On the number of k-matchings of graphs

F. Asgari ${ }^{1}$, R. Namazi 1, R. Vesalian ${ }^{1 *}$ and M. Zallaghi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
${ }^{2}$ Department of Mathematics, Isfahan University, Isfahan, Iran
r.vesalian@yahoo.com
Available online at: www.isca.in, www.isca.me
Received $23^{\text {rd }}$ February 2016, revised $12^{\text {th }}$ April 2017, accepted $30^{\text {th }}$ April 2017

Abstract

In this paper an inductive formula for the number of k-matchings in graphs is derived using this formula. We concluded the number of k-matchings in special regular graphs and complete graphs.

Keywords: k-matching, matching polynomial, regular graphs.

Introduction

Let $G=(V, E)$ be graph in which $V(G)$ and $E(G)$ are the numbers of vertices and edges respectively. A matching in graph G is by definition a spanning sub graph of G whose components are vertices and edges. A k-matching is a matching with edges only. We show the number of k-matchings in a graph G by $P(G, K)$ and assume $P(G, 0)=1$.

Based on matching in a graph G we define the matching polynomial $\mu(G, x)$ as follow
$\mu(G, x)=\sum_{k=0}^{[n / 2]}(-1)^{k} P(G, K) x^{n-2 k}$
In which n is the number of vertices of graph G.
We note that the graphs here are finite, loop less and contain no multiple edges.

The matching polynomial can be a tool for characterization of graphs. Two isomorphic graphs have the same matching polynomials that are called co-matching graphs.

However two co-matching graphs are not necessarily isomorphic ${ }^{1}$.

Preliminaries

Finding the number of k -matching for $k=0,1, \ldots, 6$ have been done so far. For example it is easy to see $P(G, 1)=m$ in which m is the number of edges.

For the number of two and three matching we have [2],
$P(G, 2)=\binom{m}{2}-\sum_{i=1}^{n}\binom{d_{i}}{2}$

$$
\begin{aligned}
& P(G, 3)= \\
& \binom{\mathrm{m}}{3}-(\mathrm{m}-2) \sum_{\mathrm{i}}\binom{\mathrm{~d}_{\mathrm{i}}}{2}+2 \sum_{\mathrm{i}}\binom{\mathrm{~d}_{\mathrm{i}}}{3}+\sum_{\mathrm{ij}}\left(\mathrm{~d}_{\mathrm{i}}-1\right)\left(\mathrm{d}_{\mathrm{j}}-1\right)-\mathrm{N}_{\mathrm{T}}
\end{aligned}
$$

In which N_{T} is the number of triangles in G.
The number of k-matchnigs for $k=4,5,6$ can be found in literatures ${ }^{2-10}$.

The number of k-matchings calculated in the mentioned works shows when k grow up the formula for the number of k matching gets very long and complicated. So calculating this number for $k \geq 7$ directly is not so logical and practical. Therefore in this work we derive an inductive formula for the number of k-matchings that makes it much easier to find it.

Number of k-matchings

Theorem 3.1: let G be a simple graph of order n and $E(G)$ be the set of it's edges. Then the number of k-matchings in graph G is:

$$
P(G, k)=\frac{1}{k} \sum_{i j \in E(G)} P(G-i-j, k-1)
$$

Proof: let $S(G, k)$ be the set of all k-matchings in G. We consider an orbitary edge $i j$ from $E(G)$ then we have two cases:

Case I: $i j$ is not the component of any k-matchings in $S(G, k)$ therefore $P(G-i-j, k-1)=0$.

Case II: $i j$ is not the component of at least one of the kmatchings in $S(G, k)$ so the number of matchings in $S(G, k)$ such that $i j$ is one of their components is $P(G-i-j, k-1)$

Now according to above cases by choosing any of k-matching in $S(G, k)$, this k-matching is counted k times so:
$P(G, k)=\frac{1}{k} \sum_{i j \epsilon E(G)} P(G-i-j, k-1)$

Corollary 3.2: if G is a simple graph then:
$P(G, k)=\frac{1}{k!} \sum_{i_{1} j_{1}} \sum_{i_{2} j_{2}} \cdots \sum_{i_{k} j_{k}} 1$
In which the edges $i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{k} j_{k}$ changes in the sets of edges of $\quad E(G), E\left(G-i_{1}-j_{1}\right), \ldots, E\left(G-i_{1}-j_{1}-\cdots-i_{k-1}-j_{k-1}\right)$ respectively.

