
 Research Journal of Recent Sciences __________________________________________________ISSN 2277-2502 

Vol. 9(2), 7-12, April (2020) Res. J. Recent Sci. 

 

 International Science Community Association       7 

Method of composing and contents of the Tasks for students’ calculation and 

graphic work in the electrodynamics course 

Zharilkassin Iskakov 
Almaty University of Power Engineering and Telecommunications, Dzholdasbekov Institute of Mechanics and Machine Science, Almaty, 

Kazakhstan 

iskakov53@mail.ru 

Available online at: www.isca.in, www.isca.me 
Received 9th May 2019, revised 14th November 2019, accepted 20th January 2020 

 

 

 

Abstract 

The technique of compiling tasks for calculating and graphic works for independent work of students on the elective 

discipline of electrodynamics for the specialty of electric power engineering is considered in this work. To do this, the study 

of the electromagnetic field of the plane capacitor and a solenoid is generalized and supplemented. From the relation 

between the magnetic induction and vector potential of the magnetic field of the capacitor the value of the vector potential is 

determined as a function of the radial coordinate, which decreases parabolically with distance from the axis of the capacitor. 

Expressions for energy of electric energy and magnetic field were found assuming that the electric field is concentrated and 

homogeneous in the condenser volume. The graphs of dependence of displacement current density on the radial coordinate 

were plotted that indicate a linear increase in the current density displacement inside the coil and hyperbolic decay outside 

the solenoid. As in the case of the capacitor the energies of the solenoid’s electric and magnetic fields are determined, but for 

this once it is assumed that the magnetic field is concentrated and homogeneous in the solenoid’s volume. The proposed 

method can be used by physics teachers to compose the assignments of calculation and graphic works for the independent 

work of students majoring in electrical power engineering when choosing a course of electrodynamics as elective discipline. 
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Introduction 

In accordance with the State Compulsory Educational Standard 

and the standard curriculum for the the specialty 5B071800 – 

Electrical Power Engineering, the physics discipline (Fiz 1205), 

which is a core component of the basic disciplines, is active in 

program in the second semester with four maintenance loans1. 

Electrodynamics course with three maintenance loans is 

presented as one of the basic courses elective components and 

as a course for the early students’ specialization in the third 

semester at the Almaty University of Power Engineering and 

Telecommunications2. This course does not repeat the content 

of the electricity and magnetism section, which is an integral 

part of the physics course, but up-grades at a higher theoretical 

level, specializing students in reliance on the students 

knowledge gained in studying of this section, and learns the 

properties of electric, magnetic and electromagnetic fields based 

on the Maxwell equations. 
 

Student's individual work in the electrodynamics course in 

accordance with the number of credits covers three calculation 

and graphic tasks: the calculation of the electrostatic field and of 

direct current field, the calculation of the magnetostatic field, 

studying of the electromagnetic field and the additional 

questions to each of them3. 

 

In the framework of the calculation of the electrostatic field, the 

potential and field strength, the associated charges at the 

boundary of dielectrics and the force of attraction of the charge 

to the boundary plane is determined. In the studying of the 

direct current electric field, the electric field strength and current 

density in a medium with low conductivity are located at a point 

at an equal distance from two parallel conductors having a 

potential difference. The study of the electromagnetic field is 

made through the calculations of the fields of a flat capacitor 

and a solenoid. 

 

Content and method of compiling of the tasks for 

calculation and graphic work in the 

electrodynamics course 
 

The problem of finding the strength E, the electric field 

displacement D, the conduction current density 
c

j  and 

displacement current density 
b

j , the strength H and induction B 

of the flat capacitor magnetic field from known properties: 

permittivity ε  and electrical conductivity   of homogeneous, 

isotropic and low-conductivity medium filling the gap between 

the plates , the distance d (
2

d S≪ , where S is the area of the 

plate) and the applied alternating voltage 
m

u = U sinωt  was 

known4 (Figure-1). In this paper, this problem is generalized by 

the representation of the charge magnitude on the plates in the 

general functionality in the form of q = q(t)  and is 
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supplemented by the determination of the vector potential A  of 

the magnetic field, the energies of the electric 
e

W  and magnetic 

m
W  fields, and their maximum values. We give the procedure 

for performing the task. 

 

 
Figure-1: Scheme for selecting the capacitor field calculation 

contour. 

