

Research Journal of Recent Sciences Vol. **7(5)**, 18-20, May (**2018**)

Short Communication Antibacterial and antifungal studies of some derivatives of Tributyltin (IV) of salicylic acid

Pankaj Mittal

Department of Chemistry, Hindustan Institute of Technology and Management, Keetham, Agra, 282 007, India pankajmittal.bsa@gmail.com

Available online at: www.isca.in, www.isca.me Received 30th July 2016, revised 6th March 2018, accepted 8th April 2018

Abstract

The organotin compounds are widely used as biocidals. Some derivatives of Tributyltin (IV) of salicylic acid have been synthesized in different molar ratios. The synthesized products were analyzed by elemental analyses and various instrumental techniques. The antibacterial studies of the synthesized derivatives have been evaluated through their Minimum Inhibitory Concentration values both on gram +ve (Staphylococcus aureus) and gram -ve (Escherichia coli). The antifungal studies of the synthesized compounds have been evaluated through their Minimum Inhibitory Concentration values both on Aspergillus niger and Candida albicans fungi. These derivatives have shown increased antibacterial and antifungal activities than the ligand.

Keywords: Tributyltin, IR, PMR, antibacterial, antifungal, salicylic acid.

Introduction

The organo-metallic compounds of tin are known to be used as biocidals^{1,2} and pesticidals³⁻¹⁰. The organotin hydrides have been used as reducing agent in organic chemistry to reduce alkyl fluorides¹¹ and other halides. Tin can exhibit the covalency higher than four, which is the characteristic of organotin compounds. The research work emphasizes with the antibacterial and antifungal studies of few derivatives of tributyltin of salicylic acid.

Materials and Methods

Synthesis of Tributyltin isopropoxide¹² (TBTIP): 1.6 ml (0.02 M) isopropyl alcohol was taken in a R. B. flask and mixed with 0.46 g (0.02 M) sodium metal with through stirring until solution is cleared. 6.5 ml (0.02 M) tributyltin chloride added drop-by-drop to the solution with thorough stirring. The content present in R.B. flask was condensed for two and half hours, a white crystalline precipitate was separated immediately. The filtrate of formed precipitate was undergone vacuum distillation, which prepared a colourless liquid and it was converted to light brown after some time.

Synthesis of Tributyltin (IV) derivatives: TBTIP {1.4 mL (0.004 M)/ 1.4 mL (0.004 M)} and salicylic acid (2-hydroxy benzoic acid) {0.55 gm (0.004 M)/ 0.27 gm (0.002 M)} was dissolved in 15 mL of solvent i.e. dry benzene. The reaction content was condensed for twelve to fourteen hours on wax bath. The product i.e. creamish - brown sticky solid / greenish - yellow liquid was prepared by using the process of azeotropic distillation. The product (solid) so obtained was filtered and

recrystallized with dimethyl formamide solvent. After recrystallization, it was dried in a vacuum desiccator having anhydrous calcium chloride.

Physico-chemical and Spectral Studies: The purity of synthesized products was determined by using thin layer chromatgraphy. The elemental analyses of such derivatives were taken by Carlo Erba Micro Analyser-1108 at the Regional Sophisticated Instrumentation Centre, Central Drug Research Institute, Lucknow. Sn (IV) metal was analyzed by the reaction of the compound with concentrated HNO₃ and concentrated H_2SO_4 followed by reaction with liquid NH₃ to form tin oxide¹³. Infra-Red spectra of obtained derivatives have recorded by Perkin Elmer RX-1 spectrometer and PMR (Proton Magnetic Resonance) spectra have taken by PMR BruckerAC300MHz spectrometer at Regional Sophisticated Instrumentation Centre, Central Drug Research Institute, Lucknow. The molar conductance measurements of these derivatives were taken by Systronics conductivity meter-306.

Results and discussion

The physico-chemical studies of Tributyltin isopropoxide (TBTIP) and the obtained derivatives are shown in the Table-1. The compounds so obtained were stable at room temperature. These are hygroscopic in nature.

These compounds are found soluble in dimethyl formamide and dimethyl sulphoxide, however these are insoluble in water. The molar conductance of compounds is in the range of 4.7 - 5.9 ohm⁻¹cm²mol⁻¹ which indicate their behaviour as non-electrolytes¹⁴.

Infra-red spectral data: TBTIP: Bands (w) at 2905 cm⁻¹ and 2865 cm⁻¹ owing to C-H stretching vibrations of $-CH_2$ - and $-CH_3$ regarding $-C_4H_9$ group^{15,16}, band (s) at 1380 cm⁻¹ owing to the C-H bending vibration of $(CH_3)_2C$ - of the iso-propoxy group¹⁷, band (w) at 1145 cm⁻¹ owing to C-O vibration of the iso-propoxy group¹⁷, band (m) at 630 cm⁻¹ and band (w) at 615 cm⁻¹ correspond to ν Sn - C¹⁸, band (w) at 545 cm⁻¹ and band (s) at 465 cm⁻¹ correspond to ν Sn - O¹⁹.

