International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Use of solid supported reagent in organic synthesis

Author Affiliations

  • 1Govt. PG College for Women, Gandhi Nagar, Jammu, J&K, India

Res. J. Recent Sci., Volume 7, Issue (10), Pages 14-16, October,2 (2018)

Abstract

The use of solid supported reagents is increasing, due to their tremendous potential to offer green chemical technologies. Now-a-days, silica supported acid catalysts have gained much importance due to their high activity. Moreover, silica-supported reagents are easy to handle, less toxic, can be easily separated and reused, due to which they may play important role both in academia and industries. Silicas generally require no pre-swelling, which makes their use far simpler. As oxidative bromination of alkenes is very important in synthesizing biologically and synthetically important dibromocompounds, a simple, efficient and cost effective method has been used for the bromination of alkenes by using SiO2 -H2SO as solid heterogeneous catalyst.

References

  1. Buu-Hoï N.P. and Lavit D. (1955)., The bromination of o-and p-hydroxyaryl ketones., Journal of the Chemical Society (Resumed), 18-20.
  2. Campos F., Bosch M.P. and Guerrero A. (2000)., An efficient enantioselective synthesis of (R, R)-formoterol, a potent bronchodilator, using lipases., Tetrahedron: Asymmetry, 11(13), 2705-2717.
  3. Das D.P. and Parida K. (2006)., Liquid Phase bromination of phenol., Journal of Molecular Catalysis, A, 253(1), 70-78.
  4. Butler A. and Walker J.V. (1993)., Marine haloperoxidases., Chemical Reviews, 93(5), 1937-1944.
  5. Guengerich F.P. (2003)., Activation of dihaloalkanes by thiol-dependent mechanisms., BMB Reports, 36(1), 20-27.
  6. Prusov E., Röhm H. and Maier M.E. (2006)., Chemoenzymatic synthesis of the C10−C23 segment of dictyostatin., Organic letters, 8(6), 1025-1028.
  7. Sugiyama H., Yokokawa F. and Shioiri T. (2000)., Asymmetric Total Synthesis of (−)-Mycothiazole., Organic letters, 2(14), 2149-2152.
  8. Daniel P.T., Koert U. and Schuppan J. (2006)., Apoptolidin: induction of apoptosis by a natural product., Angewandte Chemie International Edition, 45(6), 872-893.
  9. Narayan R.S. and Borhan B. (2006)., Synthesis of the proposed structure of mucoxin via regio-and stereoselective tetrahydrofuran ring-forming strategies., The Journal of organic chemistry, 71(4), 1416-1429.
  10. Izzo I., De Caro S., De Riccardis F. and Spinella A. (2000)., Synthesis of alkylphenols and alkylcatechols from the marine mollusc Haminoea callidegenita., Tetrahedron Letters, 41(20), 3975-3978.
  11. Kutsumura N., Yokoyama T., Ohgiya T. and Nishiyama S. (2006)., 1, 2-Dibromoalkanes into alkynes by elimination reaction under DBU conditions and their application to total synthesis of sapinofuranone B., Tetrahedron letters, 47(25), 4133-4136.
  12. Veisi H., Ghorbani-Vaghei R. and Zolfigol M.A. (2011)., Recent Progress in the Use of N-Halo Compounds in Organic Synthesis., Organic Preparations and Procedures International, 43(6), 489-540.
  13. Mestres R. and Palenzuela J. (2002)., High atomic yield bromine-less benzylic bromination., Green Chemistry, 4(4), 314-316.
  14. Clark J.H. (1999)., Green chemistry: challenges and opportunities., Green Chemistry, 1(1), 1-8.
  15. Anastas P.T. and Warner J.C. (1998)., Green Chemistry., Theory and Practice (Oxford University Press, Oxford), 105.
  16. Barhate N.B., Gajare A.S., Wakharkar R.D. and Bedekar A.V. (1998)., Simple and efficient chlorination and bromination of aromatic compounds with aqueous TBHP (or H2O2) and a hydrohalic acid., Tetrahedron letters, 39(35), 6349-6350.
  17. Rodebaugh R., Debenham J.S., Fraser-Reid B. and Snyder J.P. (1999)., Bromination of alkenyl glycosides with copper (II) bromide and lithium bromide: Synthesis, mechanism, and DFT calculations., The Journal of organic chemistry, 64(5), 1758-1761.
  18. Nair V., Panicker S.B., Augustine A., George T.G., Thomas S. and Vairamani M. (2001)., An efficient bromination of alkenes using cerium (IV) ammonium nitrate (CAN) and potassium bromide., Tetrahedron, 57(34), 7417-7422.
  19. Moriuchi T., Yamaguchi M., Kikushima K. and Hirao T. (2007)., An efficient vanadium-catalyzed bromination reaction., Tetrahedron letters, 48(15), 2667-2670.
  20. Barhate N.B., Gajare A.S., Wakharkar R.D. and Bedekar A.V. (1999)., Simple and practical halogenation of arenes, alkenes and alkynes with hydrohalic acid/H2O2 (or TBHP)., Tetrahedron, 55(36), 11127-11142.
  21. Levin Y., Hamza K., Abu‐Reziq R. and Blum J. (2006)., Sol‐Gel Entrapped Pyridinium Hydrobromide Perbromide as a Recyclable Bromination Agent: Its Application to a One‐Pot Bromination and Dehydrobromination Process., European journal of organic chemistry, 1396-1399.
  22. Chaudhuri M.K., Khan A.T., Patel B.K., Dey D., Kharmawophlang W., Lakshmiprabha T.R. and Mandal G.C. (1998)., An environmentally benign synthesis of organic ammonium tribromides (OATB) and bromination of selected organic substrates by tetrabutylammonium tribromide (TBATB)., Tetrahedron letters, 39(44), 8163-8166.
  23. Muathen H.A. (2004)., Mild oxidative bromination of alkenes and alkynes with zinc bromide and lead tetraacetate., Synthetic communications, 34(19), 3545-3552.
  24. Kajigaeshi S., Kakinami T., Moriwaki M., Fujisaki S. and Tashiro M. (1988)., Bromination of Alkenes and Related Compounds by Use of Benzyltrimethyl ammonium Tribromide in Aprotic and Protic Solvents., Rep. Inst. Advanced Material Study, 2(1), 87-94.
  25. Shen Y., Atobe M., Li W. and Nonaka T. (2003)., Paired electrosynthesis of epoxides and dibromides from olefinic compounds., Electrochimica acta, 48(8), 1041-1046.
  26. Moghaddam F.M., Masoud N., Foroushani B.K., Saryazdi S., Ghonouei N. and Daemi E. (2013)., Silica-supported DABCO-tribromide: A recoverable reagent for oxidation of alcohols to the corresponding carbonyl compounds., Scientia Iranica, 20(3), 598-602.
  27. Kapferer P. and Vasella A. (2004)., Electrophilic Bromination of N‐Acylated Cyclohex‐3‐en‐1‐amines: Synthesis of 7‐Azanorbornanes., Helvetica chimica acta, 87(11), 2764-2789.