 

The time-varying electric field leads to the appearance in space 

of a magnetic field, the circulation of the strength vector of 

which along the closed contour is equal to the algebraic sum of 

the currents covered by this contour5,6. Since the medium is 

weakly conducting, the following equation holds 

c
l S

d + d
t

= 
 
 
 

D
H l j SÑ

∂

∂
,                                 (1) 

 

where 
b

=
t

D
j

∂

∂
 - displacement current density; D - the electric 

field displacement; 
c

j - the conduction current density. 

 

To solve the problem, we select the auxiliary contour as shown 

in Figure 1, i.e. in the form of a circle of radius r  ( l = 2πr ), 

whose center coincides with the axis z  of the cylindrical 

coordinate system7. At all points of such a contour the value of 

the field strength H  is constant, while at each point of the 

contour the direction of H  coincides with the direction of the 

tangent to the circle. In addition, the area S = πr
2

 bounded by 

the contour is perpendicular to the axis of the system and at all 

points 
b

= constj , 
c

= constj , i.e. the current densities do not 

depend on the coordinates. Therefore, expression (1) when 

selecting a contour inside the condenser, i.e. for r Rp  can be 

represented in the form 

 

c

2
H(r)2πr = + πr ,

t





D
j                               (2) 

 

Whence 

c

r
H(r) = + .

t 2





D
j                                                                    (3) 

Expression (1) when choosing a contour outside the capacitor, 

i.e. for r Rf  can be represented in the form 

2
H(r)2πr πR ,

t
c

+


=


D
j                                                           (4) 

 

whence the strength of the magnetic field is equal to 
2

c

1 R
H(r) = + .

2 t r





D
j                                                              (5) 

 

At the boundary of the capacitor, i.e. at r = R  the strength of 

the magnetic field is equal to 

c

1
H(r) = + R.

2 t





D
j                                                                (6) 

 

According to Ohm's law in differential form, the conduction 

current density can be represented in the form 

 

( ) ( )
c

0

,
q t q tU

j = σE = σ = σ = σ
d Cd εε S

                                        (7) 

 

where 
0
ε is the electric constant8.  

 

The displacement current density by definition is equal to 

 

0 0

b 0

εε εεD E U q 1 q
j = = εε = = = .

t t d t Cd t S t

    

    
                     (8) 

 

Substituting formulas (7) and (8) into expression (3), for the H  

field inside the capacitor, we finally obtain 

 

0

1 σq q
H = + r.

2S εε t




                                                                 (9) 

 

Magnetic field induction is determined by the formula 

 

0

0

0

μμ σq q
B = μμ H = + r,

2S εε t




                                                (10) 

where μ  is the magnetic permeability of the medium, 
0

μ  is the 

magnetic constant. 

 

For a field outside the capacitor, the strength H is equal to 

 

2

0

1 σq q R
H = + ,

2S εε t r




                                                         (11) 

 

Magnetic induction B is equal to 
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2

0

0

μμ σq q R
B = + .

2S εε t r




                                                       (12) 

 

At the boundary of the capacitor, i.e. at r = R , the field strength 

expression H takes the form 

0

1 σq q
H = + R,

2S εε t




                                                            (13) 

 

For magnetic induction we get the following formula  

0

0

μμ σq q
B = + R.

2S εε t




                                                          (14) 

 

It can be seen from formulas (9) - (14) that the strength and 

induction of the magnetic field goes up linearly with the 

distance from the axis in the radial direction, the maximum 

values are reached at the boundary of the capacitor, then, with 

distance from the capacitor decays according to the hyperbolic 

law (Figure-2). 

 

 
Figure-2: Dependences of the strength and induction of the 

magnetic field on the distance from the axis of the capacitor. 

 

The vector potential A   of the magnetic field is defined from the 

formula9, 10 

 

rot = .A B                                                                  (15) 

 

The vector A  has the same direction as the vector b
j , i.e. it is 

directed along the capacitor axis. In the cylindrical coordinate 

system, the vector A  has only one projection
z

A = A . Taking 

this into account we obtain from formula (15),  

 

( ) 0z

0

μμdA σq q
- = B r = + r.

dr 2S εε t




                                          (16) 

 

From the formula (16) we find 

 

20
μμ σq q

A = - + r + const.
4S εε t

0




                   (17) 

We assume that, if r = R : A = 0, then 

 

20

max

0

.
μμ σq q

const = + R = A
4S εε t




                               (18) 

 

After substituting the value of the constant of integration (18) 

into expression (17), we obtain 

( )2 20

0

μμ σq q
A(r, t) = + R - r .