Tributyltin (IV) Derivatives: Band (m) at 3040 cm⁻¹ owing to C-H stretching vibrations regarding benzene ring^{15,17}, bands (w) at 2915 cm⁻¹ and 2840 cm⁻¹ due to C-H stretching vibrations regarding $-CH_2$ - and $-CH_3$ of the butyl group^{15,16}, band (s) at 1240 cm⁻¹ due to the C-O of the hydroxy group¹⁷, band (s) around at 1430 cm⁻¹ owing to v_sCOO stretching vibrations, band (s) at 1640 cm⁻¹ due to v_{as}COO stretching vibrations²⁰, $\Delta \nu$ COO of about 210 cm⁻¹ and peak (w) at 625 cm⁻¹ owing to v Sn - C¹⁸, peak (w) at 545 cm⁻¹ and peak (s) at 450 cm⁻¹ owing to v Sn - O¹⁹.

The broad band around $3500-3200 \text{ cm}^{-1}$ shown in 2:1 derivative was absent due to –OH group which indicates possible bonding of oxygen of –OH group to tin, however, this band was present in corresponding 1:1 product at 3495 cm⁻¹.

PMR spectral data: TBTIP: A multiplet is appeared between 1.09 - 1.55 ppm due to the protons of $-C_4H_9$ group²² bonded to tin and a multiplet in the region 0.80 - 1.40 ppm due to protons of iso-propoxy group.

Tributyltin (IV) derivatives: A multiplet is appeared in the region 7.10 - 7.80 ppm due to benzene ring, a multiplet between 0.95 - 1.40 ppm in 1:1 derivative and 1.00 - 1.30 ppm in 2:1 derivative due to $-C_4H_9$ group²² bonded to tin and a hump at 6.40 ppm in 1:1 compound due to hydroxy group and it was not shown in the corresponding 2:1 derivative.

Antibacterial and Antifungal Activities: The antibacterial studies of the synthesized derivatives have been evaluated through their Minimum Inhibitory Concentration values both on gram +ve (*Staphylococcus aureus*) and gram -ve (*Escherichia coli*). The antifungal studies of the synthesized compounds have been evaluated through their Minimum Inhibitory Concentration values both on *Aspergillus niger* and *Candida albicans* fungi. For this purpose, serial dilution method²³⁻²⁴ is used. A comparative study of antibacterial and antifungal studies (Table-2) indicates the enhancement of such activities of tributyltin (IV) derivatives as compared to ligand.

Name of Compound (Molecular Formula) Ratio	Colour of compound	Melting point/ Boiling point (±2°C)	% Analysis Found/ (Calculated)		
			С	Н	Sn
TBTIP (C ₁₅ H ₃₄ OSn)	Light brown liquid	126 at 5 mm	52.10 (51.62)	10.28 (9.75)	33.50 (34.04)
$\begin{array}{c} Bu_{3}Sn(LH) \\ (C_{19}H_{32}O_{3}Sn) \\ 1:1 \end{array}$	Creamish- brown sticky solid		53.70 (53.43)	7.78 (7.49)	27.22 (27.82)
$(Bu_3Sn)_2L \\ (C_{31}H_{58}O_3Sn_2) \\ 2:1$	Greenish- yellow liquid		52.42 (52.00)	8.50 (8.11)	32.95 (33.18)

Table-1: Physico-chemical Data of Tributyltin (IV) compounds

Note: Melting point/boiling point of derivatives (2, 3) could not be determined due to their decomposition.

Table-2: Antibacterial and Antifungal Activities (MIC in molar concentration x 10⁻⁵) of TBTIP and Tributyltin (IV) Derivatives of Salicylic Acid.

Compound	Bacteria		Fungi		
	Staphylococcus aureus	Escherichia coli	Aspergillus niger	Candida albicans	
TBTIP	3.58	7.16	7.16	3.58	
Bu ₃ Sn(LH) 1:1	1.46	1.46	1.46	1.46	
(Bu ₃ Sn) ₂ L 2:1	0.43	0.43	0.43	0.43	

Conclusion

The discussion shows that the compounds so obtained were found stable at room temperature. The antibacterial and antifungal activities of tributyltin(IV) derivatives of salicylic acid are greater than their corresponding ligands.

