (2015)., Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent., Saudi J Biol Sci., 22(2), 237–242.