4S εε t




                  (19) 

 

From formula (19) we see that the vector potential of the 

magnetic field is reduced in the radial direction according to the 

parabolic law (Figure-3), and its maximum value is on the 

capacitor axis. 

 
Figure-3: Dependence of the modulus of the magnetic field 

vector potential on the distance from the axis of the capacitor. 

Conduction current density 
c

0

σq
j =

εε S
 and electric displacement 

current density 
b

q
j =

S t




 are the same over the plate area and 

are only time-dependent. 

 

Then the vector potential of the magnetic field can be expressed 

in terms of the conductivity current density and the bias current 

 

( )2 2

0 c b

1
A(r, t) = μμ j + j R - r .

4
                                    (20) 

 

Electric field energy is determined by the formula 

 
2 2

e

0

q q d
W = = .

2C 2εε S
                             (21) 

 

The electric field is considered to be concentrated inside the 

capacitor and homogeneous in volume here. 

Magnetic field energy

 

is defined from the formula 
2

М
V

0

B
W = dV,

2μμ
                         (22) 



Research Journal of Recent Sciences ______________________________________________________________ ISSN 2277-2502 

Vol. 9(2), 7-12, April (2020) Res. J. Recent Sci. 

 International Science Community Association          10 

where 

 

dV = 2πrdr×d                                                                        (23)

  

is the volume of the elementary ring (Figure-4). After 

substituting the value of B inside the capacitor (19) and 

expression (23) into the formula (22)

 

and after integration, we 

obtain the expression for the energy of the capacitor magnetic 

field  

 Figure-4: Scheme for calculating the field energy. 

 
2

4

0

М 2

0

πμμ R d σq q
W = + .

16S εε t





 
 
 

                              (24) 

 

The maximum values of We and WM can be found after 

srendering concrete of the functional dependence q=q(t). 

 

For specific assignments for students, the functional dependence 

q=q(t) can be provided in the more common forms in 

engineering: q=СUm sinωt, q=СUm |sinωt|, q=ΕCexp[-t/(rC)], 

q=ΕC{1-exp[-t/(rC)]} (Ε – constant-current source 

electromotive force) etc. 

 

The problem of finding the magnetic induction (magnetic field 

strength), the electric field strength (displacement), as well of 

the electric displacement current density 
b

j
 
dependence on the 

distance from the solenoid axis to the transverse section radius
R , the number of turns per unit length n and the alternating 

current passing through it 
m

i = I sinωt  is known11. This problem 

is generalized with current strength presentation through the 

solenoid in the general functional dependence in the form of 

i=i(t) and is supplemented by calculating of electric field energy 

and magnetic field energy. We give the procedure for the task. 

 

The time-varying magnetic field leads to the appearance in 

space of an electric field, the circulation of the strength vector of 

which is equal to the time derivative of the magnetic flux 

through the surface bounded by this contour, with the minus 

sign12, 13 

 

l

Φ
d = - .

t





E lÑ                                                                           (25) 

 

Here the symbol of the partial time derivative ( t  ) 

emphasizes the fact that the contour and the surface stretched on 

it are immovable. Since the magnetic flux through the 

stretchable surface to the contour is equal to 

 

S

Φ = dB S ,                                                                            (26) 

 

then 

 

S S

d = d
t t

 
 

 

B
B S S . 

 

In this equation we have exchanging places of the operations of 

differentiation by time and integration over the surface, since 

the contour and the surface are fixed. Then equation (25) can be 

represented in the form 

 

l S

d = - d .
t


 



B
E l SÑ                                                  (27) 

 

To solve the problem, we select the auxiliary contour as shown 

in Figures-5 and 6, i.e. in the form of a circle of radius r  (

l = 2πr ), whose center coincides with the axis of the system. At 

all points of such a contour the value of the field strength is 

constant, while at each point of the contour the direction of E 

coincides with the direction of the tangent to the circle. In 

addition, the area
2

S = πr , bounded by the contour is 

perpendicular to the axis of the system, and hence the directions 

of B  and dS  coincide. 

 
Figure-5: Scheme for selecting the solenoid field calculation 

contour inside the solenoid. 
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Figure-6: Scheme for selecting the solenoid field calculation 

contour outside the solenoid. 