References

- 1. Arakawa, Y. (1989). Main Group Metal Chem., 12, 1.
- 2. Saxena A.K. (1987). Organotin compounds: toxicology and biomedicinal applications. *Applied Organometallic Chemistry*, 1(1), 39-56.
- **3.** Gupta P.R., Mishra R.C. and Dogra G.S. (1981). Efficacy of granular and seedling-dip treatments against mandibulate pests infesting cauliflower. *Indian journal of agricultural sciences.*, 51, 514.
- 4. Mittal P., Pachouri M.K. and Sharma R.C. (2006). Studies on Monobutyltin (IV) Derivatives of 3-hydroxy-2naphthoic acid. *Asian J. of Chemistry*, 18(1), 737-739.
- Mittal P., Pachouri M.K. and Sharma R.C. (2006). Pesticidal Behavior of Monobutyltin (IV) Derivatives of Salicylic acid against Red Flour Beetle. J. Ind. Council Chem., 23(2), 23-26.
- 6. Mittal P. and Pachouri M.K. (2012). Characterization and pesticidal studies of some new Dibutyltin (IV) derivatives of 1-hydroxy-2-naphthoic acid. *Res. J. chem. Sci.*, 2(4), 61-63.
- 7. Mittal P., Pachouri M.K. and Singh N.P. (2013). Synthetic, characterization and pesticidal studies of Dibutyltin (IV) derivatives of salicylic acid. *Res. J. chem. Sci.*, 3(3), 79-81.
- 8. Pachouri M.K. and Mittal P. (2014). Characterization and Pesticidal Studies of Dibutyltin (IV) Derivatives of diphenylamine-2-hydroxy-2'-carboxylic acid. *Res. J. chem. Sci.*, 4(1), 75-77.
- **9.** Pachouri M.K. and Mittal P. (2015). Synthetic, characterization and pesticidal studies of Dibutyltin (IV) derivatives of diphenylamine-2-amino-2'-carboxylic acid. *Res. J. chem. Sci.*, 5(1), 88-90.
- **10.** Mittal P. and Pachouri M.K. (2016). Structural and Pesticidal Studies of Monobutyltin (IV) Derivatives of 1-hydroxy-2-naphthoic acid. *Res. J. Chem. Sci.*, 6(2), 37-39.
- **11.** Ohsawa T., Takagaki T., Haneda A. and Oishi T. (1981). Dissolving metal reduction by crown ether hydrogenolysis of alkyl fluorides. *Tetrahedron Letters*, 22(27), 2583-2586.

- **12.** Gaur D.P., Srivastava G. and Mehrotra R.C. (1973). Organic derivatives of tin V. Synthesis and reactions of alkyltin trialkoxides. *Journal of Organometallic Chemistry*, 63, 221-231.
- **13.** Vogel A.I. (1975). Quantitative Inorganic Analysis *Longmans, London*.
- 14. Kettle S.F.A. (1975). Coordination Compounds. *Thomas Nelson and Sons*, 168.
- **15.** Bellamy L.J. (1962). The Infra-red Spectra of Complex Molecules. *Methuen, London.*
- **16.** Nakanishi K. and Soloman P.H. (1962). Infra-red Absorption Spectroscopy. 2nd Ed., Holden-Day, London.
- 17. Silverstein R.M., Bassler G.C. and Morrill T.C. (1981). Spectrometric Identification of Organic Compounds. *John Wiley, New York*.
- **18.** Brown M.P., Okawara R. and Rochow E.G. (1960). Infrared spectra of some methyl derivatives of germanium and tin. *Spectrochimica Acta*, 16(5), 595-601.
- **19.** Pardhy S.A., Gopínathan S. and Gopinathan C. (1983). Titanium (IV) and Tin (IV) Derivatives of Salicylaldehyde Hydrazone and 2-Hydroxyacetophenone Hydrazone. *Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry*, 13(4), 385-395.
- **20.** Peruzzo V., Plazzogna G. and Tagliavini G. (1970). The preparation and properties of some trivinyltin carboxylates. *Journal of Organometallic Chemistry*, 24(2), 347-353.
- **21.** Srivastava T.N., Singh J.D. and Mehrotra S. (1985). Synthesis, Reactivity and Structural Aspects of Some Organotellurium (Iv) Oxinates. *Indian Journal of Chemistry* Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 24(10), 849-851.
- **22.** Asahi Research Centre Co. Ltd. Tokyo (1985). Hand Book of Proton NMR Spectra and Data. 2nd & 4th, Academic Press, Japan.
- **23.** Rohde W., Cordell B., Webster R. and Levinson W. (1977). Inhibition of amino acyl tRNA synthetase activity by copper complexes of two metal binding ligands N-methyl isatin beta-thiosemicarbazone and 8-hydroxyquinoline. *Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis*, 477(2), 102-111.
- 24. Dutta M.M., Goswami B.N. and Kataky J.C.S. (1987). Studies on Biologically-Active Heterocycles. 2. Synthesis and Antifungal Activity of Some New 2-Substituted-Amino-5-(2, 4-Dichlorophenyl)-1, 3, 4-Oxadiazoles and Thiadiazoles. *Journal Of The Indian Chemical Society*, 64(3), 195-197.