Proof: according to theorem 3.1:
$P(G, k)=\frac{1}{k} \sum_{i_{1} j_{1} \in E(G)} P\left(G-i_{1}-j_{1}, k-1\right)$
And again using the above formula for graph $G-i_{1}-j_{1}$ we have:
$P\left(G-i_{1}-j_{1}, k-1\right)$
$=\frac{1}{k-1} \sum_{i_{2} j_{2} \in E\left(G-i_{1}-j_{1}\right)} P\left(G-i_{1}-j_{1}-i_{2}-j_{2}, k-2\right)$
So
$P(G, k)=\frac{1}{k(k-1)} \sum_{i_{1} j_{1}} \sum_{i_{2} j_{2}} P\left(G-i_{1}-j_{1}-i_{2}-j_{2}, k-2\right)$
So after k times:
$P(G, k)=$
$\frac{1}{k(k-1) \ldots(1)} \sum_{i_{1} j_{1}} \sum_{i_{2} j_{2}} \ldots \sum_{i_{k} j_{k}} P\left(G-i_{1}-j_{1}-\cdots-i_{k}-j_{k}, 0\right)$
But
$P\left(G-i_{1}-j_{1}-\cdots-i_{k}-j_{k}, 0\right)=1$
And the theorem is proved.
Example: let G be a connected, 3-regular graph of order 8 (Figure-1), we calculate $P(G, 4)$

Figure-1
According to result 3.2:
$P(G, 4)=\frac{1}{4!} \sum_{i_{1} j_{1}} \sum_{i_{2} j_{2}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
In which $i_{1} j_{1} \epsilon E(G), i_{2} j_{2} \in E\left(G-i_{1}-j_{1}\right), i_{3} j_{3} \epsilon E\left(G-i_{1}-j_{1}-\right.$ $\left.i_{2}-j_{2}\right)$ and $i_{4} j_{4} \in E\left(G-i_{1}-j_{1}-i_{2}-j_{2}-i_{3}-j_{3}\right)$.

Now if $i_{1} j_{1} \epsilon E(G)$ be any of edges, $a b, b c, c d, d e, e f, f g, g h, h a, a f, b e, c h, d g$ then the graph $G-i_{1}-j_{1}$ will be isomorphic with graph H (Figure-2):

Figure-2
So
$P(G, 4)=\frac{12}{4!} \sum_{i_{2} j_{2}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
In which $i_{2} j_{2} \epsilon E(H), i_{3} j_{3} \in E\left(H-i_{2}-j_{2}\right), i_{4} j_{4} \epsilon E\left(H-i_{2}-j_{2}-\right.$ $i_{3}-j_{3}$) for $i_{2} j_{2} \epsilon E(H)$ we consider three following cases:

CaseI: If $i_{2} j_{2}$ belonges to the set of edges $E_{1}=\{u v, e f\}$ then the graph $H-i_{2}-j_{2}$ is isomorphic with graph M (Figure-3):

Figure-3
So
$\sum_{i_{2} j_{2} \in E_{1}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=2 \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
In which $i_{3} j_{3} \epsilon E(M)$ and $i_{4} j_{4} \epsilon E\left(M-i_{3}-j_{3}\right)$.
Now because $i_{3} j_{3} \epsilon E(M)$ therefor $M-i_{3}-j_{3}$ will be isomorphic with single edged graph (Figure-4)

Figure-4
So
$\sum_{i_{3} j_{3} \in E(M)} \sum_{i_{4} j_{4}} 1=4 \sum_{i_{4} j_{4}} 1\left(i_{4} j_{4}=k l\right)=4$
Therefore
$\sum_{i_{2} j_{2} \in E_{1}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=2 \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=2 \times 4=8$
CaseII: If $i_{2} j_{2}$ belongs to the set of edges $E_{2}=\{u w, v x, w y, x z\}$ then graph, $\mathrm{H}-i_{2}-j_{2}$ isomorphic with N (Figure-5)

Figure-5
$\sum_{i_{2} j_{2} \in E_{3}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=4 \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
in which $i_{3} j_{3} \epsilon E(N)$ and $i_{4} j_{4} \epsilon E\left(N-i_{3}-j_{3}\right)$.
If $i_{3} j_{3}$ belongs to set of edges $E_{2}^{\prime}=\{i j, o t\}$ then $N-i_{3}-j_{3}$ is isomorphic with following single edged graph:

So
$\sum_{i_{3} j_{3} \in E_{2}^{\prime}} \sum_{i_{4} j_{4}} 1=2 \sum_{i_{4} j_{4}} 1\left(i_{4} j_{4}=j t\right)=2$
But if $i_{3} j_{3}=j t$ then $N-i_{3}-j_{3}$ will be isomorphic with the following null graph:

i• - o

And so there is no choice for $i_{4} j_{4}$. Therefore
$\sum_{i_{3} j_{3}=j t} \sum_{i_{4} j_{4}} 1=0$
Consequently in this case we have:
$\sum_{i_{2} j_{2} \in E_{3}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=4 \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
$=4\left(\sum_{i_{3} j_{3} \in E_{2}^{\prime}} \sum_{i_{4} j_{4}} 1+\sum_{i_{3} j_{3}=j t} \sum_{i_{4} j_{4}} 1\right)$
$=4(2+0)=8$
Case III: If $i_{2} j_{2}=w x$ then the graph $H-i_{2}-j_{2}$ is isomorphic with graph R (Figure-6)

Figure-6:

$$
\begin{aligned}
& \text { So } \sum_{\substack{i_{2}=w x \\
i_{2} \\
\text { In which } i_{3} i_{3} j_{3} \in E(R), i_{4} j_{4} \in E\left(R-i_{3}-j_{3}\right)}} 1=\sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1
\end{aligned}
$$

Now since $i_{3} j_{3} \epsilon E(R)$ therefor graph $R-i_{3}-j_{3}$ is isomorphic with following single edged graph (Figure-7)

Figure-7

$\sum_{i_{3} j_{3} \in E(R)}^{\text {So }} \sum_{i_{4} j_{4}} 1=2 \sum_{i_{4} j_{4}} 1\left(i_{4} j_{4}=m n\right)=2$

Therefore
$\sum_{i_{2} j_{2}=w x} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1=2 \sum_{i_{3} j_{3} \in E(R)} \sum_{i_{4} j_{4}} 1=2$
Finally:
$P(G, 4)=\frac{12}{4!} \sum_{i_{2} j_{2}} \sum_{i_{3} j_{3}} \sum_{i_{4} j_{4}} 1$
$=\frac{12}{4!}\left(\sum_{i_{2}} \sum_{j_{2} \in E_{1}} \sum_{i_{3} j_{3}} 1+\sum_{i_{4} j_{4}} \sum_{i_{2} j_{2} \in E_{3}} \sum_{i_{3} j_{3}} 1+\sum_{i_{4} j_{4}} \sum_{j_{2}=w} \sum_{i_{3} j_{3}} 1\right)$
$=\frac{12}{4!}(8+8+2)=9$
Corollary 3.3: if G be the 2^{P} regular graph of order 2^{P+1} then if $k \leq 2^{P}+1$:
$P(G, K)=\frac{1}{k!} \prod_{S=1}^{k}\left(2^{P}-S+1\right)^{2}$
Proof: let $m(G)$ be the number of edges. Because G is a 2^{P} regular graph of order 2^{P+1} so $m(G)=2^{2 P}$

We assume $G_{1}=G$ and choose the edge $i_{1} j_{1}$ from G_{1} the graph $G_{2}=G_{1}-i_{1}-j_{1}$ will be of order $2^{P+1}-2$. Since the vertices i_{1} and j_{1} except each other are connected to $2^{P}-1$ other vertices so if we omit the the vertices i_{1}, j_{1} from graph G, then the $\left(2^{P}-1\right)+\left(2^{P}-1\right)=\left(2^{P+1}-2\right)$ vertices of graph G_{2} are all of degree $2^{P}-1$. This means the graph G_{2} is a $2^{P}-1$ regular graph of order $2^{P+1}-2$.threrfore
$m\left(G_{2}\right)=\frac{1}{2}\left(2^{P+1}-2\right)\left(2^{P}-1\right)=\left(2^{P}-1\right)^{2}$
Preceding this approach and using the same method. If we consider the edge $i_{2} j_{2}$ from $\left(2^{P}-1\right)^{2}$ edges of graph G_{2}, the graph $G_{3}=G_{2}-i_{2}-j_{2}$ is $\left(2^{P}-1\right)^{2}$ regular and of order $2^{P+1}-4$ and therefor:
$m\left(G_{3}\right)=\left(2^{P}-2\right)^{2}$
After k steps, with induction we deduce that the graph $G_{k}=$ $G_{k-1}-i_{k-1}-j_{k-1}$ is $2^{P}-k+1$ regular of order $2^{P+1}-2 k+$

2 and so $m\left(G_{k}\right)=\left(2^{P}-k+1\right)^{2}$ but $2^{P}-k+1 \geq 0$ that means $k \leq 2^{P}+1$.