 

The magnetic field of the solenoid is concentrated in its inside, 

its magnetic induction is the same at all its points and is 

independent of the coordinates and is equal to 

 

0
B = μμ ni.                                     (28) 

 

Therefore, expression (27) with a radius of the contour smaller 

than the radius of the solenoid, i.e. r Rp  (Figure-5) can be 

represented in the form 

 

2B
E(r)2πr = - πr ,

t




                                                                (29) 

 

whence, taking into account the relation (28), the electric field 

strength inside the solenoid is 

 

0

B r 1 di
E(r) = - = μμ n r

t 2 2 dt




                 (30) 

 

and the displacement of the electric field is 

 

0 0 0

1 di
D = εε E = - εε μμ n r.

2 dt
                                                 (31) 

 

When a radius of the contour greater than the radius of the 

solenoid, i.e. r Rf (Figure-6), equation (27) can be represented 

in the form 

 

2B
E(r)2πr = - πR .

t




                  (32) 

 

Whence, respectively, taking into account the relation (28), the 

strength and the displacement of the electric field outside the 

solenoid are equal to 
 

2 2

0

1 B R 1 di R
E(r) = - = - μμ n ,

2 t r 2 dt r




                                     (33) 

 
2 2

0 0 0

1 B R 1 di R
D = - εε = - εε μμ n .

2 t r 2 dt r




                   (34) 

At the boundary of the solenoid, the strength and displacement 

of the electric field are equal to 

 

0

1 B 1 di
E(r) = - R = - μμ n R,

2 t 2 dt




                                (35) 

 

0 0 0

1 B 1 di
D = - εε R = - εε μμ n R.

2 t 2 dt




                                   (36) 

 

Using the formula for determining the displacement current 

density and the field displacement formula, we obtain an 

expression determining the displacement current density inside 

the solenoid 

 
2 2

b 0 0 02 2

D 1 d B 1 d i
j = = - εε r = - εε μμ n r,

t 2 dt 2 dt




                    (37) 

 

also the expression for the displacement current density outside 

the solenoid is in the form 

 
2 2 2 2

b 0 0 02 2

1 d B R 1 d i R
j = - εε = - εε μμ n

2 dt r 2 dt r
                      (38) 

 

It can be seen from the formulas (30), (31), (33), (34), (35) - 

(38) that the strength (and displacement) of the electric field and 

the displacement current density modulo (Figure-6) grow 

linearly with distance from the axis of the solenoid in the radial 

direction and at the boundary of the solenoid take the maximum 

values,  are decreases according to the hyperbolic law (Figure-7) 

with the distance from the solenoid. 

 

Magnetic field energy is determined by the formula 

 

2 2 2 2

м 0

1 1
W = Li = μμ n πR li .

2 2
                            (39) 

 

Here it is assumed that the magnetic field is concentrated within 

the solenoid and it is homogeneous in volume. 

 

Electric field energy is defined from the formula 

 

2

e 0
V

1
W = εε E dV.

2
                                                 (40) 

 

Here are 

 

dV = 2πrdr×d                           (41) 
 

is the volume of the elementary ring (Figure-2). After 

substituting (30) and (41) in (39) and after integration, we 

obtain the expression for the solenoid electric field energy  
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( )
2

2 2 4

e 0 0
.

1 di
W = πεε μμ n d R

16 dt

 
 
 

                       (42) 

 

 
Figure-7: Dependences of the strength of an electric field and 

the displacement current density on the distance from the axis of 

the solenoid. 

 

The maximum values of We and WM can be found after 

dependence type determining i=i(t). The functional dependence 

i= i(t) can be provided in more common in engineering types for 

specific tasks for students:

  

i=Im sinωt, i=Im |sinωt|, i=Im exp(-rt/L), i= Im [1-exp(- rt/L)] etc. 

 

Conclusion 

The Method of composing and contents of the tasks for 

students’ calculating and graphic work by the elective discipline 

- electrodynamics  for the specialty - Electrical Power 

Engineering has been proposed. A brief summary of the two 

works is given. 

 

The third calculation and graphic work on the calculation of the 

electromagnetic field of capacitor and solenoid is performed on 

the basis of Maxwell's equations and of displacement current 

density determination is generalized with representation of the 

charge magnitude on the capacitor plates  and current strength 

through the solenoid in the general functional dependences. It is 

supplemented by the determination and investigation of the 

vector potential as a function of the distance from the capacitor 

axis and by the calculation of the electric field energy and 

magnetic field energy. 
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