Now using the corollary 2.3 we have:
$P(G, k)=\frac{1}{k!} \sum_{i_{1} j_{1} \in E\left(G_{1}\right)} \sum_{i_{2} j_{2} \in E\left(G_{2}\right)} \ldots \sum_{i_{k} j_{k} \in E\left(G_{k}\right)} 1$
$=\frac{1}{k!} m\left(G_{1}\right) m\left(G_{2}\right) \ldots m\left(G_{k}\right)$
$=\frac{1}{k!} \prod_{S=1}^{k} m\left(G_{S}\right)$
$=\frac{1}{k!} \prod_{S=1}^{k}\left(2^{P}-S+1\right)^{2}$
Corollary 3.4: if G is a complete graph of order n then with assumption $k \leq \frac{n+1}{2}$:
$P(G, k)=\frac{n!}{2^{k} \cdot k!(n-2 k)!}$
Proof: if G is a complete graph of order n then the degree of any vertex of G is $n-1$ and it's size is $\binom{n}{2}$. Assuming $G_{1}=G$ and choosing the edge $i_{1} j_{1}$ from G_{1} the graph $G_{2}=G_{1}-i_{1}-j_{1}$ is a complete graph of order $n-2$ and so it's size is $\binom{n-2}{2}$. Therefore by induction we conclude that the graph $G_{k}=G_{k-1}-$ $i_{k-1}-j_{k-1}$ is a graph of order $n-2 k+2$ and size $\binom{n-2 k+2}{2}$.

But because have the degree of the vertices of G_{k} is $n-2 k+2$ so $n-2 k+2 \geq 0$ or equivalently $\leq \frac{n+1}{2}$.

Now according to corollary 3.2

$$
\begin{aligned}
& P(G, k)=\frac{1}{k!} \sum_{i_{1} j_{1} \in E\left(G_{1}\right)} \sum_{i_{2} j_{2} \in E\left(G_{2}\right)} \ldots \sum_{i_{k} j_{k} \in E\left(G_{k}\right)} 1 \\
& =\frac{1}{k!} m\left(G_{1}\right) m\left(G_{2}\right) \ldots m\left(G_{k}\right) \\
& \quad=\frac{1}{k!}\binom{n}{2}\binom{n-2}{2} \ldots\binom{n-2 k+2}{2}
\end{aligned}
$$

$$
=\frac{n!}{2^{k} \cdot k!(n-2 k)!}
$$

Conclusion

The result of this paper shows that a recursive formula for finding the number of matching in a graph is more applicable than a direct computation as we see in our previous work the formulas for the number of six and seven matchings are really long and complicated.

Acknowledgment

This work has been done under the complete support of Islamic Azad University of Mahshahr so we are grateful for that.

References

1. Farrel E.J., Guo J.M. and Constantine G.M. (1991). On matching coefficients. Discr. Math., 89(2), 203-2010.
2. Behmaram A. (2009). On the number of 4 -matchng in graphs. MATCH Commun. Math. Comput. Chem. 62(2), 381-388.
3. Vesalian R. and Asgari F. (2013). Number of 5-matchings in graphs. MATCH Commun. Math. Comput. Chem., 69, 33-46.
4. Vesalian R., Namazi R. and Asgari F. (2015). Number of 6matchings in graphs. MATCH Commun. Math. Comput. Chem., 73, 239-265.
5. Gutman I. and Wagner S. (2012). The matching energy of graph. Disc. Appl. Math., 160(15), 2177-2187.
6. Gutman I. and Zhang F. (1986). On the ordering of graphs with respect to their matching numbers. Disc. Appl. Math., 15(1), 25-33.
7. Ji S., Li X. and Shi Y. (2013). Extermal matching energy of bicyclic graphs. MATCH Commun. Math. Comput. Chem, 70(2), 697-706.
8. Otter R. (1948). The number of trees. Ann. Math., 49(3), 583-599.
9. Li X., Shi Y. and Gutman I. (2012). Graph energy.\#Springer, New York.
10. Yan W. and Ye L. (2005). On the minimal energy of trees with a given diameter. Appl. Math. Lett., 18(9), 1046-1052.
